1
|
Kazaoka A, Fujimori S, Yamada Y, Shirayanagi T, Gao Y, Kuwahara S, Sakamoto N, Susukida T, Aoki S, Ito K. HLA-B*57:01-dependent intracellular stress in keratinocytes triggers dermal hypersensitivity reactions to abacavir. PNAS NEXUS 2024; 3:pgae140. [PMID: 38628599 PMCID: PMC11018537 DOI: 10.1093/pnasnexus/pgae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Specific human leukocyte antigen (HLA) polymorphisms combined with certain drug administration strongly correlate with skin eruption. Abacavir hypersensitivity (AHS), which is strongly associated with HLA-B*57:01, is one of the most representative examples. Conventionally, HLA transmits immunological signals via interactions with T cell receptors on the cell surface. This study focused on HLA-mediated intracellular reactions in keratinocytes that might determine the onset of skin immunotoxicity by drug treatments. Abacavir exposure resulted in keratinocytes expressing HLA-B*57:01 exhibiting endoplasmic reticulum (ER) stress responses, such as immediate calcium release into the cytosol and enhanced HSP70 expression. In contrast, keratinocytes expressing HLA-B*57:03 (closely related to HLA-B*57:01) did not show these changes. This indicated that HLA-B*57:01 has a specific intracellular response to abacavir in keratinocytes in the absence of lymphocytes. Furthermore, abacavir exposure in HLA-B*57:01-expressing keratinocytes elevated the expression of cytokines/chemokines such as interferon-γ, interleukin-1β, and CCL27, and induced T lymphoblast migration. These effects were suppressed by ER stress relief using 4-phenylbutyrate (4-PB). HLA-B*57:01-transgenic mice also exhibited ER stress in epidermal areas following abacavir administration, and abacavir-induced skin toxicity was attenuated by the administration of 4-PB. Moreover, abacavir bound to HLA-B*57:01 within cells and its exposure led to HLA-B*57:01 protein aggregation and interaction with molecular chaperones in the ER of keratinocytes. Our results underscore the importance of HLA-mediated intracellular stress responses in understanding the onset of HLA-B*57:01-mediated AHS. We provide the possibility that the intracellular behavior of HLA is crucial for determining the onset of drug eruptions.
Collapse
Affiliation(s)
- Akira Kazaoka
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Sota Fujimori
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Yushiro Yamada
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Tomohiro Shirayanagi
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Yuying Gao
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Saki Kuwahara
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Naoki Sakamoto
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Takeshi Susukida
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
- Laboratory of Cancer Biology and Immunology, Section of Host Defences, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| |
Collapse
|
2
|
Kazaoka A, Kumagai K, Matsushita J, Aida T, Kuwahara S, Aoki S, Ito K. Pathological changes in various organs in HLA-B*57:01 transgenic mice with abacavir-induced skin eruption. Toxicol Res 2024; 40:223-235. [PMID: 38525129 PMCID: PMC10959918 DOI: 10.1007/s43188-023-00220-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 03/26/2024] Open
Abstract
Several patients with cutaneous adverse drug reactions exhibit extracutaneous organ damages, and it becomes severe in a few patients resulting in death due to multiorgan failure. Understanding the sequential changes in various organs in patients with cutaneous eruption following drug administration will help understand disease onset and progression, aiding the development of prevention strategies and interventions. Therefore, we aimed to understand the effects of abacavir (ABC) on various organs in patients with ABC-induced eruptions by evaluating its effects in a mouse model. We found pathological changes in various organs of HLA-B*57:01 transgenic mice (B*57:01-Tg) following oral administration of ABC (20 mg/body/day). B*57:01-Tg exhibited a significant body weight decrease from day 1 of ABC administration, and reddening of the auricle was observed from day 5, and approximately 2/3 mice died by day 7. Histopathological examination revealed severe thymic atrophy after day 3, infiltration of inflammatory cells, predominantly lymphocytes with neutrophils, not only in the skin but also in the liver, kidney, and lung after day 5, and an increased number of lymphocytes with enlarged nuclei and granulocytic hematopoiesis were observed in the spleen after day 5. Blood chemistry revealed that albumin/globulin ratio was below 1.0 on day 5, reflecting a systemic inflammatory response, and the aspartate aminotransferase concentration rose to 193 ± 93.0 U/L on day 7, suggesting that cell damage may have occurred in various organs including liver accompanying inflammatory cell infiltration. These examinations of a mouse model of ABC-induced skin eruption show that disorders in various organs other than the skin should be considered and provide insights into the unexpected early systemic responses dependent on HLA-B*57:01. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00220-1.
