1
|
Liu H, Bi L, Chen Q, He X, Yan H, Ni W, Wu W, He L, Liu H. Enrichment process, structural prediction, isolation, in vitro cytotoxic and anti-inflammatory effects of triterpenoid saponins in Camellia japonica L. leaves water extract through UPLC-Q-TOF based mass spectrometry similarity networking. Food Chem 2024; 441:138360. [PMID: 38219361 DOI: 10.1016/j.foodchem.2024.138360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
Camellia japonica L. is rich in bioactive compounds, but its health-enhancing potential is often overshadowed by its ornamental value. Notably, triterpenoid saponins are prominent due to their surfactant properties. MolNetEnhancer revealed 537 compounds in C. japonica leaves water extract, classified into 32 categories, including 38 triterpenoid saponins. To enrich triterpenoid saponins, the process of D101 resin chromatography was employed. Molecular networking analysis based on UPLC-Q-TOF and quantitative analysis based on HPLC revealed saponins concentrated in fractions 3 and 4 (68.3% transfer). MS2LDA and NAP predicted structures for 38 triterpenoid saponins, revealing nearly half of them are potential new compounds. Comprehensive chromatographic and spectroscopic methods were used for purification and structural illustration of triterpenoid saponins, yielding 13, including 7 new compounds. Statistical analysis and in vitro assays revealed the cytotoxic and anti-inflammatory activities of these triterpenoid saponins played a crucial role in the anticancer effects.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China
| | - Lisha Bi
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qirun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China
| | - Xiaozhi He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Huan Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wei Ni
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China
| | - Wenjuan Wu
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Li He
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Skin Health Research Center, Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China.
| | - Haiyang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China.
| |
Collapse
|
2
|
Yue Y, Yin J, Xie J, Wu S, Ding H, Han L, Bie S, Song W, Zhang Y, Song X, Yu H, Li Z. Comparative Analysis of Volatile Compounds in the Flower Buds of Three Panax Species Using Fast Gas Chromatography Electronic Nose, Headspace-Gas Chromatography-Ion Mobility Spectrometry, and Headspace Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry Coupled with Multivariate Statistical Analysis. Molecules 2024; 29:602. [PMID: 38338347 PMCID: PMC10856343 DOI: 10.3390/molecules29030602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/09/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024] Open
Abstract
The flower buds of three Panax species (PGF: P. ginseng; PQF: P. quinquefolius; PNF: P. notoginseng) widely consumed as health tea are easily confused in market circulation. We aimed to develop a green, fast, and easy analysis strategy to distinguish PGF, PQF, and PNF. In this work, fast gas chromatography electronic nose (fast GC e-nose), headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS), and headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) were utilized to comprehensively analyze the volatile organic components (VOCs) of three flowers. Meanwhile, a principal component analysis (PCA) and heatmap were applied to distinguish the VOCs identified in PGF, PQF, and PNF. A random forest (RF) analysis was used to screen key factors affecting the discrimination. As a result, 39, 68, and 78 VOCs were identified in three flowers using fast GC e-nose, HS-GC-IMS, and HS-SPME-GC-MS. Nine VOCs were selected as potential chemical markers based on a model of RF for distinguishing these three species. Conclusively, a complete VOC analysis strategy was created to provide a methodological reference for the rapid, simple, and environmentally friendly detection and identification of food products (tea, oil, honey, etc.) and herbs with flavor characteristics and to provide a basis for further specification of their quality and base sources.
Collapse
Affiliation(s)
- Yang Yue
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Y.); (J.Y.); (J.X.); (S.W.); (H.D.); (L.H.); (S.B.); (X.S.)
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Jiaxin Yin
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Y.); (J.Y.); (J.X.); (S.W.); (H.D.); (L.H.); (S.B.); (X.S.)
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Jingyi Xie
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Y.); (J.Y.); (J.X.); (S.W.); (H.D.); (L.H.); (S.B.); (X.S.)
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Shufang Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Y.); (J.Y.); (J.X.); (S.W.); (H.D.); (L.H.); (S.B.); (X.S.)
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Hui Ding
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Y.); (J.Y.); (J.X.); (S.W.); (H.D.); (L.H.); (S.B.); (X.S.)
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Lifeng Han
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Y.); (J.Y.); (J.X.); (S.W.); (H.D.); (L.H.); (S.B.); (X.S.)
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Songtao Bie
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Y.); (J.Y.); (J.X.); (S.W.); (H.D.); (L.H.); (S.B.); (X.S.)
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wen Song
- Tianjin HongRenTang Pharmaceutical Co., Ltd., Tianjin 300385, China; (W.S.); (Y.Z.)
| | - Ying Zhang
- Tianjin HongRenTang Pharmaceutical Co., Ltd., Tianjin 300385, China; (W.S.); (Y.Z.)
| | - Xinbo Song
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Y.); (J.Y.); (J.X.); (S.W.); (H.D.); (L.H.); (S.B.); (X.S.)
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Heshui Yu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Y.); (J.Y.); (J.X.); (S.W.); (H.D.); (L.H.); (S.B.); (X.S.)
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Y.); (J.Y.); (J.X.); (S.W.); (H.D.); (L.H.); (S.B.); (X.S.)
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
3
|
Fan W, Fan L, Wang Z, Mei Y, Liu L, Li L, Yang L, Wang Z. Rare ginsenosides: A unique perspective of ginseng research. J Adv Res 2024:S2090-1232(24)00003-1. [PMID: 38195040 DOI: 10.1016/j.jare.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Rare ginsenosides (Rg3, Rh2, C-K, etc.) refer to a group of dammarane triterpenoids that exist in low natural abundance, mostly produced by deglycosylation or side chain modification via physicochemical processing or metabolic transformation in gut, and last but not least, exhibited potent biological activity comparing to the primary ginsenosides, which lead to a high concern in both the research and development of ginseng and ginsenoside-related nutraceutical and natural products. Nevertheless, a comprehensive review on these promising compounds is not available yet. AIM OF REVIEW In this review, recent advances of Rare ginsenosides (RGs) were summarized dealing with the structurally diverse characteristics, traditional usage, drug discovery situation, clinical application, pharmacological effects and the underlying mechanisms, structure-activity relationship, toxicity, the stereochemistry properties, and production strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW A total of 144 RGs with diverse skeletons and bioactivities were isolated from Panax species. RGs acted as natural ligands on some specific receptors, such as bile acid receptors, steroid hormone receptors, and adenosine diphosphate (ADP) receptors. The RGs showed promising bioactivities including immunoregulatory and adaptogen-like effect, anti-aging effect, anti-tumor effect, as well as their effects on cardiovascular and cerebrovascular system, central nervous system, obesity and diabetes, and interaction with gut microbiota. Clinical trials indicated the potential of RGs, while high quality data remains inadequate, and no obvious side effects was found. The stereochemistry properties induced by deglycosylation at C (20) were also addressed including pharmacodynamics behaviors, together with the state-of-art analytical strategies for the identification of saponin stereoisomers. Finally, the batch preparation of targeted RGs by designated strategies including heating or acid/ alkaline-assisted processes, and enzymatic biotransformation and biosynthesis were discussed. Hopefully, the present review can provide more clues for the extensive understanding and future in-depth research and development of RGs, originated from the worldwide well recognized ginseng plants.
Collapse
Affiliation(s)
- Wenxiang Fan
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linhong Fan
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ziying Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuqi Mei
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Longchan Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Li X, Cao D, Sun S, Wang Y. Anticancer therapeutic effect of ginsenosides through mediating reactive oxygen species. Front Pharmacol 2023; 14:1215020. [PMID: 37564184 PMCID: PMC10411515 DOI: 10.3389/fphar.2023.1215020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Dysregulation of reactive oxygen species (ROS) production and ROS-regulated pathways in cancer cells leads to abnormal accumulation of reactive oxygen species, displaying a double-edged role in cancer progression, either supporting transformation/proliferation and stimulating tumorigenesis or inducing cell death. Cancer cells can accommodate reactive oxygen species by regulating them at levels that allow the activation of pro-cancer signaling pathways without inducing cell death via modulation of the antioxidant defense system. Therefore, targeting reactive oxygen species is a promising approach for cancer treatment. Ginsenosides, their derivatives, and related drug carriers are well-positioned to modulate multiple signaling pathways by regulating oxidative stress-mediated cellular and molecular targets to induce apoptosis; regulate cell cycle arrest and autophagy, invasion, and metastasis; and enhance the sensitivity of drug-resistant cells to chemotherapeutic agents of different cancers depending on the type, level, and source of reactive oxygen species, and the type and stage of the cancer. Our review focuses on the pro- and anticancer effects of reactive oxygen species, and summarizes the mechanisms and recent advances in different ginsenosides that bring about anticancer effects by targeting reactive oxygen species, providing new ideas for designing further anticancer studies or conducting more preclinical and clinical studies.
