1
|
Yuan C, Jia C, Zhang W, You Y, Zhu L, Dong Y. Ligand-Controlled Selective Synthesis of Indoles and Benzofurans from Secondary Anilines. Org Lett 2024; 26:8798-8802. [PMID: 39382986 DOI: 10.1021/acs.orglett.4c03173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
A ligand-controlled method for the selective synthesis of indoles and benzofurans from secondary anilines has been discovered. A six-ring palladacycle intermediate may be involved in this process by olefins as a transient directing mediator to give indoles. The indole/benzofuran ratio can be easily tuned by the MPAA ligand. Various substituted secondary anilines were well-tolerated, affording the corresponding products in moderate to good yields. Indole-derived drugs such as JWH-081, BB-22, and ML-098 could be obtained using our new method to achieve their precursors. Preliminary mechanistic studies indicated that BQ is the key factor in avoiding the β-H elimination of insertion species.
Collapse
Affiliation(s)
- Chunchen Yuan
- School of Chemistry and Chemical Engineering, Xiushan Campus Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Changbo Jia
- School of Chemistry and Chemical Engineering, Xiushan Campus Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Wenlong Zhang
- School of Chemistry and Chemical Engineering, Xiushan Campus Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Yang'en You
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei, Anhui 230009, China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering, Xiushan Campus Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Yongping Dong
- School of Chemistry and Chemical Engineering, Xiushan Campus Anhui University of Technology, Ma'anshan, Anhui 243032, China
| |
Collapse
|
2
|
Li G, Shang Z, Li R, Xu X. DFT Study on the Mechanism of the Palladium-Catalyzed [3 + 2] Annulation of Aromatic Amides with Maleimides via Benzylic and meta-C-H Bond Activation: Role of the External Ligand Ac-Gly-OH. J Org Chem 2023. [PMID: 38153982 DOI: 10.1021/acs.joc.3c02375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The mechanism of the Ac-Gly-OH-assisted palladium-catalyzed [3 + 2] annulation of aromatic amides with maleimides is investigated using density functional theory calculations. The results show that the reaction undergoes the sequential steps of N-H bond deprotonation, first benzylic C-H bond activation, maleimide insertion, second meta-C-H bond activation, reductive elimination, and oxidation. The external ligand Ac-Gly-OH acts as the internal base for hydrogen abstraction in the first benzylic C-H bond activation. The maleimide insertion step is found to be the rate-determining step. Based on the nearly same energetic span of the two pathways to generate the enantio products, the computational results are consistent with the experimental observation that the terminal [3 + 2] annulation products are racemic when using an achiral ligand. These calculation results disclose the detailed reaction mechanism and shed light on some experimental ambiguities.
Collapse
Affiliation(s)
- Guorong Li
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhenfeng Shang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ruifang Li
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiufang Xu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
3
|
Naskar G, Jeganmohan M. Palladium-Catalyzed [3 + 2] Annulation of Aromatic Amides with Maleimides through Dual C-H Activation. Org Lett 2023; 25:2190-2195. [PMID: 36966393 DOI: 10.1021/acs.orglett.3c00251] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
A palladium-catalyzed [3 + 2] annulation of substituted aromatic amides with maleimides providing tricyclic heterocyclic molecules in good to moderate yields through weak carbonyl chelation is reported. The reaction proceeds via a dual C-H bond activation where the first C-H activation takes place selectively at the benzylic position followed by a second C-H bond activation at the meta position to afford a five-membered cyclic ring. An external ligand Ac-Gly-OH has been used to succeed in this protocol. A plausible reaction mechanism has been proposed for the [3 + 2] annulation reaction.
