1
|
Xu SM, Xu Y, Cheng XG, Yang LQ. Tilianin Protects against Nonalcoholic Fatty Liver Disease in Early Obesity Mice. Biol Pharm Bull 2023; 46:419-426. [PMID: 36858570 DOI: 10.1248/bpb.b22-00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as one of the most frequent types of liver disease in pediatric populations with obesity. Tilianin has multiple biological activities including anti-inflammatory and antioxidant. Here, we aim to explore the functions and possible mechanisms of tilianin on NAFLD in obese children. A high-fat high-carbohydrate (HFHC) diet was used to feed 21-d-old mice. Tilianin was administered at a dose of 10 or 20 mg/kg daily. HFHC-fed mice gained weight, increased liver index. The liver showed hepatocyte ballooning, inflammatory infiltration, and steatosis. Elevated levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transpeptidase (GGT), low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) and reduced the high-density lipoprotein cholesterol (HDL-C) level were found in HFHC-fed mice. Administration of tilianin significantly reduced these impairments. We further evaluated proteins related to lipid metabolism and observed that LXRα, SREBP-1c, FAS and ACC1 expression were blunted following tilianin administration. In addition, tilianin suppressed reactive oxygen species (ROS) overproduction and lipid peroxide 4-Hydroxynonenal expression, ascribed to its oxidative stress-modulating capacity. Tilianin also reversed the increase in F4/80 expression and proinflammatory cytokine levels. Of note, tilianin administration resulted in decreased protein levels of active caspase-1 and NOD-like receptor protein 3 (NLRP3) in HFHC-fed mice. Our study suggests that tilianin may ameliorate NAFLD in early obese mice by modulating lipids metabolism, oxidative stress, and inflammation, which may in part involve inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Sen-Mao Xu
- Department of Pediatrics, the Second Affiliated Hospital of Anhui Medical University.,Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University.,Department of Pediatrics, Anhui Public Health Clinical Center
| | - Yao Xu
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University.,Department of Pediatrics, Anhui Public Health Clinical Center
| | - Xian-Gao Cheng
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University.,Department of Pediatrics, Anhui Public Health Clinical Center
| | - Li-Qi Yang
- Department of Pediatrics, the Second Affiliated Hospital of Anhui Medical University
| |
Collapse
|
2
|
Effects of aerobic exercise and resveratrol on adipocytokines in rats with nonalcoholic fatty liver disease. Sci Sports 2022. [DOI: 10.1016/j.scispo.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Trehangelin E, a bisacyl trehalose with plant growth promoting activity from a rare actinomycete Polymorphospora sp. RD064483. J Antibiot (Tokyo) 2022; 75:296-300. [PMID: 35322208 DOI: 10.1038/s41429-022-00519-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 11/09/2022]
Abstract
Trehangelin E (1), a new bisacyl trehalose, was isolated from the culture extract of an actinomycete Polymorphospora sp. RD064483, along with three known congeners, trehangelins A, B, and D. Compound 1 is a new trehalose derivative acylated with (Z)-2-methyl-2-butenoic acid (angelic acid) at 3- and 6'-positions, as determined by NMR and MS analyses. Compound 1 promoted root elongation of germinated lettuce seeds by 30% at 1 μM and 90% at 10 μM compared to the nontreated seeds. Similar promoting activity of root elongation was also observed with trehangelins A and B at the same level.
Collapse
|
4
|
Ishikawa H, Ino S, Nakashima T, Matsuo H, Takahashi Y, Kohda C, Ōmura S, Iyoda M, Tanaka K. Oral administration of trehangelin-A alleviates metabolic disorders caused by a high-fat diet through improvement of lipid metabolism and restored beneficial microbiota. Obes Res Clin Pract 2020; 14:360-367. [PMID: 32620362 DOI: 10.1016/j.orcp.2020.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/08/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
The present study investigated whether or not the oral administration of trehangelin-A (THG-A) is effective for metabolic disorders caused by a high-fat diet, as we previously showed that the intraperitoneal administration of THG-A improved metabolic disorders caused by a high-fat diet. Mice received a control diet or high-fat diet for eight weeks. Concurrently, mice were orally administered 0.2 ml/mouse phosphate-buffered saline (PBS) or 1 or 10 mg/0.2 ml/mouse of THG-A once daily during the experiment. The weight gain caused by a high-fat diet was significantly suppressed by oral THG-A compared to a high-fat diet without THG-A. In addition, at eight weeks after starting the diet, the increased plasma total-cholesterol (T-CHO) and low-density lipoprotein-cholesterol (LDL-C) levels caused by a high-fat diet were significantly reduced by 10 mg/mouse THG-A and tended to attenuated by 1 mg/mouse THG-A. The LDL receptor and CYP7A1 mRNA expression in liver associated with lipid metabolism for reducing plasma LDL-C levels was significantly enhanced by oral THG-A. In contrast, oral THG-A exerted no marked effects on mice fed the control diet. The dysbiosis of a high-fat diet fed mice, which is in the form of an increased Firmicutes-to-Bacteroidetes ratio, also recovered, and the high-fat diet induced decreased levels of Bacteroides and Akkermansia genera, which are beneficial microbiota against metabolic disorders, were also restored by oral THG-A. These results indicate that oral THG-A administration acts on metabolic disorders by improving the lipid metabolism and restoring beneficial microbiota to resolve high-fat diet induced dysbiosis.
Collapse
Affiliation(s)
- Hiroki Ishikawa
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Satoshi Ino
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Takuji Nakashima
- Kitasato Institute for Life Sciences, Kitasato University, Minato-ku, Tokyo 108-8641, Japan; Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo 108-8641, Japan
| | - Hirotaka Matsuo
- Kitasato Institute for Life Sciences, Kitasato University, Minato-ku, Tokyo 108-8641, Japan; Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo 108-8641, Japan
| | - Yōko Takahashi
- Kitasato Institute for Life Sciences, Kitasato University, Minato-ku, Tokyo 108-8641, Japan
| | - Chikara Kohda
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Satoshi Ōmura
- Kitasato Institute for Life Sciences, Kitasato University, Minato-ku, Tokyo 108-8641, Japan
| | - Masayuki Iyoda
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Kazuo Tanaka
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|