Collapse
Affiliation(s)
- Xiaonan Li
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, China
| | - Donghui Cao
- Department of Clinical Research, The First Hospital of Jilin University, Changchun, China
| | - Siming Sun
- Department of Clinical Research, The First Hospital of Jilin University, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Yang Z, Deng J, Liu M, He C, Feng X, Liu S, Wei S. A review for discovering bioactive minor saponins and biotransformative metabolites in Panax quinquefolius L. Front Pharmacol 2022; 13:972813. [PMID: 35979234 PMCID: PMC9376941 DOI: 10.3389/fphar.2022.972813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Panax quinquefolius L. has attracted extensive attention worldwide because of its prominent pharmacological properties on type 2 diabetes, cancers, central nervous system, and cardiovascular diseases. Ginsenosides are active phytochemicals of P. quinquefolius, which can be classified as propanaxdiol (PPD)-type, propanaxtriol (PPT)-type, oleanane-type, and ocotillol-type oligo-glycosides depending on the skeleton of aglycone. Recently, advanced analytical and isolated methods including ultra-performance liquid chromatography tandem with mass detector, preparative high-performance liquid chromatography, and high speed counter-current chromatography have been used to isolate and identify minor components in P. quinquefolius, which accelerates the clarification of the material basis. However, the poor bioavailability and undetermined bio-metabolism of most saponins have greatly hindered both the development of medicines and the identification of their real active constituents. Thus, it is essential to consider the bio-metabolism of constituents before and after absorption. In this review, we described the structures of minor ginsenosides in P. quinquefolius, including naturally occurring protype compounds and their in vivo metabolites. The preclinical and clinical pharmacological studies of the ginsenosides in the past few years were also summarized. The review will promote the reacquaint of minor saponins on the growing appreciation of their biological role in P. quinquefolius.
Collapse
Affiliation(s)
- Zhiyou Yang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jiahang Deng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Mingxin Liu
- College of Electrical and Information Engineering, Guangdong Ocean University, Zhanjiang, China
| | - Chuantong He
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Xinyue Feng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Shucheng Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shuai Wei
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
6
|
Niu XN, Luo W, Lv CN, Lu JC. Research progress on naturally-occurring and semi-synthetic ocotillol-type ginsenosides in the genus Panax L. (Araliaceae). Chin J Nat Med 2021; 19:648-655. [PMID: 34561075 DOI: 10.1016/s1875-5364(21)60089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 11/15/2022]
Abstract
Ocotillol (OT)-type ginsenosides, one subtype of ginsenosides, consist of a dammarane skeleton and a tetrahydrofuran ring. Most naturally-occurring OT-type ginsenosides exist in Panax species, particularly in Panax quinquefolius, which may be attributed to the warm and humid climate of its native areas. Till now, merely 28 types of naturally-occurring OT-type ginsenosides have been isolated. In contrast, semi-synthesized OT-type ginsenosides are attracted considerable attentions. These ginsenosides can be obtained through oxidation and cyclization of side chains of dammarane-type ginsenosides, and other methods, which may change their physical and chemical properties and further improve their bioavailabilities. It is also notable that the pharmacological activities of ginsenosides are closely related to the stereoisomers caused by the configuration at C-20. Semi-synthesis of OT-type ginsenosides can facilitate our understanding of the biosynthesis, transformation and metabolism of OT-type ginsenosides in the body. This review will systematically summarize the research progress on naturally-occurring and semi-synthetic OT-type ginsenosides, which provides a theoretical basis for their bioactivity-guided research.
Collapse
Affiliation(s)
- Xue-Ni Niu
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wen Luo
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chong-Ning Lv
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jin-Cai Lu
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
7
|
Liu L, Wang H, Chai X, Meng Q, Jiang S, Zhao F. Advances in Biocatalytic Synthesis, Pharmacological Activities, Pharmaceutical Preparation and Metabolism of Ginsenoside Rh2. Mini Rev Med Chem 2021; 22:437-448. [PMID: 34517798 DOI: 10.2174/1389557521666210913114631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/25/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022]
Abstract
Ginsenoside Rh2 (3β-O-Glc-protopanaxadiol), a trace but characteristic pharmacological component of red ginseng, exhibited versatile pharmacological activities, such as antitumor effects, improved cardiac function and fibrosis, anti-inflammatory effects, antibiosis and excellent medicinal potential. In recent years, increased research has been performed on the biocatalytic synthesis of ginsenoside Rh2. In this paper, advances in the biocatalytic synthesis, pharmacological activities, pharmaceutical preparation and metabolism of ginsenoside Rh2 are reviewed.
Collapse
Affiliation(s)
- Li Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005. China
| | - Huiyun Wang
- College of Pharmacy, Jining Medical University, Shandong Province, 276826. China
| | - Xiaoyun Chai
- School of Pharmacy, Naval Medical University, Shanghai, 200433. China
| | - Qingguo Meng
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005. China
| | - Sheng Jiang
- Shandong Wendeng Jizhen American Ginseng Industry Co., Ltd., Shandong Province, 264400. China
| | - Fenglan Zhao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005. China
| |
Collapse
|
8
|
Luong Huynh D, Nguyen NH, Nguyen CT. Pharmacological properties of ginsenosides in inflammation-derived cancers. Mol Cell Biochem 2021; 476:3329-3340. [PMID: 33900512 DOI: 10.1007/s11010-021-04162-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
Ginseng is commonly used as an herbal medicine for improvement of life quality. It is also used as a supplemental medication with anti-cancer drugs to enhance chemotherapy efficacy and shows some beneficial effects. Ginsenosides, also known as saponins, are the major active pharmacological compounds found in ginseng and have been extensively using in treatment of not only cancers but also the other inflammatory diseases such as atherosclerosis, diabetes, acute lung injury, cardiovascular, and infectious diseases. The anti-cancer activities of ginsengs and ginsenosides in different types of cancers have been well studied experimentally and clinically. The major anti-cancer mechanisms of ginseng compounds include inhibition of angiogenesis and metastasis as well as induction of cell cycle arrest and apoptosis. Herein, we review and summarize the current knowledge on the pharmacological effects of ginsengs and ginseng-derived compounds in the treatment of cancers. Moreover, the molecular and cellular mechanism(s) by which ginsengs and ginsenosides modulate the immune response in cancer diseases as well as ginsengs-drugs interaction are also discussed.
Collapse
Affiliation(s)
- Do Luong Huynh
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, 97 Vo Van Tan Street, District 3, Ho Chi Minh City, Vietnam
| | - Cuong Thach Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
9
|
Comprehensive Investigation on Ginsenosides in Different Parts of a Garden-Cultivated Ginseng Root and Rhizome. Molecules 2021; 26:molecules26061696. [PMID: 33803599 PMCID: PMC8003075 DOI: 10.3390/molecules26061696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 02/04/2023] Open
Abstract
Background: Ginseng is widely used as herb or food. Different parts of ginseng have diverse usages. However, the comprehensive analysis on the ginsenosides in different parts of ginseng root is scarce. Methods: An ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) combined with UNIFI informatics platform and ultra-high-performance liquid chromatography-charged aerosol detection (UHPLC-CAD) were employed to evaluate the different parts of cultivated ginseng root. Results: 105 ginsenosides including 16 new compounds were identified or tentatively characterized. 22 potential chemical markers were identified, 20, 17, and 19 for main root (MR) and fibrous root (FR), main root (MR) and branch root (BR), and main root (MR) and rhizome (RH), respectively. The relative contents of Re, Rb1, 20(R)-Rh1, Rd, and Rf were highest in FR. The relative content of Rg1 was highest in RH. The total relative content of pharmacopoeia indicators Rg1, Re, and Rb1 was highest in FR. Conclusion: The differences among these parts were the compositions and relative contents of ginsenosides. Under our research conditions, the peak area ratio of Rg1 and Re could distinguish the MR and FR samples. Fibrous roots showed rich ingredients and high ginsenosides contents which should be further utilized.
Collapse
|
10
|
Kou T, Ye J, Wang J, Peng Y, Wang Z, Shi C, Wu X, Hu X, Chen H, Zhang L, Chen X, Zhu Y, Li H, Zhuang S. Terahertz Spectroscopy for Accurate Identification of Panax quinquefolium Basing on Nonconjugated 24(R)-Pseudoginsenoside F 11. PLANT PHENOMICS (WASHINGTON, D.C.) 2021; 2021:6793457. [PMID: 33860277 PMCID: PMC8043154 DOI: 10.34133/2021/6793457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/29/2020] [Indexed: 06/12/2023]
Abstract
Panax quinquefolium is a perennial herbaceous plant that contains many beneficial ginsenosides with diverse pharmacological effects. 24(R)-pseudoginsenoside F11 is specific to P. quinquefolium, a useful biomarker for distinguishing this species from other related plants. However, because of its nonconjugated property and the complexity of existing detection methods, this biomarker cannot be used as the identification standard. We herein present a stable 24(R)-pseudoginsenoside F11 fingerprint spectrum in the terahertz band, thereby proving that F11 can be detected and quantitatively analyzed via terahertz spectroscopy. We also analyzed the sample by high-performance liquid chromatography-triple quadrupole mass spectrometry. The difference between the normalized data for the two analytical methods was less than 5%. Furthermore, P. quinquefolium from different areas and other substances can be clearly distinguished based on these terahertz spectra with a standard principal component analysis. Our method is a fast, simple, and cost-effective approach for identifying and quantitatively analyzing P. quinquefolium.
