1
|
Li LQ, Zhao JQ, Zhang YP, You Y, Wang ZH, Ge ZZ, Zhou MQ, Yuan WC. Diastereoselective Formal 1,3-Dipolar Cycloaddition of Trifluoroethyl Amine-Derived Ketimines Enables the Desymmetrization of Cyclopentenediones. Molecules 2023; 28:5372. [PMID: 37513245 PMCID: PMC10386021 DOI: 10.3390/molecules28145372] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
In this research, a metal-free diastereoselective formal 1,3-dipolar cycloaddition of N-2,2,2-trifluoroethylisatin ketimines and cyclopentene-1,3-diones which can efficiently lead to the desymmetrization of cyclopentene-1,3-diones is developed. With the developed protocol, a series of tetracyclic spirooxindoles containing pyrrolidine and cyclopentane subunits can be smoothly obtained with good results (up to 99% yield and 91:9 dr). Furthermore, the methodology can be extended to trifluoromethyl-substituted iminomalonate, and the corresponding formal [3+2] cycloaddition reaction affords bicyclic heterocycles containing fused pyrrolidine and cyclopentane moieties in moderate yields with >20:1 dr. The synthetic potential of the methodology is demonstrated by the scale-up experiment and by versatile transformations of the products.
Collapse
Affiliation(s)
- Lin-Qiang Li
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Zhen Ge
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ming-Qiang Zhou
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
2
|
Mykhailiuk PK. Fluorine-Containing Prolines: Synthetic Strategies, Applications, and Opportunities. J Org Chem 2022; 87:6961-7005. [PMID: 35175772 DOI: 10.1021/acs.joc.1c02956] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluorinated prolines play an important role in peptide studies, protein engineering, medicinal chemistry, drug discovery, and agrochemistry. Since the first synthesis of 4-fluoroprolines by Gottlieb and Witkop in 1965, their popularity started to grow exponentially. For example, during the past two decades, all isomeric trifluoromethyl-substituted prolines have been synthesized. In this Perspective, chemical properties and applications of fluorinated prolines are discussed. Synthetic approaches to all known fluorine-containing prolines are also discussed and analyzed. This analysis unexpectedly revealed an unsolved problem: in strict contrast to fluoro- and trifluoromethyl-substituted prolines, the corresponding analogues with fluoromethyl and difluoromethyl groups are mostly unknown. At the end of the paper, structures of several interesting, yet unknown, fluorinated prolines are disclosed─a good opportunity for chemists to make them.
Collapse
|
3
|
Bhat AA, Tandon N, Tandon R. Pyrrolidine Derivatives as Anti‐diabetic Agents: Current Status and Future Prospects. ChemistrySelect 2022. [DOI: 10.1002/slct.202103757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Aeyaz Ahmad Bhat
- Department of Chemistry School of Physical Sciences Lovely Professional University Phagwara 144411 India
| | - Nitin Tandon
- Department of Chemistry School of Physical Sciences Lovely Professional University Phagwara 144411 India
| | - Runjhun Tandon
- Department of Chemistry School of Physical Sciences Lovely Professional University Phagwara 144411 India
| |
Collapse
|
4
|
Das T. Desymmetrization of Cyclopentene‐1,3‐Diones via Alkylation, Arylation, Amidation and Cycloaddition Reactions. ChemistrySelect 2020. [DOI: 10.1002/slct.202003341] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tapas Das
- Department of Chemistry NIT Jamshedpur Jamshedpur 831014 India
| |
Collapse
|
5
|
Wang YH, Zhang F, Diao H, Wu R. Covalent Inhibition Mechanism of Antidiabetic Drugs—Vildagliptin vs Saxagliptin. ACS Catal 2019. [DOI: 10.1021/acscatal.8b05051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yong-Heng Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Fan Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Hongjuan Diao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
6
|
Liu HC, Liu K, Xue ZY, He ZL, Wang CJ. Silver(I)-Catalyzed Enantioselective Desymmetrization of Cyclopentenediones: Access to Highly Functionalized Bicyclic Pyrrolidines. Org Lett 2015; 17:5440-3. [DOI: 10.1021/acs.orglett.5b02810] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hua-Chao Liu
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 China
| | - Kang Liu
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 China
| | - Zhi-Yong Xue
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 China
| | - Zhao-Lin He
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 China
| | - Chun-Jiang Wang
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 China
- State
Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Fisman EZ, Tenenbaum A. Antidiabetic treatment with gliptins: focus on cardiovascular effects and outcomes. Cardiovasc Diabetol 2015; 14:129. [PMID: 26415691 PMCID: PMC4587723 DOI: 10.1186/s12933-015-0294-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/21/2015] [Indexed: 12/11/2022] Open
Abstract
