1
|
Mohan RD, Kulkarni NV. Recent developments in the design of functional derivatives of edaravone and exploration of their antioxidant activities. Mol Divers 2025; 29:1895-1910. [PMID: 39102113 DOI: 10.1007/s11030-024-10940-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/11/2024] [Indexed: 08/06/2024]
Abstract
Edaravone, a pyrazalone derivative, is an antioxidant and free radical scavenger used to treat oxidative stress-related diseases. It is a proven drug to mitigate conditions prevailing to oxidative stress by inhibiting lipid peroxidation, reducing inflammation, and thereby preventing endothelial cell death. In recent years, considerable interest has been given by researchers in the derivatization of edaravone by adding varieties of substituents of versatile steric and functional properties to improve its antioxidant and pharmacological activity. This review accounts all the important methods developed for the derivatization of edaravone and the impacts of the structural modifications on the antioxidant activity of the motif.
Collapse
Affiliation(s)
- R Divya Mohan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690525, India
| | - Naveen V Kulkarni
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690525, India.
| |
Collapse
|
2
|
Yasuda K, Maeda H, Kinoshita R, Minayoshi Y, Mizuta Y, Nakamura Y, Imoto S, Nishi K, Yamasaki K, Sakuragi M, Nakamura T, Ikeda-Imafuku M, Iwao Y, Ishima Y, Ishida T, Iwakiri Y, Otagiri M, Watanabe H, Maruyama T. Encapsulation of an Antioxidant in Redox-Sensitive Self-Assembled Albumin Nanoparticles for the Treatment of Hepatitis. ACS NANO 2023; 17:16668-16681. [PMID: 37579503 DOI: 10.1021/acsnano.3c02877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Hepatitis is an inflammation of the liver caused by the inadequate elimination of reactive oxygen species (ROS) derived from Kupffer cells. Edaravone is clinically used as an antioxidant but shows poor liver distribution. Herein, we report on the design of a Kupffer cell-oriented nanoantioxidant based on a disulfide cross-linked albumin nanoparticle containing encapsulated edaravone (EeNA) as a therapeutic for the treatment of hepatitis. Since the edaravone is bound to albumin, this results in a soluble and stable form of edaravone in water. Exchanging the intramolecular disulfide bonds to intermolecular disulfide bridges of albumin molecules allowed the preparation of a redox responsive albumin nanoparticle that is stable in the blood circulation but can release drugs into cells. Consequently, EeNA was fabricated by the nanoscale self-assembly of edaravone and albumin nanoparticles without the additives that are contained in commercially available edaravone preparations. EeNA retained its nanostructure under serum conditions, but the encapsulated edaravone was released efficiently under intracellular reducing conditions in macrophages. The EeNA was largely distributed in the liver and subsequently internalized into Kupffer cells within 60 min after injection in a concanavalin-A-induced hepatitis mouse. The survival rate of the hepatitis mice was significantly improved by EeNA due to the suppression of liver necrosis and oxidative stress by scavenging excessive ROS. Moreover, even through the postadministration, EeNA showed an excellent hepatoprotective action as well. In conclusion, EeNA has the potential for use as a nanotherapeutic against various types of hepatitis because of its Kupffer cell targeting ability and redox characteristics.
Collapse
Affiliation(s)
- Kengo Yasuda
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hitoshi Maeda
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ryo Kinoshita
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Minayoshi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Mizuta
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuka Nakamura
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Shuhei Imoto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Koji Nishi
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Keishi Yamasaki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Mina Sakuragi
- Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Teruya Nakamura
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Mayumi Ikeda-Imafuku
- School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-Cho, Wakayama 640-8156, Japan
| | - Yasunori Iwao
- School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-Cho, Wakayama 640-8156, Japan
| | - Yu Ishima
- Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Tatsuhiro Ishida
- Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Hiroshi Watanabe
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Toru Maruyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
3
|
Yamasaki T, Sano K, Mukai T. Redox Monitoring in Nuclear Medical Imaging. Antioxid Redox Signal 2022; 36:797-810. [PMID: 34847731 DOI: 10.1089/ars.2021.0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance: The imbalance in redox homeostasis is known as oxidative stress, which is relevant to many diseases such as cancer, arteriosclerosis, and neurodegenerative disorders. Overproduction of reactive oxygen species (ROS) is one of the factors that trigger the redox state imbalance in vivo. The ROS have high reactivity and impair biomolecules, whereas antioxidants and antioxidant enzymes, such as ascorbate and glutathione, reduce the overproduction of ROS to rectify the redox imbalance. Owing to this, redox monitoring tools have been developed to understand the redox fluctuations in oxidative stress-related diseases. Recent Advances: In an attempt to monitor redox substances, including ROS and radical species, versatile modalities have been developed, such as electron spin resonance, chemiluminescence, and fluorescence. In particular, many fluorescent probes have been developed that are selective for ROS. This has significantly contributed to understanding the relevance of ROS in disease onset and progression. Critical Issues: To date, the dynamics of ROS and radical fluctuation in in vivo redox states remain unclear, and there are a few methods for the in vivo detection of redox fluctuations. Future Directions: In this review, we summarize the development of radiolabeled probes for monitoring redox-relevant species by nuclear medical imaging that is applicable in vivo. In the future, translational research is likely to be advanced through the development of highly sensitive and in vivo applicable detection methods, such as nuclear medical imaging, to clarify the underlying dynamics of ROS, radicals, and redox substances in many diseases. Antioxid. Redox Signal. 36, 797-810.