Collapse
Affiliation(s)
- Tianyi Kou
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai Institute of Intelligent Science and Technology, Shanghai, China
| | - Ji Ye
- Department of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jing Wang
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yan Peng
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai Institute of Intelligent Science and Technology, Shanghai, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University Shanghai, China
| | - Zefang Wang
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai Institute of Intelligent Science and Technology, Shanghai, China
| | - Chenjun Shi
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai Institute of Intelligent Science and Technology, Shanghai, China
| | - Xu Wu
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai Institute of Intelligent Science and Technology, Shanghai, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University Shanghai, China
| | - Xitian Hu
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai Institute of Intelligent Science and Technology, Shanghai, China
| | - Haihong Chen
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai Institute of Intelligent Science and Technology, Shanghai, China
| | - Ling Zhang
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai Institute of Intelligent Science and Technology, Shanghai, China
| | - Xiaohong Chen
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai Institute of Intelligent Science and Technology, Shanghai, China
| | - Yiming Zhu
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai Institute of Intelligent Science and Technology, Shanghai, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University Shanghai, China
| | - Huiliang Li
- Department of Pharmacy, Second Military Medical University, Shanghai, China
| | - Songlin Zhuang
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, University of Shanghai for Science and Technology, Shanghai Institute of Intelligent Science and Technology, Shanghai, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University Shanghai, China
| |
Collapse
|
11
|
Liu L, Xu FR, Wang YZ. Traditional uses, chemical diversity and biological activities of Panax L. (Araliaceae): A review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:112792. [PMID: 32311488 DOI: 10.1016/j.jep.2020.112792] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax L. (Araliaceae) is globally-recognized plant resource suitable for the globalization of traditional Chinese medicines. It has traditionally been used as tonic agents in various ethnomedicinal systems of East Asia, especially in China. It is often used to regulate bodily functions and considered as adjuvant therapy for tumor, resuscitation of traumatic hemorrhagic shock, etc. AIM OF THIS REVIEW: This review systematically summarized the information on distributions, botanical characteristics, traditional uses, chemical components and biological activities of the genus Panax, in order to explore and exploit the therapeutic potential of this plant. MATERIALS AND METHODS The available information about genus Panax was collected via the online search on Web of Science, Google Scholar, PubMed, Baidu Scholar, Science Direct, China National Knowledge Infrastructure and Springer search. The keywords used include Panax, saponin, secondary metabolites, chemical components, biological activity, pharmacology, traditional medicinal uses, safety and other related words. The Plant List (www.theplantlist.org) and Catalogue of Life: 2019 Annual Checklist (www.catalogueoflife.org/col/) databases were used to provide the scientific names, subspecies classification and distribution information of Panax. RESULTS Panax is widely assessed concerning its phytochemistry and biological activities. To date, at least 748 chemical compounds from genus Panax were isolated, including saponins, flavonoids, polysaccharides, steroids and phenols. Among them, triterpenoid saponins and polysaccharides were the representative active ingredients of Panax plants, which have been widely investigated. Modern pharmacological studies showed that these compounds exhibited a wide range of biological activities in vitro and in vivo including antineoplastic, anti-inflammatory, hepatorenal protective, neuroprotective, immunoregulatory, cardioprotective and antidiabetic activities. Many studies also confirmed that the mechanisms of organ-protective were closely related to molecular signaling pathways, the expression of related proteins and antioxidant reactions. To sum up, genus Panax has high medicinal and social value, deserving further investigation. CONCLUSIONS The genus Panax is very promising to be fully utilized in the development of nutraceutical and pharmaceutical products. However, there is a lack of in-depth studies on ethnomedicinal uses of Panax plants. In addition, further studies of single chemical component should be performed based on the diversity of chemical structure, significant biological activities and clinical application. If the bioactive molecules and multicomponent interactions are discovered, it will be of great significance to the clinical application of Panax plants. It is an urgent requirement to carry out detailed phytochemical, pharmacology and clinical research on Panax classical prescriptions for the establishment of modern medication guidelines. Exploring the molecular basis of herbal synergistic actions may provide a new understanding of the complex disease mechanisms and accelerate the process of pharmaceutical development.
Collapse
Affiliation(s)
- Lu Liu
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Fu-Rong Xu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China.
| | - Yuan-Zhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.
| |
Collapse
|
12
|
Li Q, Yuan M, Li X, Li J, Xu M, Wei D, Wu D, Wan J, Mei S, Cui T, Wang J, Zhu Z. New dammarane-type triterpenoid saponins from Panax notoginseng saponins. J Ginseng Res 2020; 44:673-679. [PMID: 32913396 PMCID: PMC7471129 DOI: 10.1016/j.jgr.2018.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Panax notoginseng saponin (PNS) is the extraction from the roots and rhizomes of Panax notoginseng (Burk.) F. H. Chen. PNS is the main bioactive component of Xuesaitong, Xueshuantong, and other Chinese patent medicines, which are all bestselling prescriptions in China to treat cardiocerebrovascular diseases. Notoginsenoside R1 and ginsenoside Rg1, Rd, Re, and Rb1 are the principal effective constituents of PNS, but a systematic research on the rare saponin compositions has not been conducted. OBJECTIVE The objective of this study was to conduct a systematic chemical study on PNS and establish the HPLC fingerprint of PNS to provide scientific evidence in quality control. In addition, the cytotoxicity of the new compounds was tested. METHODS Pure saponins from PNS were isolated by means of many chromatographic methods, and their structures were determined by extensive analyses of NMR and HR-ESI-MS studies. The fingerprint was established by HPLC-UV method. The cytotoxicity of the compounds was tested by 3-(4,5-dimethylthiazol-2-yl)-2,5 -diphenyltetrazolium bromide assay. RESULTS AND CONCLUSION Three new triterpenoid saponins (1-3) together with 25 known rare saponins (4-28) were isolated from PNS, except for the five main compounds (notoginsenoside R1 and ginsenoside Rg1, Rd, Re, and Rb1). In addition, the HPLC fingerprint of PNS was established, and the peaks of the isolated compounds were marked. The study of chemical constituents and fingerprint was useful for the quality control of PNS. The study on antitumor activities showed that new Compound 2 exhibited significant inhibitory activity against the tested cell lines.
Collapse
Affiliation(s)
- Qian Li
- Yunnan Institute of Materia Medica, Kunming, China
- Innovation and R&D Center, Yunnan Bai Yao Group, Kunming, China
- Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Kunming, China
| | - Mingrui Yuan
- Yunnan Institute of Materia Medica, Kunming, China
- Innovation and R&D Center, Yunnan Bai Yao Group, Kunming, China
- Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Kunming, China
| | - Xiaohui Li
- Yunnan Institute of Materia Medica, Kunming, China
- Innovation and R&D Center, Yunnan Bai Yao Group, Kunming, China
- Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Kunming, China
| | - Jinyu Li
- Yunnan Institute of Materia Medica, Kunming, China
- Innovation and R&D Center, Yunnan Bai Yao Group, Kunming, China
- Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Kunming, China
| | - Ming Xu
- Yunnan Institute of Materia Medica, Kunming, China
- Innovation and R&D Center, Yunnan Bai Yao Group, Kunming, China
- Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Kunming, China
| | - Di Wei
- Yunnan Institute of Materia Medica, Kunming, China
- Innovation and R&D Center, Yunnan Bai Yao Group, Kunming, China
- Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Kunming, China
| | - Desong Wu
- Yunnan Institute of Materia Medica, Kunming, China
- Innovation and R&D Center, Yunnan Bai Yao Group, Kunming, China
- Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Kunming, China
| | - Jinfu Wan
- Yunnan Institute of Materia Medica, Kunming, China
- Innovation and R&D Center, Yunnan Bai Yao Group, Kunming, China
- Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Kunming, China
| | - Shuangxi Mei
- Yunnan Institute of Materia Medica, Kunming, China
- Innovation and R&D Center, Yunnan Bai Yao Group, Kunming, China
- Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Kunming, China
| | - Tao Cui
- Yunnan Institute of Materia Medica, Kunming, China
- Innovation and R&D Center, Yunnan Bai Yao Group, Kunming, China
- Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Kunming, China
| | - Jingkun Wang
- Yunnan Institute of Materia Medica, Kunming, China
- Innovation and R&D Center, Yunnan Bai Yao Group, Kunming, China
- Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Kunming, China
| | - Zhaoyun Zhu
- Yunnan Institute of Materia Medica, Kunming, China
- Innovation and R&D Center, Yunnan Bai Yao Group, Kunming, China
- Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Kunming, China
| |
Collapse
|
13
|
Yin M, Zhang J, Wang L, Li F, Li Z, Xiang W, Bie S, Wang C, Li Z. Ten New Dammarane-Type Saponins with Hypolipidemia Activity from a Functional Herbal Tea- Gynostemma pentaphyllum. Molecules 2020; 25:E3737. [PMID: 32824271 PMCID: PMC7464191 DOI: 10.3390/molecules25163737] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Gynostemma pentaphyllum (thumb.) Makino is a functional herbal tea commonly used in Asian countries and regions to reduce blood lipid levels. G. pentaphyllum saponin is the main component, but there are still a large number of components with lipid-lowering activity that have not been found. In this study, 10 novel dammarane-type saponins, (1-10) and a known one (11) were isolated from G. pentaphyllum. Ten new compounds were identified and named as yunnangypenosides A-J (1-10), and another known one (11) was also obtained. Their chemical structures were determined by MS, NMR spectroscopic analyses. Moreover, the cytotoxicities on human HepG-2 hepatocellular carcinoma cells of these isolates were evaluated, and the results showed that compounds 1-11 had no obvious cytotoxicity. Finally, all these compounds were evaluated for their lipid-lowering effect by means of the oil red O staining method. Ten compounds could significantly reduce lipid levels except of 2, especially 8 exhibite the strongest hypolipidemia activity.
