1
|
Malyarenko TV, Kicha AA, Stonik VA, Ivanchina NV. Sphingolipids of Asteroidea and Holothuroidea: Structures and Biological Activities. Mar Drugs 2021; 19:330. [PMID: 34200995 PMCID: PMC8228791 DOI: 10.3390/md19060330] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids are complex lipids widespread in nature as structural components of biomembranes. Commonly, the sphingolipids of marine organisms differ from those of terrestrial animals and plants. The gangliosides are the most complex sphingolipids characteristic of vertebrates that have been found in only the Echinodermata (echinoderms) phylum of invertebrates. Sphingolipids of the representatives of the Asteroidea and Holothuroidea classes are the most studied among all echinoderms. In this review, we have summarized the data on sphingolipids of these two classes of marine invertebrates over the past two decades. Recently established structures, properties, and peculiarities of biogenesis of ceramides, cerebrosides, and gangliosides from starfishes and holothurians are discussed. The purpose of this review is to provide the most complete information on the chemical structures, structural features, and biological activities of sphingolipids of the Asteroidea and Holothuroidea classes.
Collapse
Affiliation(s)
- Timofey V. Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (A.A.K.); (V.A.S.)
- Department of Bioorganic Chemistry and Biotechnology, School of Natural Sciences, Far Eastern Federal University, Sukhanova Str. 8, 690000 Vladivostok, Russia
| | - Alla A. Kicha
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (A.A.K.); (V.A.S.)
| | - Valentin A. Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (A.A.K.); (V.A.S.)
- Department of Bioorganic Chemistry and Biotechnology, School of Natural Sciences, Far Eastern Federal University, Sukhanova Str. 8, 690000 Vladivostok, Russia
| | - Natalia V. Ivanchina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (A.A.K.); (V.A.S.)
| |
Collapse
|
2
|
Wang X, Wang X, Cong P, Zhang X, Zhang H, Xue C, Xu J. Characterizing gangliosides in six sea cucumber species by HILIC-ESI-MS/MS. Food Chem 2021; 352:129379. [PMID: 33676121 DOI: 10.1016/j.foodchem.2021.129379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/20/2021] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
An HILIC-ESI-MS/MS method was established to analyze ganglioside (GLS) in sea cucumbers. In total, 17 GLS subclasses were detected in six sea cucumber species. The basic sea cucumber GLSs (SC-GLSs) were elucidated as NeuGc2-6Glc1-1Cer (SC-GM4). The polymerization degree of the sialic acid (Sia) of SC-GLSs can be up to 4, and the linkage among Sias was mostly determined to be 2-8 or 2-11. Neu5Gc, sulfated and fucosylated NeuGc prevalently existed in SC-GLSs. Moreover, a new SC-GLSs structure with phosphoinositidyled Sia was first observed in Bohadschia marmorata. For the first time, we demonstrated that the content of SC-GD4, which is the dominant GLS in sea cucumbers, was 27-67%. Minor GLSs characterized as SC-GT2(Neu5GcMe) and SC-GQ2(Neu5GcMe) were also discovered. Additionally, SC-GD4 and SC-GD4(1S) could significantly promote the differentiation of PC12 cells with structure-selectivity (p < 0.05). Our results provide insights into SC-GLSs to elucidate their Sia substituent and core saccharide chain linkage.
Collapse
Affiliation(s)
- Xincen Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao 266003, Shandong Province, China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao 266003, Shandong Province, China.
| | - Xiaomei Zhang
- Technology Center of Qingdao Customs District, No. 70, Qutangxia Road, Qingdao 266002, Shandong Province, China
| | - Hongwei Zhang
- Technology Center of Qingdao Customs District, No. 70, Qutangxia Road, Qingdao 266002, Shandong Province, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao 266003, Shandong Province, China; Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, (Qingdao), No. 1, Wenhai Road, Qingdao 266237, Shandong Province, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao 266003, Shandong Province, China.
| |
Collapse
|
3
|
Wang X, Wang Y, Xu J, Xue C. Sphingolipids in food and their critical roles in human health. Crit Rev Food Sci Nutr 2020; 61:462-491. [PMID: 32208869 DOI: 10.1080/10408398.2020.1736510] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sphingolipids (SLs) are ubiquitous structural components of cell membranes and are essential for cell functions under physiological conditions or during disease progression. Abundant evidence supports that SLs and their metabolites, including ceramide (Cer), ceramide-1-phosphate (C1P), sphingosine (So), sphingosine-1-phosphate (S1P), are signaling molecules that regulate a diverse range of cellular processes and human health. However, there are limited reviews on the emerging roles of exogenous dietary SLs in human health. In this review, we discuss the ubiquitous presence of dietary SLs, highlighting their structures and contents in foodstuffs, particularly in sea foods. The digestion and metabolism of dietary SLs is also discussed. Focus is given to the roles of SLs in both the etiology and prevention of diseases, including bacterial infection, cancers, neurogenesis and neurodegenerative diseases, skin integrity, and metabolic syndrome (MetS). We propose that dietary SLs represent a "functional" constituent as emerging strategies for improving human health. Gaps in research that could be of future interest are also discussed.
Collapse
Affiliation(s)
- Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| |
Collapse
|
5
|
Takahashi M, Izawa K, Urai M, Yamanishi Y, Maehara A, Isobe M, Matsukawa T, Kaitani A, Takamori A, Uchida S, Yamada H, Nagamine M, Ando T, Shimizu T, Ogawa H, Okumura K, Kinjo Y, Kitamura T, Kitaura J. The phytosphingosine-CD300b interaction promotes zymosan-induced, nitric oxide-dependent neutrophil recruitment. Sci Signal 2019; 12:12/564/eaar5514. [PMID: 30647146 DOI: 10.1126/scisignal.aar5514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Zymosan is a glucan that is a component of the yeast cell wall. Here, we determined the mechanisms underlying the zymosan-induced accumulation of neutrophils in mice. Loss of the receptor CD300b reduced the number of neutrophils recruited to dorsal air pouches in response to zymosan, but not in response to lipopolysaccharide (LPS), a bacterial membrane component recognized by Toll-like receptor 4 (TLR4). An inhibitor of nitric oxide (NO) synthesis reduced the number of neutrophils in the zymosan-treated air pouches of wild-type mice to an amount comparable to that in CD300b-/- mice. Treatment with clodronate liposomes decreased the number of NO-producing, CD300b+ inflammatory dendritic cells (DCs) in wild-type mice, thus decreasing NO production and neutrophil recruitment. Similarly, CD300b deficiency decreased the NO-dependent recruitment of neutrophils to zymosan-treated joint cavities, thus ameliorating subsequent arthritis. We identified phytosphingosine, a lipid component of zymosan, as a potential ligand of CD300b. Phytosphingosine stimulated NO production in inflammatory DCs and promoted neutrophil recruitment in a CD300b-dependent manner. Together, these results suggest that the phytosphingosine-CD300b interaction promotes zymosan-dependent neutrophil accumulation by inducing NO production by inflammatory DCs and that CD300b may contribute to antifungal immunity.
Collapse
Affiliation(s)
- Mariko Takahashi
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kumi Izawa
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Makoto Urai
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoshinori Yamanishi
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Akie Maehara
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masamichi Isobe
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Toshihiro Matsukawa
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-0808, Japan
| | - Ayako Kaitani
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ayako Takamori
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Shino Uchida
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.,Departments of Gastroenterology Immunology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hiromichi Yamada
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.,Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masakazu Nagamine
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tomoaki Ando
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Toshiaki Shimizu
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.,Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yuki Kinjo
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Jiro Kitaura
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan. .,Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|