The traditional oral pharmacological therapy for type 2 diabetes mellitus (T2DM) has been based on the prescription of metformin, a biguanide, as first line antihyperglycemic agent world over. It has been demonstrated that after 3 years of treatment, approximately 50 % of diabetic patients could achieve acceptable glucose levels with monotherapy; but by 9 years this had declined to only 25 %. Therefore, the implementation of a combined pharmacological therapy acting via different pathways becomes necessary, and its combination with a compound of the sulfonylurea group was along decades the most frequently employed prescription in routine clinical practice. Meglitinides, glitazones and alpha-glucosidase inhibitors were subsequently developed, but the five mentioned groups of oral antihyperglycemic agents are associated with variable degrees of undesirable or even severe cardiovascular events. The gliptins—also called dipeptidyl peptidase 4 (DPP4) inhibitors—are an additional group of antidiabetic compounds with increasing clinical use. We review the status of the gliptins with emphasis on their capabilities to positively or negatively affect the cardiovascular system, and their potential involvement in major adverse cardiovascular events (MACE). Alogliptin, anagliptin, linagliptin, saxagliptin, sitagliptin, teneligliptin and vildagliptin are the compounds currently in clinical use. Regardless differences in chemical structure and metabolic pathways, gliptins as a group exert favorable changes in experimental models. These changes, as an almost general rule, include improved endothelial function, reduction of inflammatory markers, oxidative stress ischemia/reperfusion injury and atherogenesis. In addition, increased adiponectin levels and modest decreases in lipidemia and blood pressure were reported. In clinical settings, several trials—notably the longer one, employing sitagliptin, with a mean follow-up period of 3 years—did not show an increased risk for ischemic events. Anyway, it should be emphasized that the encouraging results from basic science were not yet translated into clinical evidence, probably due the multiple and pleiotropic enzymatic effects of DPP4 inhibition. Moreover, when employing saxagliptin, while the drug was not associated with an augmented risk for ischemic events, it should be pinpointed that the rate of hospitalization for heart failure was significantly increased. Gliptins as a group constitute a widely accepted therapy for the management of T2DM, usually as a second-line medication. Nonetheless, for the time being, a definite relationship between gliptins treatment and improved cardiovascular outcomes remains uncertain and needs yet to be proven.
Collapse
Affiliation(s)
- Enrique Z Fisman
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel. .,Cardiovascular Diabetology Research Foundation, 58484, Holon, Israel.
| | - Alexander Tenenbaum
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel. .,Cardiovascular Diabetology Research Foundation, 58484, Holon, Israel. .,Cardiac Rehabilitation Institute, Sheba Medical Center, 52621, Tel Hashomer, Israel.
| |
Collapse
|
8
|
Jansen K, Heirbaut L, Verkerk R, Cheng JD, Joossens J, Cos P, Maes L, Lambeir AM, De Meester I, Augustyns K, Van der Veken P. Extended structure-activity relationship and pharmacokinetic investigation of (4-quinolinoyl)glycyl-2-cyanopyrrolidine inhibitors of fibroblast activation protein (FAP). J Med Chem 2014; 57:3053-74. [PMID: 24617858 DOI: 10.1021/jm500031w] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fibroblast activation protein (FAP) is a serine protease related to dipeptidyl peptidase IV (DPPIV). It has been convincingly linked to multiple disease states involving remodeling of the extracellular matrix. FAP inhibition is investigated as a therapeutic option for several of these diseases, with most attention so far devoted to oncology applications. We previously discovered the N-4-quinolinoyl-Gly-(2S)-cyanoPro scaffold as a possible entry to highly potent and selective FAP inhibitors. In the present study, we explore in detail the structure-activity relationship around this core scaffold. We report extensively optimized compounds that display low nanomolar inhibitory potency and high selectivity against the related dipeptidyl peptidases (DPPs) DPPIV, DPP9, DPPII, and prolyl oligopeptidase (PREP). The log D values, plasma stabilities, and microsomal stabilities of selected compounds were found to be highly satisfactory. Pharmacokinetic evaluation in mice of selected inhibitors demonstrated high oral bioavailability, plasma half-life, and the potential to selectively and completely inhibit FAP in vivo.
Collapse
Affiliation(s)
- Koen Jansen
- Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp , Universiteitsplein 1, B-2610 Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Combettes LE, Schuler M, Patel R, Bonillo B, Odell B, Thompson AL, Claridge TDW, Gouverneur V. Synthesis of 3-Fluoropyrrolidines and 4-Fluoropyrrolidin-2-ones from Allylic Fluorides. Chemistry 2012; 18:13126-32. [DOI: 10.1002/chem.201201576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Indexed: 11/06/2022]
|
10
|
Singh RP, Umemoto T. 4-Fluoropyrrolidine-2-carbonyl Fluorides: Useful Synthons and Their Facile Preparation with 4-tert-Butyl-2,6-dimethylphenylsulfur Trifluoride. J Org Chem 2011; 76:3113-21. [DOI: 10.1021/jo1025783] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rajendra P. Singh
- IM&T Research, Inc., 6860 North Broadway, Suite B, Denver, Colorado 80221, United States
| | - Teruo Umemoto
- IM&T Research, Inc., 6860 North Broadway, Suite B, Denver, Colorado 80221, United States
| |
Collapse
|
11
|
Synthesis of 5-substituted-3,4-dihydroxycyanopyrrolidines. An easy access to polyhydroxyprolines. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.01.108] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|