1
|
Fernandes E, Lopes CM, Lúcio M. Lipid Biomimetic Models as Simple Yet Complex Tools to Predict Skin Permeation and Drug-Membrane Biophysical Interactions. Pharmaceutics 2024; 16:807. [PMID: 38931927 PMCID: PMC11207520 DOI: 10.3390/pharmaceutics16060807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
The barrier function of the skin is primarily determined by its outermost layer, the Stratum Corneum (SC). The SC consists of corneocytes embedded in a lipid matrix composed mainly of ceramides, cholesterol, and free fatty acids in equimolar proportions and is organised in a complex lamellar structure with different periodicities and lateral packings. This matrix provides a diffusion pathway across the SC for bioactive compounds that are administered to the skin. In this regard, and as the skin administration route has grown in popularity, there has been an increase in the use of lipid mixtures that closely resemble the SC lipid matrix, either for a deeper biophysical understanding or for pharmaceutical and cosmetic purposes. This review focuses on a systematic analysis of the main outcomes of using lipid mixtures as SC lipid matrix models for pharmaceutical and cosmetic purposes. Thus, a methodical evaluation of the main outcomes based on the SC structure is performed, as well as the main recent developments in finding suitable new in vitro tools for permeation testing based on lipid models.
Collapse
Affiliation(s)
- Eduarda Fernandes
- CF-UM-UP—Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal
| | - Carla M. Lopes
- FFP-I3ID—Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS—Biomedical and Health Sciences Research Unit, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4200–150 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, MedTech–Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marlene Lúcio
- CF-UM-UP—Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal
- CBMA—Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| |
Collapse
|
2
|
Mansour RSH, Al Khawaja AY, Hamdan II, Khalil EA. IR microspectroscopic investigation of the interaction of some losartan salts with human stratum corneum protein and its effect on losartan transdermal permeation. PLoS One 2023; 18:e0287267. [PMID: 37319232 PMCID: PMC10270334 DOI: 10.1371/journal.pone.0287267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
The interaction of pharmacologically active drugs with SC biochemical components is underestimated in pharmaceutical research. The aim of this research was to illustrate that some drugs intended for transdermal delivery could interact with the protein component of SC. Such interactions could be in favor of or opposition to their percutaneous absorption. IR microspectroscopy was used to delineate possible interaction of SC keratin with three losartan salts LOS-K, LOS-DEA and LOS-AML salts in addition to AML-BES salt. The results of PCA, combined with comparisons of average second derivative spectra of SC samples treated with these salts and the control SC, showed that LOS-DEA did not interact with SC, thus providing base line permeation of losartan. AML-BES, LOS-AML and LOS-K salts modified the conformational structure of keratin. The disorganization effect on the α-helical structure and induced formation of parallel β-sheets and random coils were in the order of AML-BES˃LOS-AML˃LOS-K. The order of the impact of treatments which resulted in increased formation of β-turns was AML-BES˃LOS-AML. The formation of antiparallel β-sheets was manifested by LOS-AML. Thus, the overall effect of these salts on the SC protein was AML-BES˃LOS-AML˃LOS-K. The impact of LOS-K was associated with improved permeation whereas the impact of LOS-AML was associated with hindered permeation of both losartan and amlodipine. There is a possibility that losartan and amlodipine when present in combination inside SC, their binding to the protein is enhanced leading to being retained within SC.
Collapse
|
3
|
Ohnari H, Sekiya M, Naru E, Ogura T, Sakata O, Obata Y. Amino Acids and Their N-Acetylated Derivatives Maintain the Skin's Barrier Function. Chem Pharm Bull (Tokyo) 2021; 69:652-660. [PMID: 34193714 DOI: 10.1248/cpb.c21-00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hydrocarbon-chain packing structure of intercellular lipids in the stratum corneum (SC) is critical to the skin's barrier function. We previously found that formation of V-shaped ceramide reduces the barrier function of skin. There are few agents, apart from ceramides and fatty acids that can improve the orthorhombic packing (Orth) ratio of the intercellular lipid packing structure. In this study, we investigated agents that directly increase the Orth ratio. We selected an intercellular lipid model consisting of ceramide, cholesterol, and palmitic acid and performed differential scanning calorimetry. We focused on natural moisturizing factor components in the SC, and therefore investigated amino acids and their derivatives. The results of our intercellular lipid model-based study indicate that N-acetyl-L-hydroxyproline (AHYP), remarkably, maintains the lamellar structure. We verified the effect of AHYP on the lamellar structure and hydrocarbon chain packing structure of intercellular lipids using time-resolved X-ray diffraction measurements of human SC. We also determined the direct physicochemical effects of AHYP on the Orth ratio of the hydrocarbon-chain packing structure. Hence, the results of our human SC study suggest that AHYP preserves skin barrier function by maintaining the hydrocarbon-chain packing structure of intercellular lipids via electrostatic repulsion. These findings will facilitate the development of skincare formulation that can maintain the skin's barrier function.