Collapse
Affiliation(s)
- Akira Kazaoka
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-City, Chiba 260-8675 Japan
| | - Kazuyoshi Kumagai
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Junya Matsushita
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Tetsuo Aida
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Saki Kuwahara
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-City, Chiba 260-8675 Japan
| | - Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-City, Chiba 260-8675 Japan
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-City, Chiba 260-8675 Japan
| |
Collapse
|
3
|
Aoki S. Elucidating the Mechanisms Underlying Interindividual Differences in the Onset of Adverse Drug Reactions. Biol Pharm Bull 2024; 47:1079-1086. [PMID: 38825461 DOI: 10.1248/bpb.b24-00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Idiosyncratic drug toxicities (IDTs) pose a significant challenge; they are marked by life-threatening adverse reactions that emerge aftermarket release and are influenced by intricate genetic and environmental variations. Recent genome-wide association studies have highlighted a strong correlation between specific human leukocyte antigen (HLA) polymorphisms and IDT onset. This review provides an overview of current research on HLA-mediated drug toxicities. In the last six years, HLA-transgenic (Tg) mice have been instrumental in advancing our understanding of these underlying mechanisms, uncovering systemic immune reactions that replicate human drug-induced immune stimulation. Additionally, the potential role of immune tolerance in shaping individual differences in adverse effects highlights its relevance to the interplay between HLA polymorphisms and IDTs. Although HLA-Tg mice offer valuable insights into systemic immune reactions, further exploration is essential to decipher the intricate interactions that lead to organ-specific adverse effects, especially in organs such as the skin or liver. Navigating the intricate interplay of HLA, which may potentially trigger intracellular immune responses, this review emphasizes the need for a holistic approach that integrates findings from both animal models and molecular/cellular investigations. The overarching goal is to enhance our comprehensive understanding of HLA-mediated IDTs and identify factors shaping individual variations in drug reactions. This review aims to facilitate the development of strategies to prevent severe adverse effects, address existing knowledge gaps, and provide guidance for future research initiatives in the field of HLA-mediated IDTs.
Collapse
Affiliation(s)
- Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
4
|
Susukida T, Sasaki SI, Shirayanagi T, Aoki S, Ito K, Hayakawa Y. Drug-induced altered self-presentation increases tumor immunogenicity. Biomed Pharmacother 2023; 165:115241. [PMID: 37523987 DOI: 10.1016/j.biopha.2023.115241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023] Open
Abstract
Anti-human immunodeficiency virus (HIV) drug abacavir (ABC) binds to the specific allele of human leukocyte antigen (HLA-B*57:01) and activates CD8+ T cells by presenting altered abnormal peptides. Here, we examined the effect of ABC-induced altered self-presentation by HLA-B*57:01 on immunogenicity of cancer cells and CD8+ T-cell-dependent anti-tumor immunity. We established human-mouse chimeric HLA-B*57:01-expressing tumor cell lines (B16F10 and 3LL) and tested the anti-tumor effect of ABC in vivo. ABC treatment inhibited the growth of HLA-B*57:01-expressing tumors by a CD8+ T-cell-dependent mechanism. ABC treatment induced CXCR3-dependent infiltration of CD8+ T cells into HLA-B*57:01-expressing tumors, and activated those tumor-infiltrating CD8+ T cells to proliferate and secrete IFN-γ. The activation of CD8+ T cells using drug-induced altered self-presentation may be a new strategy to increase tumor immunogenicity and improve the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Takeshi Susukida
- Laboratory of Cancer Biology and Immunology, Section of Host Defences, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - So-Ichiro Sasaki
- Laboratory of Cancer Biology and Immunology, Section of Host Defences, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Tomohiro Shirayanagi
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yoshihiro Hayakawa
- Laboratory of Cancer Biology and Immunology, Section of Host Defences, Institute of Natural Medicine, University of Toyama, Toyama, Japan.