Collapse
Affiliation(s)
- Maojing Yin
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (M.Y.); (J.Z.); (F.L.); (Z.L.); (W.X.); (S.B.)
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingjing Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (M.Y.); (J.Z.); (F.L.); (Z.L.); (W.X.); (S.B.)
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lizhi Wang
- School of Chinese Materia Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Fangyi Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (M.Y.); (J.Z.); (F.L.); (Z.L.); (W.X.); (S.B.)
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhenfa Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (M.Y.); (J.Z.); (F.L.); (Z.L.); (W.X.); (S.B.)
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Xiang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (M.Y.); (J.Z.); (F.L.); (Z.L.); (W.X.); (S.B.)
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Songtao Bie
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (M.Y.); (J.Z.); (F.L.); (Z.L.); (W.X.); (S.B.)
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunhua Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (M.Y.); (J.Z.); (F.L.); (Z.L.); (W.X.); (S.B.)
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (M.Y.); (J.Z.); (F.L.); (Z.L.); (W.X.); (S.B.)
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
14
|
Guo YH, Kuruganti R, Gao Y. Recent Advances in Ginsenosides as Potential Therapeutics Against Breast Cancer. Curr Top Med Chem 2019; 19:2334-2347. [DOI: 10.2174/1568026619666191018100848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 05/10/2019] [Accepted: 08/16/2019] [Indexed: 12/14/2022]
Abstract
The dried root of ginseng (Panax ginseng C. A. Meyer or Panax quinquefolius L.) is a traditional
Chinese medicine widely used to manage cancer symptoms and chemotherapy side effects in
Asia. The anti-cancer efficacy of ginseng is attributed mainly to the presence of saponins, which are
commonly known as ginsenosides. Ginsenosides were first identified as key active ingredients in Panax
ginseng and subsequently found in Panax quinquefolius, both of the same genus. To review the recent
advances on anti-cancer effects of ginsenosides against breast cancer, we conducted a literature study of
scientific articles published from 2010 through 2018 to date by searching the major databases including
Pubmed, SciFinder, Science Direct, Springer, Google Scholar, and CNKI. A total of 50 articles authored
in either English or Chinese related to the anti-breast cancer activity of ginsenosides have been
reviewed, and the in vitro, in vivo, and clinical studies on ginsenosides are summarized. This review focuses
on how ginsenosides exert their anti-breast cancer activities through various mechanisms of action
such as modulation of cell growth, modulation of the cell cycle, modulation of cell death, inhibition of
angiogenesis, inhibition of metastasis, inhibition of multidrug resistance, and cancer immunemodulation.
In summary, recent advances in the evaluation of ginsenosides as therapeutic agents against
breast cancer support further pre-clinical and clinical studies to treat primary and metastatic breast tumors.
Collapse
Affiliation(s)
- Yu-hang Guo
- International Ginseng Institute, School of Agriculture, Middle Tennessee State University, Murfreesboro, TN 37132, United States
| | - Revathimadhubala Kuruganti
- International Ginseng Institute, School of Agriculture, Middle Tennessee State University, Murfreesboro, TN 37132, United States
| | - Ying Gao
- International Ginseng Institute, School of Agriculture, Middle Tennessee State University, Murfreesboro, TN 37132, United States
| |
Collapse
|
15
|
Pharmacological effects of ginseng on infectious diseases. Inflammopharmacology 2019; 27:871-883. [PMID: 31407196 DOI: 10.1007/s10787-019-00630-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/03/2019] [Indexed: 12/11/2022]
Abstract
Ginseng has been traditionally used as an herbal nutritional supplement in Asian countries, including Korea, China, Japan, and Vietnam for several millennia. Most studies have focused on the role of ginseng on anti-oxidative stress, anti-inflammatory, and anti-cancer activities. Recently, modulator activities of ginseng on the immune responses during pathogenic bacterial and viral infections and beneficial effects of ginseng in infectious diseases have been elucidated. In vivo and in vitro studies revealed the potential of ginseng extracts and ginsenosides Rg1, Rg3, Rb1, Rb2, Rb3, compound K, Re, Rd, Rh2 for treatment of several infectious diseases. The molecular mechanisms of these effects mainly involve inflammatory cytokines (TNF-α, IL-6, IL-1β, IFN-γ, IL-10), apoptotic pathway (bcl-2, bcl-xL), PI3K/Akt pathway, MAPKs pathway, JAK2/STAT5, NF-κB pathway, and the inflammasome. In this review, we will summarize the current knowledge on the effects of ginseng in the immune responses during the infections and its bioactivities on the prevention of infectious diseases as well as its underlying mechanisms. Moreover, the therapeutic potential of ginseng as an anti-bacterial and anti-viral medication and vaccine adjuvant will be discussed as well.
Collapse
|
16
|
Duong TH, Beniddir MA, Genta-Jouve G, Nguyen HH, Nguyen DP, Nguyen TAT, Mac DH, Boustie J, Nguyen KPP, Chavasiri W, Le Pogam P. Further terpenoids from Euphorbia tirucalli. Fitoterapia 2019; 135:44-51. [DOI: 10.1016/j.fitote.2019.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 11/27/2022]
|
17
|
Su L, Wang YM, Zhong KR, Tu GZ, Jiang YY, Liu B. Chemical Constituents of Mentha haplocalyx. Chem Nat Compd 2019. [DOI: 10.1007/s10600-019-02688-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Shang JH, Sun WJ, Zhu HT, Wang D, Yang CR, Zhang YJ. New hydroperoxylated and 20,24-epoxylated dammarane triterpenes from the rot roots of Panax notoginseng. J Ginseng Res 2019; 44:405-412. [PMID: 32372862 PMCID: PMC7195571 DOI: 10.1016/j.jgr.2019.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/11/2019] [Accepted: 01/31/2019] [Indexed: 11/30/2022] Open
Abstract
Background Root rot is a serious destructive disease of Panax notoginseng, a famous cultivated araliaceous herb called Sanqi or Tianqi in Southwest China. Methods The chemical substances of Sanqi rot roots were explored by chromatographic techniques. MS, 1D/2D-NMR, and single crystal X-ray diffraction were applied to determine the structures. Murine macrophage RAW264.7 and five human cancer cell lines were used separately for evaluating the antiinflammatory and cytotoxic activities. Results and Conclusion Thirty dammarane-type triterpenes and saponins were isolated from the rot roots of P. notoginseng. Among them, seven triterpenes, namely, 20(S)-dammar-25-ene-24(S)-hydroperoxyl-3β,6α,12β,20-tetrol (1), 20(S)-dammar-3-oxo-23-ene-25-hydroperoxyl-6α,12β,20-triol (2), 20(S)-dammar-12-oxo-23-ene-25-hydroperoxyl-3β,6α,20-triol (3), 20(S)-dammar-3-oxo-23-ene-25-hydroperoxyl-12β,20-diol (4), 20(S),24(R)-epoxy-3,4-seco-dammar-25-hydroxy-12-one-3-oic acid (5), 20(S),24(R)-epoxy-3,4-seco-dammar-25-hydroxy-12-one-3-oic acid methyl ester (6), and 6α-hydroxy-22,23,24,25,26,27-hexanordammar-3,12,20-trione (7), are new compounds. In addition, 12 known ones (12–16 and 19–25) were reported in Sanqi for the first time. The new Compound 1 showed comparable antiinflammatory activity on inhibition of NO production to the positive control, whereas the known compounds 9, 12, 13, and 16 displayed moderate cytotoxicities against five human cancer cell lines. The results will provide scientific basis for understanding the chemical constituents of Sanqi rot roots and new candidates for searching antiinflammatory and antitumor agents.