Collapse
Affiliation(s)
- Gouranga Naskar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
4
|
Fujii T, Gallarati S, Corminboeuf C, Wang Q, Zhu J. Modular Synthesis of Benzocyclobutenes via Pd(II)-Catalyzed Oxidative [2+2] Annulation of Arylboronic Acids with Alkenes. J Am Chem Soc 2022; 144:8920-8926. [PMID: 35561421 DOI: 10.1021/jacs.2c03565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Benzocyclobutenes (BCBs) are highly valuable compounds in organic synthesis, medicinal chemistry, and materials science. However, catalytic modular synthesis of functionalized BCBs from easily accessible starting materials remains limited. We report herein an efficient synthesis of diversely functionalized BCBs by a Pd(II)-catalyzed formal [2+2] annulation between arylboronic acids and alkenes in the presence of N-fluorobenzenesulfonimide (NFSI). An intermolecular carbopalladation followed by palladium oxidation, intramolecular C(sp2)-H activation by a transient C(sp3)-Pd(IV) species, and selective carbon-carbon (C-C) bond-forming reductive elimination from a high-valent five-membered palladacycle is proposed to account for the reaction outcome. Kinetically competent oxidation of alkylPd(II) to alkylPd(IV) species is important to avoid the formation of a Heck adduct. The reaction forges two C-C bonds of the cyclobutene core and is compatible with a wide range of functional groups. No chelating bidentate directing group in the alkene part is needed for this transformation.
Collapse
Affiliation(s)
- Takuji Fujii
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Simone Gallarati
- Laboratory for Computational Molecular Design (LCMD), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Clémence Corminboeuf
- Laboratory for Computational Molecular Design (LCMD), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Chen Z, Ding M, Jiang H, Zhang F. Palladium-catalyzed cyclobutenation of aryl chlorides with norbornenes. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
6
|
Moriyama K. Recent Advances in Retained and Dehydrogenative Dual Functionalization Chemistry. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Katsuhiko Moriyama
- Department of Chemistry Graduate School of Science and Soft Molecular Activation Research Center Chiba University 1-33 Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| |
Collapse
|
7
|
Zhang X, Beaudry CM. Synthesis of Highly Substituted Phenols and Benzenes with Complete Regiochemical Control. Org Lett 2020; 22:6086-6090. [PMID: 32687369 DOI: 10.1021/acs.orglett.0c02157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Substituted phenols are requisite molecules for human health, agriculture, and diverse synthetic materials. We report a chemical synthesis of phenols, including penta-substituted phenols, that accommodates programmable substitution at any position. This method uses a one-step conversion of readily available hydroxypyrone and nitroalkene starting materials to give phenols with complete regiochemical control and in high chemical yield. Additionally, the phenols can be converted into highly and even fully substituted benzenes.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Christopher M Beaudry
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| |
Collapse
|
8
|
Zhang L, Liu L, Huang T, Dong Q, Chen T. Palladium-Catalyzed Cyclobutanation of Aryl Sulfonates through both C–O and C–H Cleavage. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liangwei Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People’s Republic of China
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, College of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, People’s Republic of China
| | - Tianzeng Huang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, College of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, People’s Republic of China
| | - Qizhi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People’s Republic of China
| | - Tieqiao Chen
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People’s Republic of China
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, College of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, People’s Republic of China
| |
Collapse
|
9
|
Annamalai P, Hsiao HC, Raju S, Fu YH, Chen PL, Horng JC, Liu YH, Chuang SC. Synthesis, Isolation, and Characterization of Mono- and Bis-norbornene-Annulated Biarylamines through Pseudo-Catellani Intermediates. Org Lett 2019; 21:1182-1186. [DOI: 10.1021/acs.orglett.9b00119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Huan-Chang Hsiao
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Selvam Raju
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yi-Hsuan Fu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30010, Taiwan
| | - Pei-Ling Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu 30010, Taiwan
| | - Jia-Cherng Horng
- Department of Chemistry, National Tsing Hua University, Hsinchu 30010, Taiwan
| | - Yi-Hung Liu
- Instrumentation Center, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Ching Chuang
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
10
|
Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BUW, Schnürch M. A comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation chemistry. Chem Soc Rev 2018; 47:6603-6743. [PMID: 30033454 PMCID: PMC6113863 DOI: 10.1039/c8cs00201k] [Citation(s) in RCA: 1105] [Impact Index Per Article: 184.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 12/20/2022]
Abstract
The present review is devoted to summarizing the recent advances (2015-2017) in the field of metal-catalysed group-directed C-H functionalisation. In order to clearly showcase the molecular diversity that can now be accessed by means of directed C-H functionalisation, the whole is organized following the directing groups installed on a substrate. Its aim is to be a comprehensive reference work, where a specific directing group can be easily found, together with the transformations which have been carried out with it. Hence, the primary format of this review is schemes accompanied with a concise explanatory text, in which the directing groups are ordered in sections according to their chemical structure. The schemes feature typical substrates used, the products obtained as well as the required reaction conditions. Importantly, each example is commented on with respect to the most important positive features and drawbacks, on aspects such as selectivity, substrate scope, reaction conditions, directing group removal, and greenness. The targeted readership are both experts in the field of C-H functionalisation chemistry (to provide a comprehensive overview of the progress made in the last years) and, even more so, all organic chemists who want to introduce the C-H functionalisation way of thinking for a design of straightforward, efficient and step-economic synthetic routes towards molecules of interest to them. Accordingly, this review should be of particular interest also for scientists from industrial R&D sector. Hence, the overall goal of this review is to promote the application of C-H functionalisation reactions outside the research groups dedicated to method development and establishing it as a valuable reaction archetype in contemporary R&D, comparable to the role cross-coupling reactions play to date.
