1
|
Luviano AS, Figueroa-Gerstenmaier S, Sarmiento-Gómez E, Rincón-Londoño N. “Non-disruptive Mixing of Cyclodextrins and Wormlike Micelles in the non-dilute regime”. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Luviano AS, Hernández-Pascacio J, Ondo D, Campbell RA, Piñeiro Á, Campos-Terán J, Costas M. Highly viscoelastic films at the water/air interface: α-Cyclodextrin with anionic surfactants. J Colloid Interface Sci 2019; 565:601-613. [PMID: 32032852 DOI: 10.1016/j.jcis.2019.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023]
Abstract
This work showcases the remarkable viscoelasticity of films consisting of α-cyclodextrin (α-CD) and anionic surfactants (S) at the water/air interface, the magnitude of which has not been observed in similar systems. The anionic surfactants employed are sodium salts of a homologous series of n-alkylsulfates (n = 8-14) and of dodecylsulfonate. Our hypothesis was that the very high viscoelasticity can be systematically related to the bulk and interfacial properties of the system. Through resolution of the bulk distribution of species using isothermal titration calorimetry, the high dilatational modulus is related to (α-CD)2:S1 inclusion complexes in the bulk with respect to both the bulk composition and temperature. Direct interfacial characterization of α-CD and sodium dodecylsulfate films at 283.15 K using ellipsometry and neutron reflectometry reveals that the most viscoelastic films consist of a highly ordered monolayer of 2:1 complexes with a minimum amount of any other component. The orientation of the complexes in the films and their driving force for adsorption are discussed in the context of results from molecular dynamics simulations. These findings open up clear potential for the design of new functional materials or molecular sensors based on films with specific mechanical, electrical, thermal, chemical, optical or even magnetic properties.
Collapse
Affiliation(s)
- Alberto S Luviano
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, CdMx 04510, Mexico; Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe, Delegación Cuajimalpa de Morelos, 05348, CdMx, Mexico
| | - Jorge Hernández-Pascacio
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, CdMx 04510, Mexico
| | - Daniel Ondo
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Richard A Campbell
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble, France; Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PT, United Kingdom.
| | - Ángel Piñeiro
- Departamento de Física de Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - José Campos-Terán
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe, Delegación Cuajimalpa de Morelos, 05348, CdMx, Mexico; Lund Institute of Advanced Neutron and X-ray Science, Lund University, Scheelevägen 19, 223 70 Lund, Sweden.
| | - Miguel Costas
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, CdMx 04510, Mexico.
| |
Collapse
|
4
|
Li DX, Chen CL, Liu BL, Liu YS. Molecular simulation of β-cyclodextrin inclusion complex with 2-phenylethyl alcohol. MOLECULAR SIMULATION 2009. [DOI: 10.1080/08927020802419334] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Abstract
Cyclodextrins (CDs) attract much attention for industrial applications and academic research. A few experimental methods for determination of the binding constant between CD and a guest molecule were reviewed critically. A hydrophile–hydrophobe matching model for host–guest docking was proposed for estimation of the binding constant and the solution structure of the complex. Rather detailed solution structures of CD complexes were determined by proton NMR spectroscopy, aided by calculations of molecular mechanics and surface areas, and were used to analyze the binding constants. The binding constants of CDs with multi-site guests were analyzed on the basis of their solution structures. The working mechanisms and physicochemical predictions in a few pharmaceutical applications of CDs were proposed on the basis of detailed solution structures and accurate binding constants.
Collapse
|