| |
Collapse
|
5
|
Han J, Pan C, Tang X, Li Q, Zhu Y, Zhang Y, Liang A. Hypersensitivity reactions to small molecule drugs. Front Immunol 2022; 13:1016730. [PMID: 36439170 PMCID: PMC9684170 DOI: 10.3389/fimmu.2022.1016730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/20/2022] [Indexed: 02/02/2024] Open
Abstract
Drug hypersensitivity reactions induced by small molecule drugs encompass a broad spectrum of adverse drug reactions with heterogeneous clinical presentations and mechanisms. These reactions are classified into allergic drug hypersensitivity reactions and non-allergic drug hypersensitivity reactions. At present, the hapten theory, pharmacological interaction with immune receptors (p-i) concept, altered peptide repertoire model, and altered T-cell receptor (TCR) repertoire model have been proposed to explain how small molecule drugs or their metabolites induce allergic drug hypersensitivity reactions. Meanwhile, direct activation of mast cells, provoking the complement system, stimulating or inhibiting inflammatory reaction-related enzymes, accumulating bradykinin, and/or triggering vascular hyperpermeability are considered as the main factors causing non-allergic drug hypersensitivity reactions. To date, many investigations have been performed to explore the underlying mechanisms involved in drug hypersensitivity reactions and to search for predictive and preventive methods in both clinical and non-clinical trials. However, validated methods for predicting and diagnosing hypersensitivity reactions to small molecule drugs and deeper insight into the relevant underlying mechanisms are still limited.
Collapse
Affiliation(s)
- Jiayin Han
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chen Pan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuan Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Zhu
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yushi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aihua Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Gao Y, Kuwahara S, Kazaoka A, Ito K, Aoki S. TARC/CCL17 Expression Is Associated with CD8<sup>+</sup> T Cell Recruitment in Abacavir-Induced Skin Hypersensitivity in HLA-Transgenic Mice. Biol Pharm Bull 2022; 45:1347-1353. [DOI: 10.1248/bpb.b22-00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuying Gao
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Saki Kuwahara
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Akira Kazaoka
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
7
|
Shirayanagi T, Kazaoka A, Watanabe K, Qu L, Sakamoto N, Hoshino T, Ito K, Aoki S. Weak complex formation of adverse drug reaction-associated HLAB57, B58, and B15 molecules. Toxicol In Vitro 2022; 82:105383. [PMID: 35568130 DOI: 10.1016/j.tiv.2022.105383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
The combination of certain human leukocyte antigen (HLA) polymorphisms with administration of certain drugs shows a strong correlation with developing drug hypersensitivity. Examples of typical combinations are HLA-B*57:01 with abacavir and HLA-B*15:02 with carbamazepine. However, despite belonging to the same serotype, HLA-B*57:03 and HLA-B*15:01 are not associated with drug hypersensitivity. Recent studies have shown that several HLA polymorphisms are associated with multiple drugs rather than a single drug, all resulting in drug hypersensitivity. In this study, we compared the molecular structures and intracellular localization of HLA-B*57:01, HLA-B*58:01, and HLA-B*15:02, which pose risks for developing drug hypersensitivity, as well as HLA-B*57:03 and HLA-B*15:01 that do not present such risks. We found that HLA molecules posing risks have a low affinity for the subunit β2-microglobulin; notably, the weak hydrogen bond formed via Gln96 of the HLA molecule contributes to this behavior. We also clarified that these HLA molecules are easily accumulated in the endoplasmic reticulum, exhibiting a low expression on the cell surface. Considering that these hypersensitivity risk-associated HLA molecules form complexes with β2-microglobulin and peptides in the endoplasmic reticulum, we assumed that their low complex formation ability in the endoplasmic reticulum facilitates the interaction with multiple drugs.