Collapse
Affiliation(s)
- Jia-Huan Shang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Jie Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hong-Tao Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Dong Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Chong-Ren Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ying-Jun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Corresponding author. State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
19
|
Hoang L, Le Thi V, Tran Thi Hong H, Nguyen Van T, Nguyen Xuan C, Nguyen Hoai N, Do Cong T, Ivanchina NV, Do Thi T, Dmitrenok PS, Kicha AA, Phan Van K, Chau Van M. Triterpene glycosides from the Vietnamese sea cucumber Holothuria edulis. Nat Prod Res 2019; 34:1061-1067. [DOI: 10.1080/14786419.2018.1548451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Le Hoang
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology, VAST, Hanoi, Vietnam
| | - Vien Le Thi
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Hanh Tran Thi Hong
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thanh Nguyen Van
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Cuong Nguyen Xuan
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology, VAST, Hanoi, Vietnam
| | - Nam Nguyen Hoai
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thung Do Cong
- Institute of Marine Environment and Resources, VAST, Haiphong, Vietnam
| | - Natalia V. Ivanchina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Thao Do Thi
- Institute of Biotechnology, VAST, Hanoi, Vietnam
| | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Alla A. Kicha
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Kiem Phan Van
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Minh Chau Van
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| |
Collapse
|
20
|
Chen W, Balan P, Popovich DG. Comparison of the ginsenoside composition of Asian ginseng (Panax ginseng) and American ginseng (Panax quinquefolius L.) and their transformation pathways. BIOACTIVE NATURAL PRODUCTS 2019. [DOI: 10.1016/b978-0-12-817901-7.00006-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Pharmacokinetic and Metabolism Studies of 12-Riboside-Pseudoginsengenin DQ by UPLC-MS/MS and UPLC-QTOF-MS E. Molecules 2018; 23:molecules23102499. [PMID: 30274288 PMCID: PMC6222672 DOI: 10.3390/molecules23102499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/22/2018] [Accepted: 09/26/2018] [Indexed: 01/19/2023] Open
Abstract
Pharmacokinetic and metabolism studies of 12-riboside-pseudoginsengenin DQ (RPDQ), a novel ginsenoside with an anti-cancer effect, were carried out, aiming at discussing the characteristics of the ginsenoside with glycosylation site at C-12. In the pharmacokinetic analysis, we developed and validated a method by UPLC-MS to quantify RPDQ in rat plasma. In the range of 5–1000 ng/mL, the assay was linear (R2 > 0.9966), with the LLOQ (lower limit of quantification) being 5 ng/mL. The LOD (limit of detection) was 1.5 ng/mL. The deviations of intra-day and inter-day, expressed as relative standard deviation (RSD), were ≤ 3.51% and ≤ 5.41% respectively. The accuracy, expressed as relative error (RE), was in the range –8.82~3.47% and –5.61~2.87%, respectively. The recoveries were in the range 85.66~92.90%. The method was then applied to a pharmacokinetic study in rats intragastrically administrated with 6, 12, and 24 mg/kg RPDQ. The results showed that RPDQ exhibited slow oral absorption (Tmax = 7.0 h, 7.5 h, and 7.0 h, respectively), low elimination (t1/2 = 12.59 h, 12.83 h, and 13.74 h, respectively) and poor absolute bioavailability (5.55, 5.15, and 6.08%, respectively). Moreover, the investigation of metabolites were carried out by UPLC-QTOF-MS. Thirteen metabolites of RPDQ were characterized from plasma, bile, urine, and feces of rats. Some metabolic pathways, including oxidation, acetylation, hydration, reduction, hydroxylation, glycine conjugation, sulfation, phosphorylation, glucuronidation, glutathione conjugation, and deglycosylation, were profiled. In general, both the rapid quantitative method and a good understanding of the characteristics of RPDQ in vivo were provided in this study.
Collapse
|
22
|
Hiep NT, Kwon J, Kim DW, Hong S, Guo Y, Hwang BY, Kim N, Mar W, Lee D. Neuroprotective constituents from the fruits of Maclura tricuspidata. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.03.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Li F, Lv C, Li Q, Wang J, Song D, Liu P, Zhang D, Lu J. Chemical and bioactive comparison of flowers of Panax ginseng Meyer, Panax quinquefolius L., and Panax notoginseng Burk. J Ginseng Res 2016; 41:487-495. [PMID: 29021695 PMCID: PMC5628360 DOI: 10.1016/j.jgr.2016.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 06/07/2016] [Accepted: 08/16/2016] [Indexed: 11/30/2022] Open
Abstract
Background Although flowers of Panax ginseng Meyer (FPG), Panax quinquefolius L. (FPQ), and Panax notoginseng Burk. (FPN) have been historically used as both medicine and food, each is used differently in practice. Methods To investigate the connection between components and enhancing immunity activity of FPG, FPQ, and FPN, a method based on a rapid LC coupled with quadrupole time-of-flight MS and immunomodulatory activity study evaluated by a carbon clearance test were combined. Results According to quantitative results, the ratio of the total content of protopanaxatiol-type ginsenosides to protopanaxadiol-type ginsenosides in FPN was 0, but ranged from 1.10 to 1.32 and from 0.23 to 0.35 in FPG and FPQ, respectively. The ratio of the total content of neutral ginsenosides to the corresponding malonyl-ginsenosides in FPN (5.52 ± 1.33%) was higher than FPG (3.2 ± 0.64%) and FPQ (2.39 ± 0.57%). The colorimetric analysis showed the content of total ginsenosides in FPQ, FPG, and FPN to be 13.75 ± 0.60%, 17.45 ± 0.42%, and 12.45 ± 1.77%, respectively. The carbon clearance assay indicated that the phagocytic activity of FPG and FPQ was higher than that of FPN. A clear discrimination among FPG, FPQ, and FPN was observed in the principal component analysis score plots. Seven compounds were confirmed to contribute strongly by loading plots, which may be the cause of differences in efficacy. Conclusion This study provides basic information about the chemical and bioactive comparison of FPG, FPQ, and FPN, indicating that protopanaxtriol-type ginsenosides and malonyl-ginsenosides may play a key role in their enhancing immunity properties.
Collapse
Affiliation(s)
- Fang Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Chongning Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Qiao Li
- Department of Pharmacy, Affiliated Hospital, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jing Wang
- Department of Pharmaceutical Botany, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Corresponding author. Department of Pharmaceutical Botany, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110006, China.Department of Pharmaceutical BotanySchool of Traditional Chinese Materia MedicaShenyang Pharmaceutical University103 Wenhua RoadShenyang110006China
| | - Dan Song
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Pengpeng Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Dandan Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jincai Lu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Corresponding author. School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110006, China.School of Traditional Chinese Materia MedicaShenyang Pharmaceutical University103 Wenhua RoadShenyang110006China
| |
Collapse
|
24
|
Absorption and pharmacokinetic study of two sulphated triterpenoid saponins in rat after oral and intravenous administration of saponin extracts of Pearsonothuria graeffei by HPLC-MS. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
25
|
Abstract
A total of 14 ocotillol-type ginsenosides were conveniently synthesized employing glycosylation of ocotillol sapogenin derivatives with glucosyl ortho-alkynylbenzoate donors under the promotion of a gold(I) catalyst as the key step. Relying on a rational protecting group strategy and the unexpected regioselectivity of the glycosylation of the 3,25-diol sapogenins (2a/2b, 5a/5b) for the tertiary 25-OH, mono 3-O-glucosyl ocotillol-PPD, 6-O-glucosyl ocotillol-PPT, 25-O-glucosyl ocotillol-PPD/PPT and 3,25-di-O-glucosyl ocotillol-PPD/PPT ginsenosides were prepared in which the configuration at the C-24 is either R or S.
Collapse
Affiliation(s)
- Renzeng Shen
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, China
| | - Xin Cao
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, China
| | - Stephane Laval
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, China
| | - Jiansong Sun
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University , 437 West Beijing Road, Nanchang, 330027, China
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
26
|
Abstract
Ginseng is commonly used in traditional Chinese medicine as a tonic and an adaptogen to reduce fatigue and boost the immune system. In recent years, ginseng extracts are shown to have both bacteriostatic and bactericidal actions and seem to exert their effects by several mechanisms, including disruption of biofilms, inhibition of quorum-sensing and virulence factors, and altering motility. Also, ginseng extracts are shown to have antifungal properties as demonstrated by their ability to inhibit the growth of several mold and yeast species. Extracts from ginseng root have a strong antiviral activity against the RNA viruses in cell cultures and animal models. In addition to the antimicrobial activities, ginseng extracts are shown to possess immunomodulatory properties involved in the amelioration of infections. The present paper describes the antimicrobial effects of ginseng and its extracts.
Collapse
Affiliation(s)
- Karina Kachur
- a Department of Biology , Lakehead University , Thunder Bay , Ontario , Canada P7B 5E1
| | - Zacharias E Suntres
- a Department of Biology , Lakehead University , Thunder Bay , Ontario , Canada P7B 5E1.,b Medical Sciences Division , Northern Ontario School of Medicine , Thunder Bay , Ontario , Canada P7B 5E1
| |
Collapse
|
27
|
Gu CZ, Lv JJ, Zhang XX, Yan H, Zhu HT, Luo HR, Wang D, Yang CR, Xu M, Zhang YJ. Minor dehydrogenated and cleavaged dammarane-type saponins from the steamed roots of Panax notoginseng. Fitoterapia 2015; 103:97-105. [PMID: 25797537 DOI: 10.1016/j.fitote.2015.03.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/09/2015] [Accepted: 03/14/2015] [Indexed: 11/18/2022]
Abstract
Nine new minor dehydrogenated and cleavaged dammarane-type triterpenoid saponins, namely notoginsenosides ST6-ST14 (1-9) were isolated from the steamed roots of Panax notoginseng, together with 14 known ones. Among them, 5-7 and 21-22 were protopanaxadiol type and the left 18 compounds, including 1-4, 8-20, and 23 were protopanaxatriol type saponins. Their structures were identified by extensive analysis of MS, 1D and 2D NMR spectra, and acidic hydrolysis. Resulted from the side chain cleavage, the new saponins 1 and 2 featured in a ketone group at C-25, and 3-5 had an aldehyde unit at C-23. The known saponins 12, 16 and 18 displayed the enhancing potential of neurite outgrowth of NGF-mediated PC12 cells at a concentration of 10 μM, while 20 exhibited acetyl cholinesterase inhibitory activity, with IC50 value of 13.97 μM.