Collapse
Affiliation(s)
- Carlo Sambiagio
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - David Schönbauer
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Remi Blieck
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Toan Dao-Huy
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Gerit Pototschnig
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Patricia Schaaf
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Thomas Wiesinger
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Muhammad Farooq Zia
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Joanna Wencel-Delord
- Laboratoire de Chimie Moléculaire (UMR CNRS 7509)
, Université de Strasbourg
,
ECPM 25 Rue Becquerel
, 67087 Strasbourg
, France
| | - Tatiana Besset
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Bert U. W. Maes
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| |
Collapse
|
11
|
Farmer ME, Wang P, Shi H, Yu JQ. Palladium Catalyzed meta-C-H Functionalization of Masked Aromatic Aldehydes. ACS Catal 2018; 8:7362-7367. [PMID: 30581651 PMCID: PMC6301045 DOI: 10.1021/acscatal.8b01599] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Palladium catalyzed meta-C-H functionalization enabled by transient mediators has the potential to extend the utility of directed ortho-C-H functionalization to remote positions. However, there have been no reports of palladium catalyzed meta-C-H functionalization of aromatic aldehyde derivatives, which are highly versatile intermediates in organic synthesis. Herein we report the development of a directing group that, in the presence of a norbornene derived mediator and an appropriate pyridone ligand, allows palladium catalyzed meta-C-H functionalization of masked aromatic aldehydes. Mechanistic insight regarding the impact of the directing group length on this catalysis is also discussed.
Collapse
Affiliation(s)
- Marcus E. Farmer
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037
| | - Peng Wang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037
| | - Hang Shi
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
12
|
Chou HM, Jhou JN, Hong FE. Incorporation of norbornene moiety onto the arene of diaryl substituted amides through C-H functionalization. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.10.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Yuan PT, Pai CH, Huang SZ, Hong FE. Making C-N and C-P bonds on the quinone derivatives through the assistance of silver-mediated C-H functionalization processes. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.10.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Tsukano C, Suetsugu S, Muto N, Takemoto Y. Synthesis of Tetrahydrobiphenylene <i>via</i> Pd(0)-Catalyzed C(<i>sp</i><sup>2</sup>)–H Functionalization. Chem Pharm Bull (Tokyo) 2017; 65:1167-1174. [DOI: 10.1248/cpb.c17-00737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Chihiro Tsukano
- Graduate School of Pharmaceutical Sciences, Kyoto University
| | | | - Nobusuke Muto
- Graduate School of Pharmaceutical Sciences, Kyoto University
| | | |
Collapse
|
15
|
Tsukano C. Palladium(0)-Catalyzed Benzylic C( sp3)–H Functionalization for the Concise Synthesis of Heterocycles and Its Applications. Chem Pharm Bull (Tokyo) 2017; 65:409-425. [DOI: 10.1248/cpb.c16-00969] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Chihiro Tsukano
- Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|