Collapse
Affiliation(s)
- Tomohiro Shirayanagi
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba 260-8675, Japan
| | - Akira Kazaoka
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba 260-8675, Japan
| | - Kenji Watanabe
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba 260-8675, Japan
| | - Liang Qu
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba 260-8675, Japan
| | - Naoki Sakamoto
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba 260-8675, Japan
| | - Tyuji Hoshino
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba 260-8675, Japan
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba 260-8675, Japan
| | - Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba 260-8675, Japan.
| |
Collapse
|
8
|
Szebeni J, Storm G, Ljubimova JY, Castells M, Phillips EJ, Turjeman K, Barenholz Y, Crommelin DJA, Dobrovolskaia MA. Applying lessons learned from nanomedicines to understand rare hypersensitivity reactions to mRNA-based SARS-CoV-2 vaccines. NATURE NANOTECHNOLOGY 2022; 17:337-346. [PMID: 35393599 DOI: 10.1038/s41565-022-01071-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 01/04/2022] [Indexed: 05/24/2023]
Abstract
After over a billion of vaccinations with messenger RNA-lipid nanoparticle (mRNA-LNP) based SARS-CoV-2 vaccines, anaphylaxis and other manifestations of hypersensitivity can be considered as very rare adverse events. Although current recommendations include avoiding a second dose in those with first-dose anaphylaxis, the underlying mechanisms are unknown; therefore, the risk of a future reaction cannot be predicted. Given how important new mRNA constructs will be to address the emergence of new viral variants and viruses, there is an urgent need for clinical approaches that would allow a safe repeated immunization of high-risk individuals and for reliable predictive tools of adverse reactions to mRNA vaccines. In many aspects, anaphylaxis symptoms experienced by the affected vaccine recipients resemble those of infusion reactions to nanomedicines. Here we share lessons learned over a decade of nanomedicine research and discuss the current knowledge about several factors that individually or collectively contribute to infusion reactions to nanomedicines. We aim to use this knowledge to inform the SARS-CoV-2 lipid-nanoparticle-based mRNA vaccine field.
Collapse
Affiliation(s)
- Janos Szebeni
- Nanomedicine Research and Education Center, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- SeroScience LCC, Budapest, Hungary
- Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, the Netherlands
- Department of Biomaterials Science and Technology, University of Twente, Enschede, the Netherlands
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Mariana Castells
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth J Phillips
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keren Turjeman
- Laboratory of Membrane and Liposome Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yechezkel Barenholz
- Laboratory of Membrane and Liposome Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Daan J A Crommelin
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
9
|
Regulation of the immune tolerance system determines the susceptibility to HLA-mediated abacavir-induced skin toxicity. Commun Biol 2021; 4:1137. [PMID: 34584206 PMCID: PMC8479119 DOI: 10.1038/s42003-021-02657-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 09/10/2021] [Indexed: 01/11/2023] Open
Abstract
Idiosyncratic drug toxicity (IDT) associated with specific human leukocyte antigen (HLA) allotype is a rare and unpredictable life-threatening adverse drug reaction for which prospective mechanistic studies in humans are difficult. Here, we show the importance of immune tolerance for IDT onset and determine whether it is susceptible to a common IDT, HLA-B*57:01-mediated abacavir (ABC)-induced hypersensitivity (AHS), using CD4+ T cell-depleted programmed death-1 receptor (PD-1)-deficient HLA-B*57:01 transgenic mice (B*57:01-Tg/PD-1−/−). Although AHS is not observed in B*57:01-Tg mice, ABC treatment increases the proportion of cytokine- and cytolytic granule-secreting effector memory CD8+ T cells in CD4+ T cell-depleted B*57:01-Tg/PD-1−/− mice, thereby inducing skin toxicity with CD8+ T cell infiltration, mimicking AHS. Our results demonstrate that individual differences in the immune tolerance system, including PD-1highCD8+ T cells and regulatory CD4+ T cells, may affect the susceptibility of humans to HLA-mediated IDT in humans. Using a transgenic mouse model that recapitulates abacavir hypersensitivity syndrome, an idiosyncratic adverse drug reaction, Susukida et al show that individual differences in the immune tolerance system affect the susceptibility to idiosyncratic drug toxicity.