Collapse
Affiliation(s)
- Cheng-Zhen Gu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jun-Jiang Lv
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Xiao-Xia Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Hui Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Hong-Tao Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Huai-Rong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Dong Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Chong-Ren Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Min Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China.
| | - Ying-Jun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China.
| |
Collapse
|
28
|
|
29
|
Vayghan HJ, Ghadimi SS, Nourazarian AR. Preventive and therapeutic roles of ginseng - focus on colon cancer. Asian Pac J Cancer Prev 2014; 15:585-8. [PMID: 24568461 DOI: 10.7314/apjcp.2014.15.2.585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Colorectal cancer is one of the most prevalent diseases all over the world. Early screening and start of chemotherapy is effective in decreasing mortality. This type of cancer can be controlled to some extent via a healthy diet rich in fruit and vegetables. Ginseng is a plant which has been consumed as a herbal medicine for thousands of years in Asian countries. Several in vitro and in vivo studies have shown that this plant not only reduces the incidence of colorectal cancer, but also improves patient's status by enhancing the effects of chemotherapy drugs. However, further studies are needed to prove this relationship. We briefly review ginseng and its components such as ginsenosides reported anticancer effects and their mechanisms of action. Understanding these relationships may produce insights into chemical and pharmacological approaches for enhancing the chemo preventive effects of ginsenosides and for developing novel anticancer agents.
Collapse
Affiliation(s)
- Hamed Jafari Vayghan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran E-mail :
| | | | | |
Collapse
|
30
|
Yang WZ, Hu Y, Wu WY, Ye M, Guo DA. Saponins in the genus Panax L. (Araliaceae): a systematic review of their chemical diversity. PHYTOCHEMISTRY 2014; 106:7-24. [PMID: 25108743 DOI: 10.1016/j.phytochem.2014.07.012] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 05/04/2023]
Abstract
The Panax genus is a crucial source of natural medicines that has benefited human health for a long time. Three valuable medicinal herbs, namely Panax ginseng, Panax quinquefolius, and Panax notoginseng, have received considerable interest due to their extensive application in clinical therapy, healthcare products, and as foods and food additives world-wide. Panax species are known to contain abundant levels of saponins, also dubbed ginsenosides, which refer to a series of dammarane or oleanane type triterpenoid glycosides. These saponins exhibit modulatory effects to the central nervous system and beneficial effects to patients suffering from cardiovascular diseases, and also have anti-diabetic and anti-tumor properties. To the end of 2012, at least 289 saponins were reported from eleven different Panax species. This comprehensive review describes the advances in the phytochemistry of the genus Panax for the period 1963-2012, based on the 134 cited references. The reported saponins can be classified into protopanaxadiol, protopanaxatriol, octillol, oleanolic acid, C17 side-chain varied, and miscellaneous subtypes, according to structural differences in sapogenins. The investigational history of Panax is also reviewed, with special attention being paid to the structural features of the six different subtypes, together with their (1)H and (13)C NMR spectroscopic characteristics which are useful for determining their structures and absolute configuration.
Collapse
Affiliation(s)
- Wen-Zhi Yang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Ying Hu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Wan-Ying Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| |
Collapse
|
31
|
Yu C, Wang CZ, Zhou CJ, Wang B, Han L, Zhang CF, Wu XH, Yuan CS. Adulteration and cultivation region identification of American ginseng using HPLC coupled with multivariate analysis. J Pharm Biomed Anal 2014; 99:8-15. [PMID: 25044150 DOI: 10.1016/j.jpba.2014.06.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/18/2014] [Accepted: 06/23/2014] [Indexed: 10/25/2022]
Abstract
American ginseng (Panax quinquefolius) is originally grown in North America. Due to price difference and supply shortage, American ginseng recently has been cultivated in northern China. Further, in the market, some Asian ginsengs are labeled as American ginseng. In this study, forty-three American ginseng samples cultivated in the USA, Canada or China were collected and 14 ginseng saponins were determined using HPLC. HPLC coupled with hierarchical cluster analysis and principal component analysis was developed to identify the species. Subsequently, an HPLC-linear discriminant analysis was established to discriminate cultivation regions of American ginseng. This method was successfully applied to identify the sources of 6 commercial American ginseng samples. Two of them were identified as Asian ginseng, while 4 others were identified as American ginseng, which were cultivated in the USA (3) and China (1). Our newly developed method can be used to identify American ginseng with different cultivation regions.
Collapse
Affiliation(s)
- Chunhao Yu
- School of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huai'an, JS 223003, China; Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA; Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA; Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA.
| | - Chun-Jie Zhou
- School of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huai'an, JS 223003, China
| | - Bin Wang
- Huai'an Hospital of Traditional Chinese Medicine, Huai'an, JS 223001, China
| | - Lide Han
- Department of Human Genetics, University of Chicago, IL 60637, USA
| | - Chun-Feng Zhang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA; Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Xiao-Hui Wu
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA; Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA; Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA; Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
32
|
Yuan CS, Wang CZ, Wicks SM, Qi LW. Chemical and pharmacological studies of saponins with a focus on American ginseng. J Ginseng Res 2014; 34:160-7. [PMID: 21359120 DOI: 10.5142/jgr.2010.34.3.160] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Asian ginseng (Panax ginseng) and American ginseng (Panax quinquefolius L.) are the two most recognized ginseng botanicals. It is believed that the ginseng saponins called ginsenosides are the major active constituents in both ginsengs. Although American ginseng is not as extensively studied as Asian ginseng, it is one of the best selling herbs in the U.S., and has garnered increasing attention from scientists in recent years. In this article, after a brief introduction of the distribution and cultivation of American ginseng, we discuss chemical analysis of saponins from these two ginsengs, i.e., their similarities and differences. Subsequently, we review pharmacological effects of the saponins, including the effects on the cardiovascular system, immune system, and central nervous system as well as the antidiabetes and anti-cancer effects. These investigations were mainly derived from American ginseng studies. We also discuss evidence suggesting that chemical modifications of ginseng saponins would be a valuable approach to develop novel compounds in drug discovery.
Collapse
Affiliation(s)
- Chun-Su Yuan
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, Pritzker School of Medicine, University of Chicago, 5841 South Maryland Avenue, MC 4028, Chicago, Illinois 60637, U.S.A
| | | | | | | |
Collapse
|
33
|
Kim DH. Chemical Diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng. J Ginseng Res 2013; 36:1-15. [PMID: 23717099 PMCID: PMC3659563 DOI: 10.5142/jgr.2012.36.1.1] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 10/31/2011] [Accepted: 10/31/2011] [Indexed: 11/18/2022] Open
Abstract
The major commercial ginsengs are Panax ginseng Meyer (Korean ginseng), P. quinquifolium L. (American ginseng), and P. notoginseng (Burk.) FH Chen (Notoginseng). P. ginseng is the most commonly used as an adaptogenic agent and has been shown to enhance physical performance, promote vitality, increase resistance to stress and aging, and have immunomodulatory activity. These ginsengs contain saponins, which can be classified as dammarane-type, ocotillol-type and oleanane-type oligoglycosides, and polysaccharides as main constituents. Dammarane ginsenosides are transformed into compounds such as the ginsenosides Rg3, Rg5, and Rk1 by steaming and heating and are metabolized into metabolites such as compound K, ginsenoside Rh1, protoand panaxatriol by intestinal microflora. These metabolites are nonpolar, pharmacologically active and easily absorbed from the gastrointestinal tract. However, the activities metabolizing these constituents into bioactive compounds differ significantly among individuals because all individuals possess characteristic indigenous strains of intestinal bacteria. To overcome this difference, ginsengs fermented with enzymes or microbes have been developed.
Collapse
Affiliation(s)
- Dong-Hyun Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Pharmaceutical Science, Kyung Hee University, Seoul 130-701, Korea
| |
Collapse
|
34
|
Tung NH, Uto T, Sakamoto A, Hayashida Y, Hidaka Y, Morinaga O, Lhieochaiphant S, Shoyama Y. Antiproliferative and apoptotic effects of compounds from the flower of Mammea siamensis (Miq.) T. Anders. on human cancer cell lines. Bioorg Med Chem Lett 2012. [PMID: 23206866 DOI: 10.1016/j.bmcl.2012.10.127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
On the search for anti-cancer compounds from Thai traditional herb medicines, a bioassay-guided fractionation and chemical investigation of the methanol extract of Mammea siamensis flower resulted in the isolation and identification of eight compounds (1-8) including a novel geranylated coumarin, namely mammeanoyl (2), and seven known compounds (1 and 3-8). The structure of new compound 2 was elucidated based on the extensive spectroscopic and chemical methods. Among the isolated compounds, three structurally related coumarins 3, 4, and 5 showed significant antiproliferative activities against human leukemia and stomach cancer cell lines. However, these compounds did not affect the cell viabilities of colon cancer, hepatoma, and normal skin fibroblast cell lines. Further analysis demonstrated that the morphological features of apoptosis including DNA fragmentation and chromatin condensation were observed in human leukemia HL-60 cells treated with compounds 3, 4, and 5. In addition, compound 3 led to caspase-3 activation and cleavage of poly (ADP-ribose) polymerase (PARP), and compound 3-induced DNA fragmentation was inhibited by caspase-specific inhibitors. These results suggest that compound 3, 4, and 5 exert antiproliferative actions through apoptotic cell death in leukemia cells and these compounds may have the potential to be developed into new anti-cancer drug candidates.