Collapse
Affiliation(s)
- Toshihide Yamasaki
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Kohei Sano
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Takahiro Mukai
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
4
|
Abstract
Significance: Ischemia-reperfusion (IR) injury is a major component of severe damage in vascular occlusion during stroke, myocardial infarction, surgery, and organ transplantation, and is exacerbated by the excessive generation of reactive oxygen species (ROS), which occurs particularly during reperfusion. With the aging of the population, IR injury is becoming a serious problem in various organs, such as the kidney, brain, and heart, as well as in the mesenteric capillaries. Recent Advances: To prevent reperfusion injuries, natural and synthetic low-molecular-weight (LMW) antioxidants have been well studied. Critical Issues: However, these LMW antioxidants have various problems, including adverse effects due to excessive cellular uptake and their rapid clearance by the kidney, and cannot fully exert their potent antioxidant capacity in vivo. Future Directions: To overcome these problems, we designed and developed redox polymers with antioxidants covalently conjugated with them. These polymers self-assemble into nanoparticles in aqueous media, referred to as redox nanoparticles (RNPs). RNPs suppress their uptake into normal cells, accumulate at inflammation sites, and effectively scavenge ROS in damaged tissues. We had developed two types of RNPs: RNPN, which disintegrates in response to acidic pH; and RNPO, which does not collapse, regardless of the environmental pH. Utilizing the pH-sensitive and -insensitive characteristics of RNPN and RNPO, respectively, RNPs were found to exhibit remarkable therapeutic effects on various oxidative stress disorders, including IR injuries. Thus, RNPs are promising nanomedicines for use as next-generation antioxidants. This review summarizes the therapeutic impacts of RNPs in the treatment of kidney, cerebral, myocardial, and intestinal IR injuries. Antioxid. Redox Signal. 36, 70-80.
Collapse
Affiliation(s)
- Toru Yoshitomi
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Yukio Nagasaki
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan.,Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Center for Research in Isotopes and Environmental Dynamics (CRiED), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
5
|
Fan Y, Wu W, Lei Y, Gaucher C, Pei S, Zhang J, Xia X. Edaravone-Loaded Alginate-Based Nanocomposite Hydrogel Accelerated Chronic Wound Healing in Diabetic Mice. Mar Drugs 2019; 17:md17050285. [PMID: 31083588 PMCID: PMC6562986 DOI: 10.3390/md17050285] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/30/2019] [Accepted: 05/08/2019] [Indexed: 11/16/2022] Open
Abstract
Refractory wound healing is one of the most common complications of diabetes. Excessive production of reactive oxygen species (ROS) can cause chronic inflammation and thus impair cutaneous wound healing. Scavenging these ROS in wound dressing may offer effective treatment for chronic wounds. Here, a nanocomposite hydrogel based on alginate and positively charged Eudragit nanoparticles containing edaravone, an efficient free radical scavenger, was developed for maximal ROS sequestration. Eudragit nanoparticles enhanced edaravone solubility and stability breaking the limitations in application. Furthermore, loading these Eudragit nanoparticles into an alginate hydrogel increased the protection and sustained the release of edaravone. The nanocomposite hydrogel is shown to promote wound healing in a dose-dependent way. A low dose of edaravone-loaded nanocomposite hydrogel accelerated wound healing in diabetic mice. On the contrary, a high dose of edaravone might hamper the healing. Those results indicated the dual role of ROS in chronic wounds. In addition, the discovery of this work pointed out that dose could be the key factor limiting the translational application of antioxidants in wound healing.
