1
|
Bhattacharjee P, Rutland N, Iyer MR. Targeting Sterol O-Acyltransferase/Acyl-CoA:Cholesterol Acyltransferase (ACAT): A Perspective on Small-Molecule Inhibitors and Their Therapeutic Potential. J Med Chem 2022; 65:16062-16098. [PMID: 36473091 DOI: 10.1021/acs.jmedchem.2c01265] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sterol O-acyltransferase (SOAT) is a membrane-bound enzyme that aids the esterification of cholesterol and fatty acids to cholesterol esters. SOAT has been studied extensively as a potential drug target, since its inhibition can serve as an alternative to statin therapy. Two SOAT isozymes that have discrete functions in the human body, namely, SOAT1 and SOAT2, have been characterized. Over three decades of research has focused on candidate SOAT1 inhibitors with unsatisfactory results in clinical trials. Recent research has focused on targeting SOAT2 selectively. In this perspective, we summarize the literature covering various SOAT inhibitory agents and discuss the design, structural requirements, and mode of action of SOAT inhibitors.
Collapse
Affiliation(s)
- Pinaki Bhattacharjee
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Nicholas Rutland
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| |
Collapse
|
2
|
Griffett K, Hayes M, Bedia-Diaz G, Appourchaux K, Sanders R, Boeckman MP, Koelblen T, Zhang J, Schulman IG, Elgendy B, Burris TP. Antihyperlipidemic Activity of Gut-Restricted LXR Inverse Agonists. ACS Chem Biol 2022; 17:1143-1154. [PMID: 35417135 DOI: 10.1021/acschembio.2c00057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hyperlipidemia and increased circulating cholesterol levels are associated with increased cardiovascular disease risk. The liver X receptors (LXRs) are regulators of de novo lipogenesis and cholesterol transport and have been validated as potential therapeutic targets for the treatment of atherosclerosis. However, efforts to develop LXR agonists to reduce cardiovascular diseases have failed due to poor clinical outcomes-associated increased hepatic lipogenesis and elevated low-density lipoprotein (LDL) cholesterol (C). Here, we report that LXR inverse agonists are effective in lowering plasma LDL cholesterol and triglycerides in several models of hyperlipidemia, including the Ldlr null mouse model of atherosclerosis. Mechanistic studies demonstrate that LXR directly regulates the expression of Soat2 enzyme in the intestine, which is directly responsible for the re-uptake or excretion of circulating lipids. Oral administration of a gut-specific LXR inverse agonist leads to reduction of Soat2 expression in the intestine and effectively lowers circulating LDL cholesterol and triglyceride levels without modulating LXR target genes in the periphery. In summary, our studies highlight the therapeutic potential of the gut-restricted molecules to treat hyperlipidemia and atherosclerosis through the intestinal LXR-Soat2 axis.
Collapse
Affiliation(s)
- Kristine Griffett
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, Alabama 36849, United States
| | - Matthew Hayes
- University of Florida Genetics Institute, Gainesville, Florida 32610, United States
| | - Gonzalo Bedia-Diaz
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, Missouri 63110, United States
| | - Kevin Appourchaux
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, Missouri 63110, United States
| | - Ryan Sanders
- University of Florida Genetics Institute, Gainesville, Florida 32610, United States
| | - Michael P. Boeckman
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, Missouri 63110, United States
| | - Thomas Koelblen
- University of Florida Genetics Institute, Gainesville, Florida 32610, United States
| | - Jinsong Zhang
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Ira G. Schulman
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22903, United States
| | - Bahaa Elgendy
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, Missouri 63110, United States
| | - Thomas P. Burris
- University of Florida Genetics Institute, Gainesville, Florida 32610, United States
| |
Collapse
|
3
|
De Vriese K, Pollier J, Goossens A, Beeckman T, Vanneste S. Dissecting cholesterol and phytosterol biosynthesis via mutants and inhibitors. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:241-253. [PMID: 32929492 DOI: 10.1093/jxb/eraa429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Plants stand out among eukaryotes due to the large variety of sterols and sterol derivatives that they can produce. These metabolites not only serve as critical determinants of membrane structures, but also act as signaling molecules, as growth-regulating hormones, or as modulators of enzyme activities. Therefore, it is critical to understand the wiring of the biosynthetic pathways by which plants generate these distinct sterols, to allow their manipulation and to dissect their precise physiological roles. Here, we review the complexity and variation of the biosynthetic routes of the most abundant phytosterols and cholesterol in the green lineage and how different enzymes in these pathways are conserved and diverged from humans, yeast, and even bacteria. Many enzymatic steps show a deep evolutionary conservation, while others are executed by completely different enzymes. This has important implications for the use and specificity of available human and yeast sterol biosynthesis inhibitors in plants, and argues for the development of plant-tailored inhibitors of sterol biosynthesis.
Collapse
Affiliation(s)
- Kjell De Vriese
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
| | - Jacob Pollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
- VIB Metabolomics Core, Technologiepark, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Songdomunhwa-Ro, Yeonsu-gu, Incheon, Republic of Korea
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Heneberg P, Jegorov A, Šimek P. Peroral administration of beauverolides allows their transport into the peripheral blood and urine. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1809525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Petr Heneberg
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alexandr Jegorov
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Petr Šimek
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|