Collapse
Affiliation(s)
- Nguyen Huu Tung
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Yang WZ, Ye M, Qiao X, Liu CF, Miao WJ, Bo T, Tao HY, Guo DA. A strategy for efficient discovery of new natural compounds by integrating orthogonal column chromatography and liquid chromatography/mass spectrometry analysis: Its application in Panax ginseng, Panax quinquefolium and Panax notoginseng to characterize 437 potential new ginsenosides. Anal Chim Acta 2012; 739:56-66. [PMID: 22819050 DOI: 10.1016/j.aca.2012.06.017] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 05/30/2012] [Accepted: 06/09/2012] [Indexed: 11/17/2022]
Abstract
To discover new natural compounds from herbal medicines tends to be more and more difficult. In this paper, a strategy integrating orthogonal column chromatography and liquid chromatography/mass spectrometry (LC/MS) analysis was proposed, and was applied for rapid discovery of new ginsenosides from Panax ginseng (PG), Panax quinquefolium (PQ), and Panax notoginseng (PN). The ginsenosides extracts were fractionated by MCI gel×silica gel orthogonal column chromatography. The fractions were then separated on a C(18) HPLC column, eluted with a three-component mobile phase (CH(3)CN/CH(3)OH/3mM CH(3)COONH(4)H(2)O), and detected by electrospray ionization tandem mass spectrometry. The structures of unknown ginsenosides were elucidated by analyzing negative and positive ion mass spectra, which provided complementary information on the sapogenins and oligosaccharide chains, respectively. A total of 623 comprising 437 potential new ginsenosides were characterized from the ethanol extracts of PG, PQ and PN. New acylations, diversified saccharide chains and C-17 side chains constituted novelty of the newly identified ginsenosides. An interpretation guideline was proposed for structural characterization of unknown ginsenosides by LC/MS. To confirm reliability of this strategy, two targeted unknown trace ginsenosides were obtained in pure form by LC/MS-guided isolation. Based on extensive NMR spectroscopic analysis and other techniques, they were identified as 3-O-[6-O-(E)-butenoyl-β-D-glucopyranosyl(1,2)-β-D-glucopyranosyl]-20(S)-protopanaxadiol-20-O-β-D-glucopyranosyl(1,6)-β-D-glucopyranoside (named ginsenoside IV) and 3-O-β-D-glucopyranosyl(1,2)-β-D-glucopyranosyl-3β,12β,20(S),24(R)-tetra hydroxy-dammar-25-ene-20-O-β-D-glucopyranosyl(1,6)-β-D-glucopyranoside (ginsenoside V), respectively. The fully established structures were consistent with the MS-oriented structural elucidation. This study expanded our understanding on ginsenosides of Panax species, and the proposed strategy was proved efficient and reliable in the discovery of new minor compounds from herbal extracts.
Collapse
Affiliation(s)
- Wen-zhi Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Nag SA, Qin JJ, Wang W, Wang MH, Wang H, Zhang R. Ginsenosides as Anticancer Agents: In vitro and in vivo Activities, Structure-Activity Relationships, and Molecular Mechanisms of Action. Front Pharmacol 2012; 3:25. [PMID: 22403544 PMCID: PMC3289390 DOI: 10.3389/fphar.2012.00025] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 02/11/2012] [Indexed: 02/06/2023] Open
Abstract
Conventional chemotherapeutic agents are often toxic not only to tumor cells but also to normal cells, limiting their therapeutic use in the clinic. Novel natural product anticancer compounds present an attractive alternative to synthetic compounds, based on their favorable safety and efficacy profiles. Several pre-clinical and clinical studies have demonstrated the anticancer potential of Panax ginseng, a widely used traditional Chinese medicine. The anti-tumor efficacy of ginseng is attributed mainly to the presence of saponins, known as ginsenosides. In this review, we focus on how ginsenosides exert their anticancer effects by modulation of diverse signaling pathways, including regulation of cell proliferation mediators (CDKs and cyclins), growth factors (c-myc, EGFR, and vascular endothelial growth factor), tumor suppressors (p53 and p21), oncogenes (MDM2), cell death mediators (Bcl-2, Bcl-xL, XIAP, caspases, and death receptors), inflammatory response molecules (NF-κB and COX-2), and protein kinases (JNK, Akt, and AMP-activated protein kinase). We also discuss the structure–activity relationship of various ginsenosides and their potentials in the treatment of various human cancers. In summary, recent advances in the discovery and evaluation of ginsenosides as cancer therapeutic agents support further pre-clinical and clinical development of these agents for the treatment of primary and metastatic tumors.
Collapse
Affiliation(s)
- Subhasree Ashok Nag
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center Amarillo, TX, USA
| | | | | | | | | | | |
Collapse
|
37
|
Yoshizaki K, Yahara S. New triterpenoid saponins from fruits specimens of Panax japonicus collected in Kumamoto and Miyazaki prefectures (1). Chem Pharm Bull (Tokyo) 2012; 60:354-62. [PMID: 22382416 DOI: 10.1248/cpb.60.354] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Seven new dammarane-type triterpenoid saponins, chikusetsusaponin FK1 (1), chikusetsusaponin FK2 (2), chikusetsusaponin FK3 (3), chikusetsusaponin FK4 (4), chikusetsusaponin FK5 (5), chikusetsusaponin FK6 (6), and chikusetsusaponin FK7 (7), and eleven known triterpenoid saponins, ginsenoside Rb3 (9), ginsenoside Rc (10), chikusetsusaponin VI (11), ginsenoside Re (12), ginsenoside Rg1 (13), pseudo-ginsenoside RS1 (14), notoginsenoside R1 (15), chikusetsusaponin L5) (17), chikusetsusaponin L10 (18), chikusetsusaponin IVa (19), and chikusetsusaponin V (20), were isolated from the fruits of Panax japonicus C. A. MEYER, collected in Kumamoto prefecture, Japan, and two new dammarane-type triterpenoid saponin, chikusetsusaponin FK5 (5) and chikusetsusaponin FM1 (8), and five known triterpenoid saponins, ginsenoside Rb3 (9), ginsenoside Rc (10), ginsenoside Re (12), ginsenoside Rg1 (13), and floralquinquenoside E (16), were isolated from the fruits of P. japonicus C. A. MEYER, collected in Miyazaki prefecture, Japan. The structures of new chikusetsusaponins were elucidated on the basis of chemical and physicochemical evidences.
Collapse
Affiliation(s)
- Kouichi Yoshizaki
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | | |
Collapse
|
38
|
Qi LW, Wang CZ, Yuan CS. Ginsenosides from American ginseng: chemical and pharmacological diversity. PHYTOCHEMISTRY 2011; 72:689-99. [PMID: 21396670 PMCID: PMC3103855 DOI: 10.1016/j.phytochem.2011.02.012] [Citation(s) in RCA: 264] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 01/11/2011] [Accepted: 02/14/2011] [Indexed: 05/19/2023]
Abstract
Ginseng occupies a prominent position in the list of best-selling natural products in the world. Compared to the long history of use and widespread research on Asian ginseng, the study of American ginseng is relatively limited. In the past decade, some promising advances have been achieved in understanding the chemistry, pharmacology and structure-function relationship of American ginseng. To date, there is no systematic review of American ginseng. In this review, the different structures of the ginsenosides in American ginseng are described, including naturally occurring compounds and those resulting from steaming or biotransformation. Preclinical and clinical studies published in the past decade are also discussed. Highlighted are the chemical and pharmacological diversity and potential structural-activity relationship of ginsenosides. The goal is that this article is a useful reference to chemists and biologists researching American ginseng, and will open the door to agents in drug discovery.
Collapse
Affiliation(s)
- Lian-Wen Qi
- Tang Center for Herbal Medicine Research and Department of Anesthesia and Critical Care, The Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
39
|
Chan HH, Hwang TL, Sun HD, Reddy MVB, Li DT, Qian K, Bastow KF, Lee KH, Wu TS. Bioactive constituents from the roots of Panax japonicus var. major and development of a LC-MS/MS method for distinguishing between natural and artifactual compounds. JOURNAL OF NATURAL PRODUCTS 2011; 74:796-802. [PMID: 21417387 PMCID: PMC3092375 DOI: 10.1021/np100851s] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Two new saponins, panajaponol (1) and pseudoginsenoside RT1 butyl ester (2), together with 35 known compounds (3-37), were isolated from the roots of Panax japonicus var. major. The structures of 1 and 2 were elucidated on the basis of spectroscopic analysis and chemical methods. Furthermore, a LC-MS/MS method was developed for confirming 2, 3, and 8 as natural compounds containing a butyl ester group. This method should be useful for distinguishing between minor natural and artifactual compounds in Panax species. Moreover, compounds 3, 6, 8, 9, 11, 13, and 15 exhibited strong inhibition of superoxide anion generation and elastase release by human neutrophils in response to formyl-l-methionyl-l-leucyl-l-phenylalanine/cytochalasin B (fMLP/CB), with IC(50) values ranging from 0.78 to 43.6 μM. In addition, 1 showed greater than 2- to 3-fold selective cytotoxic activity against KB and DU145 cancer cell lines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tian-Shung Wu
- To whom correspondence should be addressed. Tel: +886-6-2757575 ext. 65333; Fax: +886-6-2740552.
| |
Collapse
|
40
|
Sathiyamoorthy S, In JG, Lee BS, Kwon WS, Yang DU, Kim JH, Yang DC. Insilico Analysis for Expressed Sequence Tags from Embryogenic Callus and Flower Buds of Panax ginseng C. A. Meyer. J Ginseng Res 2011. [DOI: 10.5142/jgr.2011.35.1.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
41
|
Abstract
Ginseng occupies a prominent position in the list of best-selling natural products in the world. Because of its complex constituents, multidisciplinary techniques are needed to validate the analytical methods that support ginseng's use worldwide. In the past decade, rapid development of technology has advanced many aspects of ginseng research. The aim of this review is to illustrate the recent advances in the isolation and analysis of ginseng, and to highlight new applications and challenges. Emphasis is placed on recent trends and emerging techniques.