Collapse
Affiliation(s)
- Ying Fan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Wen Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Yu Lei
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqiang 401331, China.
| | - Caroline Gaucher
- Faculté de pharmacé, Université de Lorraine, CITHEFOR F-54000 Nancy CEDEX, France.
| | - Shuchen Pei
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqiang 401331, China.
| | - Jinqiang Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Xuefeng Xia
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
6
|
Watanabe K, Tanaka M, Yuki S, Hirai M, Yamamoto Y. How is edaravone effective against acute ischemic stroke and amyotrophic lateral sclerosis? J Clin Biochem Nutr 2017; 62:20-38. [PMID: 29371752 PMCID: PMC5773834 DOI: 10.3164/jcbn.17-62] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022] Open
Abstract
Edaravone is a low-molecular-weight antioxidant drug targeting peroxyl radicals among many types of reactive oxygen species. Because of its amphiphilicity, it scavenges both lipid- and water-soluble peroxyl radicals by donating an electron to the radical. Thus, it inhibits the oxidation of lipids by scavenging chain-initiating water-soluble peroxyl radicals and chain-carrying lipid peroxyl radicals. In 2001, it was approved in Japan as a drug to treat acute-phase cerebral infarction, and then in 2015 it was approved for amyotrophic lateral sclerosis (ALS). In 2017, the U.S. Food and Drug Administration also approved edaravone for treatment of patients with ALS. Its mechanism of action was inferred to be scavenging of peroxynitrite. In this review, we focus on the radical-scavenging characteristics of edaravone in comparison with some other antioxidants that have been studied in clinical trials, and we summarize its pharmacological action and clinical efficacy in patients with acute cerebral infarction and ALS.
Collapse
Affiliation(s)
- Kazutoshi Watanabe
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Masahiko Tanaka
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji 192-0982, Japan
| | - Satoshi Yuki
- Ikuyaku. Integrated Value Development Division, Mitsubishi Tanabe Pharma Corporation, 17-10 Nihonbashi-Koamicho, Chuo-ku, Tokyo 103-8405, Japan
| | - Manabu Hirai
- Ikuyaku. Integrated Value Development Division, Mitsubishi Tanabe Pharma Corporation, 3-2-10 Dosho-machi, Chuo-ku, Osaka 541-8505, Japan
| | - Yorihiro Yamamoto
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji 192-0982, Japan
| |
Collapse
|
7
|
Critical analysis of radioiodination techniques for micro and macro organic molecules. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-015-4679-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
8
|
Yoshitomi T, Nagasaki Y. Reactive oxygen species-scavenging nanomedicines for the treatment of oxidative stress injuries. Adv Healthc Mater 2014; 3:1149-61. [PMID: 24482427 DOI: 10.1002/adhm.201300576] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 01/06/2014] [Indexed: 12/14/2022]
Abstract
This Progress Report describes a development of two types of reactive oxygen species (ROS)-scavenging nanomedicines for the treatment of oxidative stress injuries, referred to as pH-sensitive redox nanoparticle (RNP(N) ) and pH-insensitive redox nanoparticle (RNP(O) ), which are prepared by self-assembling amphiphilic block copolymers possessing nitroxide radicals as a side chain of hydrophobic segment via amine and ether linkages, respectively. Due to a protonation of amino groups in hydrophobic core, RNP(N) disintegrates in low pH environments such as ischemic, inflamed, and tumor tissues, resulting in increased ROS-scavenging activity because of the exposed nitroxide radicals from the core. Utilizing pH-responsiveness of RNP(N) , it shows remarkable therapeutic effects on oxidative stress injuries such as renal and cerebral ischemia-reperfusion injuries after intravenous administration. Moreover, RNP(N) shows an enhancement of the activity of anticancer drugs by suppression of activation of transcription factors in tumor due to the ROS scavenging. On the other hand, orally administered RNP(O) has notable characteristics such as preferential accumulation in mucosa and inflamed area of gastrointestinal tract and no uptake into blood stream. Based on these characters, RNP(O) shows a remarkable therapeutic effect for the gastrointestinal inflammation without any adverse effects. Thus, ROS-scavenging nanomedicines have therapeutic efficacy in numerous oxidative stress diseases.