Collapse
Affiliation(s)
| | | | - Eiji Naru
- Research and Development Division, KOSÉ Corporation
| | - Taku Ogura
- Research Institute for Science & Technology, Tokyo University of Science
| | - Osamu Sakata
- Research and Development Division, KOSÉ Corporation
| | - Yasuko Obata
- Department of Pharmaceutical Sciences, Hoshi University
| |
Collapse
|
4
|
Mukaiyama M, Usui T, Nagumo Y. Non-electrophilic TRPA1 agonists, menthol, carvacrol and clotrimazole, open epithelial tight junctions via TRPA1 activation. J Biochem 2021; 168:407-415. [PMID: 32428205 DOI: 10.1093/jb/mvaa057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
Activation of the transient receptor potential A1 channel (TRPA1) by electrophilic agonists was reported to induce the opening of tight junctions (TJs). Because compounds that increase TJ permeability can be paracellular permeability enhancers, we investigated the effect of non-electrophilic TRPA1 activators, including food ingredients (menthol and carvacrol) and medication (clotrimazole), on epithelial permeability. We show that all three compounds induced increase of the permeability of fluorescein isothiocyanate-conjugated dextran (4 kDa) and decrease of transepithelial electrical resistance, accompanied by Ca2+ influx and cofilin activation in epithelial MDCK II monolayers. These phenotypes were attenuated by pretreatment of a TRPA1 antagonist, suggesting TRPA1-mediated opening of TJs. These results suggest that non-electrophilic TRPA1 activators with established safety can be utilized to regulate epithelial barriers.
Collapse
Affiliation(s)
| | - Takeo Usui
- Faculty of Life and Environmental Sciences.,Microbiology Research Center for Sustainability (MiCS)
| | - Yoko Nagumo
- Faculty of Life and Environmental Sciences.,Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
5
|
Suzuki T, Aoki T, Saito M, Hijikuro I, Itakura S, Todo H, Sugibayashi K. Enhancement of Skin Permeation of a Hydrophilic Drug from Acryl-Based Pressure-Sensitive Adhesive Tape. Pharm Res 2021; 38:289-299. [PMID: 33515137 DOI: 10.1007/s11095-021-02996-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/15/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE Penetration enhancers are necessary to overcome a formidable barrier function of the stratum corneum in the development of topical formulations. Recently, non-lamella liquid crystal (NLLC)-forming lipids such as glycerol monooleate and phytantriol (PHY) are gaining increasing attention as a novel skin permeation enhancer. In the present study, fluorescein sodium (FL-Na) was used as a model hydrophilic drug, and acryl-base pressure-sensitive adhesive (PSA) tape containing NLLC forming lipids, mono-O-(5,9,13-trimethyl-4-tetradecenyl) glycerol ester (MGE) or PHY, was prepared to enhance drug permeation through the skin. METHODS A PSA patch containing FL-Na was prepared by mixing FL-Na entrapped in NLLC and acrylic polymer. FL permeation through excised hairless rat skin, and also human skin, was investigated. Changes in lipid structure, folding/unfolding state of keratin in the stratum corneum, and penetration of MGE into the stratum corneum were investigated using confocal Raman microscopy. RESULTS Enhanced FL permeation was observed by the application of a PSA patch containing MGE and PHY. Especially, dramatically enhancement effect was confirmed by 15% of MGE contained formulation. Penetration of MGE provided diminished orthorhombic crystal structure and a peak shift of the aliphatic CH3 vibration of keratin chains toward lower wavenumbers. CONCLUSION The present results suggested that the formulation development by adding MGE may be useful for improving the skin permeation of mal-permeable drugs such as hydrophilic drugs.
Collapse
Affiliation(s)
- Takamasa Suzuki
- Graduate School of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Tomohiro Aoki
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Masato Saito
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Ichiro Hijikuro
- Farnex Inc., Tokyo Institute of Technology Yokohama Venture Plaza, 4259-3 Nagatsuta, Midori-ku, Yokohama, 226-8510, Japan
| | - Shoko Itakura
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Hiroaki Todo
- Graduate School of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan.,Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Kenji Sugibayashi
- Graduate School of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan. .,Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan.
| |
Collapse
|