Collapse
|
10
|
Aoki S. [Importance of HLA in Determining Individual Differences in the Onset of Adverse Drug Reactions]. YAKUGAKU ZASSHI 2021; 141:1001-1007. [PMID: 34334545 DOI: 10.1248/yakushi.21-00120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Individuals vary in their susceptibility to adverse reactions to medications, some of which can be potentially life-threatening. Idiosyncratic drug toxicity (IDT) has been shown to be strongly associated to specific polymorphisms in genes encoding human leukocyte antigens (HLAs) by recent genome-wide association studies. However, the pathogenic mechanisms governing such reactions remain unclarified, at least in part because of a lack of suitable experimental animal models to assess IDT. This review describes our work on the specific allele/drug combination of HLA-B*57:01 and abacavir, an antiretroviral drug targeting the human immunodeficiency virus. As abacavir is known to trigger an HLA-dependent immune response, we engineered a transgenic mouse model-HLA-Tg-by partially substituting the mouse HLA sequence for the corresponding human sequence. Local abacavir exposure was found to trigger a significant immune response in an HLA-dependent manner, and oral administration induced liver injury partially via concurrent activation of the innate immune system. Additionally, we developed a technique for evaluating structural alterations in HLA complexes resulting from drug exposure based on phage display to ensure specificity. Further scrutiny of the mechanism(s) underlying drug-induced immune reactions using the HLA-Tg model, as well as enhanced methods for predicting adverse event incidence, are anticipated to help resolve issues surrounding HLA-associated drug hypersensitivity.
Collapse
Affiliation(s)
- Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
11
|
Susukida T, Aoki S, Shirayanagi T, Yamada Y, Kuwahara S, Ito K. HLA transgenic mice: application in reproducing idiosyncratic drug toxicity. Drug Metab Rev 2020; 52:540-567. [PMID: 32847422 DOI: 10.1080/03602532.2020.1800725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Various types of transgenic mice carrying either class I or II human leukocyte antigen (HLA) molecules are readily available, and reports describing their use in a variety of studies have been published for more than 30 years. Examples of their use include the discovery of HLA-specific antigens against viral infection as well as the reproduction of HLA-mediated autoimmune diseases for the development of therapeutic strategies. Recently, HLA transgenic mice have been used to reproduce HLA-mediated idiosyncratic drug toxicity (IDT), a rare and unpredictable adverse drug reaction that can result in death. For example, abacavir-induced IDT has successfully been reproduced in HLA-B*57:01 transgenic mice. Several reports using HLA transgenic mice for IDT have proven the utility of this concept for the evaluation of IDT using various HLA allele combinations and drugs. It has become apparent that such models may be a valuable tool to investigate the mechanisms underlying HLA-mediated IDT. This review summarizes the latest findings in the area of HLA transgenic mouse models and discusses the current challenges that must be overcome to maximize the potential of this unique animal model.
Collapse
Affiliation(s)
- Takeshi Susukida
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.,Laboratory of Cancer Biology and Immunology, Section of Host Defenses, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tomohiro Shirayanagi
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yushiro Yamada
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Saki Kuwahara
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|