Collapse
Affiliation(s)
- Toru Yoshitomi
- Department of Chemistry, Graduate School of Science; The University of Tokyo; Bunkyo-ku 7-3-1 Tokyo 113-0033 Japan
| | - Yukio Nagasaki
- Department of Materials Sciences, Graduate School of Pure and Applied Sciences; University of Tsukuba; Tennoudai 1-1-1 Tsukuba Ibaraki 305-8573 Japan
- Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences; University of Tsukuba; Tennoudai 1-1-1 Tsukuba Ibaraki 305-8573 Japan
- Satellite Laboratory, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS); University of Tsukuba; Tennoudai 1-1-1 Tsukuba Ibaraki 305-8573 Japan
| |
Collapse
|
9
|
Wu S, Sena E, Egan K, Macleod M, Mead G. Edaravone Improves Functional and Structural Outcomes in Animal Models of Focal Cerebral Ischemia: A Systematic Review. Int J Stroke 2013; 9:101-6. [PMID: 24148907 DOI: 10.1111/ijs.12163] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Edaravone has been used in patients with acute ischemic stroke in Japan for over 10 years but does not have marketing authorization in Europe or America. Either patients in Europe and America are not receiving an effective treatment, or those in Asia are being given a treatment which is not effective. Finding out which of these is true will require further clinical trials, and a better understanding of its efficacy in animal models may help inform the design of those trials so that it might be tested under conditions where there is the greatest prospect of success. We systematically reviewed the efficacy of edaravone in animal models of focal ischemia and summarized data using weighted mean difference DerSimonian and Laird random-effects modeling. We used stratified meta-analysis and metaregression to assess the influence of study design and methodological quality. We identified 49 experiments describing outcome in 814 animals; 30 experiments (519 animals) reported functional and 35 experiments (503 animals) reported structural outcome. Edaravone improved functional and structural outcome by 30.3% (95% confidence interval 23.4–37.2%) and 25.5% (95% confidence interval, 21.1–29.9%), respectively. For functional outcome, there was an inverse relationship between study quality and effect size ( P < 0.0017). Effect sizes were larger in studies where randomization or blinded assessment was not reported. There was no evidence of publication bias. Edaravone is a promising treatment for stroke. However, because of the methodological weakness in current animal studies, no sufficient preclinical evidence is available to optimize the study design of clinical trials. Higher quality animal studies are expected to inform further clinical study.
Collapse
Affiliation(s)
- Simiao Wu
- University of Edinburgh, Centre for Clinical Brain Sciences, Edinburgh, UK
- Sichuan University, West China Hospital, Department of Neurology, Chengdu, Sichuan, China
| | - Emily Sena
- University of Edinburgh, Centre for Clinical Brain Sciences, Edinburgh, UK
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, 245 Burgundy St., Heidelberg Vic 3084, Australia
| | - Kieren Egan
- University of Edinburgh, Centre for Clinical Brain Sciences, Edinburgh, UK
| | - Malcolm Macleod
- University of Edinburgh, Centre for Clinical Brain Sciences, Edinburgh, UK
| | - Gillian Mead
- University of Edinburgh, Centre for Clinical Brain Sciences, Edinburgh, UK
| |
Collapse
|
10
|
Therapeutic time window for edaravone treatment of traumatic brain injury in mice. BIOMED RESEARCH INTERNATIONAL 2013; 2013:379206. [PMID: 23710445 PMCID: PMC3654699 DOI: 10.1155/2013/379206] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability in young people. No effective therapy is available to ameliorate its damaging effects. Our aim was to investigate the optimal therapeutic time window of edaravone, a free radical scavenger which is currently used in Japan. We also determined the temporal profile of reactive oxygen species (ROS) production, oxidative stress, and neuronal death. Male C57Bl/6 mice were subjected to a controlled cortical impact (CCI). Edaravone (3.0 mg/kg), or vehicle, was administered intravenously at 0, 3, or 6 hours following CCI. The production of superoxide radicals (O2∙−) as a marker of ROS, of nitrotyrosine (NT) as an indicator of oxidative stress, and neuronal death were measured for 24 hours following CCI. Superoxide radical production was clearly evident 3 hours after CCI, with oxidative stress and neuronal cell death becoming apparent after 6 hours. Edaravone administration after CCI resulted in a significant reduction in the injury volume and oxidative stress, particularly at the 3-hour time point. Moreover, the greatest decrease in O2∙− levels was observed when edaravone was administered 3 hours following CCI. These findings suggest that edaravone could prove clinically useful to ameliorate the devastating effects of TBI.
Collapse
|