Collapse
Affiliation(s)
- Lian-Wen Qi
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, The Pritzker School of Medicine, The University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois, 60637, USA
- Key Laboratory of Modern Chinese Medicines (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, The Pritzker School of Medicine, The University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois, 60637, USA
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, The Pritzker School of Medicine, The University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois, 60637, USA
| |
Collapse
|
42
|
Qi LW, Wang CZ, Yuan CS. American ginseng: potential structure-function relationship in cancer chemoprevention. Biochem Pharmacol 2010; 80:947-54. [PMID: 20599804 DOI: 10.1016/j.bcp.2010.06.023] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 06/08/2010] [Accepted: 06/09/2010] [Indexed: 02/06/2023]
Abstract
Ginseng has a prominent position on the list of best-selling herbal products in the world, and its main active constituents are thought to be ginsenosides. Compared with the long history of use and widespread research on Asian ginseng, studies of American ginseng are relatively limited, especially regarding cancer chemoprevention. In recent studies of American ginseng, steaming or heating altered the ginsenoside profile and thereby increased anticancer effects. Yet the ginsenoside structures and their activities have not been systematically elucidated. In this commentary, we introduce the different ginsenosides in American ginseng, both the naturally occurring compounds and those resulting from steaming or biotransformation. We briefly review American ginseng's reported anticancer effects and their mechanisms of action, and explore the possible structural-function relationship with a focus on sugar molecules, hydroxyl groups and stereoselectivity in ginsenosides. Understanding these relationships may produce insights into chemical and pharmacological approaches for enhancing the chemopreventive effects of ginsenoside and for developing novel anticancer agents.
Collapse
Affiliation(s)
- Lian-Wen Qi
- Tang Center for Herbal Medicine Research, Department of Anesthesia & Critical Care, The Pritzker School of Medicine, University of Chicago, 5841 South Maryland Avenue, MC 4028, Chicago, IL 60637, United States
| | | | | |
Collapse
|
43
|
Tung N, Cho KW, Kim JA, Song GY, Kim YH. Dammarane-Type Glycosides from the Steamed Flower-Buds of Panax ginseng. B KOREAN CHEM SOC 2010. [DOI: 10.5012/bkcs.2010.31.5.1381] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Morikawa T, Li X, Nishida E, Nakamura S, Ninomiya K, Matsuda H, Oda Y, Muraoka O, Yoshikawa M. Medicinal Flowers. Part 29. Acylated Oleanane-Type Triterpene Bisdesmosides: Perennisaponins G, H, I, J, K, L, and M with Pancreatic Lipase Inhibitory Activity from the Flowers ofBellis perennis. Helv Chim Acta 2010. [DOI: 10.1002/hlca.200900258] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Jia L, Zhao Y, Liang XJ. Current evaluation of the millennium phytomedicine- ginseng (II): Collected chemical entities, modern pharmacology, and clinical applications emanated from traditional Chinese medicine. Curr Med Chem 2010; 16:2924-42. [PMID: 19689273 DOI: 10.2174/092986709788803204] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review, a sequel to part 1 in the series, collects about 107 chemical entities separated from the roots, leaves and flower buds of Panax ginseng, quinquefolius and notoginseng, and categorizes these entities into about 18 groups based on their structural similarity. The bioactivities of these chemical entities are described. The 'Yin and Yang' theory and the fundamentals of the 'five elements' applied to the traditional Chinese medicine (TCM) are concisely introduced to help readers understand how ginseng balances the dynamic equilibrium of human physiological processes from the TCM perspectives. This paper concerns the observation and experimental investigation of biological activities of ginseng used in the TCM of past and present cultures. The current biological findings of ginseng and its medical applications are narrated and critically discussed, including 1) its antihyperglycemic effect that may benefit type II diabetics; in vitro and in vivo studies demonstrated protection of ginseng on beta-cells and obese diabetic mouse models. The related clinical trial results are stated. 2) its aphrodisiac effect and cardiovascular effect that partially attribute to ginseng's bioactivity on nitric oxide (NO); 3) its cognitive effect and neuropharmacological effect that are intensively tested in various rat models using purified ginsenosides and show a hope to treat Parkinson's disease (PD); 4) its uses as an adjuvant or immunotherapeutic agent to enhance immune activity, appetite and life quality of cancer patients during their chemotherapy and radiation. Although the apoptotic effect of ginsenosides, especially Rh2, Rg3 and Compound K, on various tumor cells has been shown via different pathways, their clinical effectiveness remains to be tested. This paper also updates the antioxidant, anti-inflammatory, anti-apoptotic and immune-stimulatory activities of ginseng, its ingredients and commercial products, as well as common side effects of ginseng mainly due to its overdose, and its pharmacokinetics.
Collapse
Affiliation(s)
- Lee Jia
- Developmental Therapeutics Program, National Cancer Institute/ NIH, Rockville, MD 20852, USA.
| | | | | |
Collapse
|
46
|
Matsuda H, Nakashima S, Abdel-Halim OB, Morikawa T, Yoshikawa M. Cucurbitane-Type Triterpenes with Anti-proliferative Effects on U937 Cells from an Egyptian Natural Medicine, Bryonia cretica: Structures of New Triterpene Glycosides, Bryoniaosides A and B. Chem Pharm Bull (Tokyo) 2010; 58:747-51. [DOI: 10.1248/cpb.58.747] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | - Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kinki University
| | | |
Collapse
|
47
|
Yoshikawa M, Sugimoto S, Kato Y, Nakamura S, Wang T, Yamashita C, Matsuda H. Acylated oleanane-type triterpene saponins with acceleration of gastrointestinal transit and inhibitory effect on pancreatic lipase from flower buds of chinese tea plant (Camellia sinensis). Chem Biodivers 2009; 6:903-15. [PMID: 19551732 DOI: 10.1002/cbdv.200800153] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The MeOH extract and its BuOH-soluble fraction (crude saponin fraction) from the flower buds of Chinese tea plant (Camellia sinensis (L.) O. KUNTZE; Fujian Province) were found to exhibit accelerating effects on gastrointestinal transit in mice and inhibitory effects against pancreatic lipase. From the BuOH-soluble fraction, three new acylated oleanane-type triterpene oligoglycosides, chakasaponins I, II, and III (1-3, resp.), were isolated together with 13 known compounds. The chemical structures 1-3 were elucidated on the basis of chemical and physicochemical evidence. Compounds 1-3 showed accelerating effects on gastrointestinal transit in mice and inhibitory effects against porcine pancreatic lipase (IC(50)=150-530 microM).
Collapse
Affiliation(s)
- Masayuki Yoshikawa
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Sugimoto S, Nakamura S, Matsuda H, Kitagawa N, Yoshikawa M. Chemical constituents from seeds of Panax ginseng: structure of new dammarane-type triterpene ketone, panaxadione, and hplc comparisons of seeds and flesh. Chem Pharm Bull (Tokyo) 2009; 57:283-7. [PMID: 19252321 DOI: 10.1248/cpb.57.283] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new dammarane-type triterpene ketone, panaxadione, was isolated from the seeds of Panax ginseng C. A. MEYER (Araliaceae) together with two dammarane-type and lupane-type triterpenes, an aromatic oligoglycoside, three sterol glycosides, and three dammarane-type triterpene oligoglycosides (ginsenosides Rd, Re, and Rg(2)). The structure of a new compound was elucidated on the basis of physicochemical evidence. The relative contents of major ginsenosides in the seeds were compared with those of the flesh parts of young and mature fruits.
Collapse
Affiliation(s)
- Sachiko Sugimoto
- Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | | | | | | | | |
Collapse
|
50
|
Nakamura S, Okazaki Y, Ninomiya K, Morikawa T, Matsuda H, Yoshikawa M. Medicinal flowers. XXIV. Chemical structures and hepatoprotective effects of constituents from flowers of Hedychium coronarium. Chem Pharm Bull (Tokyo) 2009; 56:1704-9. [PMID: 19043243 DOI: 10.1248/cpb.56.1704] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 80% aqueous acetone extract from the flowers of Hedychium coronarium was found to show a protective effect on D-galactosamine-induced cytotoxicity in primary cultured mouse hepatocytes. On the other hand, two new labdane-type diterpene glycosides, coronalactosides I (1) and II (2), and a new labdane-type trinorditerpene, coronadiene (3), were isolated together with 8 known compounds from the extracts, which were obtained with chloroform and 80% aqueous acetone from the flowers of H. coronarium. The structures of new constituents were elucidated on the basis of chemical and physicochemical evidence. In addition, the principal constituents, coronaririn C and 15-hydroxylabda-8(17),11,13-trien-16,15-olide, displayed hepatoprotective effects, which were stronger than that of the hepatoprotective agent, silybin.
Collapse
|