1
|
Ohtsuki T, Huang Y, Kamiya A, Nakayama Y, Matsushita M, Morikawa S, Matsufuji H. Development of an HPLC method using relative molar sensitivity for the measurement of blood concentrations of nine pharmaceutical compounds. J Pharm Health Care Sci 2024; 10:35. [PMID: 38970102 PMCID: PMC11227149 DOI: 10.1186/s40780-024-00358-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
We developed a reliable high-performance liquid chromatographic analysis method using a relative molar sensitivity (RMS) technique that does not require an authentic, identical reference analyte material to quantify blood serum carbamazepine, phenytoin, voriconazole, lamotrigine, meropenem, mycophenolic acid, linezolid, vancomycin, and caffeine levels for routine blood concentration measurements. Carbamazepine and caffeine were also used as non-analyte reference materials to calculate the RMS of each analyte. The RMS was calculated from the ratio of the slope of the calibration equation (analyte/non-analyte reference material), then used to quantify analytes in control serum samples spiked with carbamazepine, phenytoin, voriconazole, meropenem, mycophenolic acid, linezolid or vancomycin. In addition, the concentrations of these six drugs in control serum samples determined by the proposed RMS method agreed well with that obtained using a conventional method. The proposed RMS method is a promising tool for the clinical determination of nine drugs, given the accuracy, precision, and efficiency of quantifying these analytes.
Collapse
Affiliation(s)
- Takashi Ohtsuki
- Department of Food Science and Technology, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, 1866, Kanagawa, Japan.
| | - Yi Huang
- Department of Food Science and Technology, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, 1866, Kanagawa, Japan
| | - Ayane Kamiya
- Department of Food Science and Technology, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, 1866, Kanagawa, Japan
| | - Yuki Nakayama
- Department of Food Science and Technology, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, 1866, Kanagawa, Japan
| | - Miyuki Matsushita
- Hitachi High-Tech Science Corporation, 1-17-1, Toranomon, Minato-ku, Tokyo, Japan
| | - Satoru Morikawa
- Hitachi High-Tech Science Corporation, 1-17-1, Toranomon, Minato-ku, Tokyo, Japan
| | - Hiroshi Matsufuji
- Department of Food Science and Technology, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, 1866, Kanagawa, Japan
| |
Collapse
|
2
|
Suntichaikamolkul N, Akashi T, Mahalapbutr P, Sanachai K, Rungrotmongkol T, Bassard JE, Schaller H, De-Eknamkul W, Vimolmangkang S, Yamazaki M, Sirikantaramas S. Daidzein Hydroxylation by CYP81E63 Is Involved in the Biosynthesis of Miroestrol in Pueraria mirifica. PLANT & CELL PHYSIOLOGY 2023; 64:64-79. [PMID: 36218384 DOI: 10.1093/pcp/pcac140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
White Kwao Krua (Pueraria candollei var. mirifica), a Thai medicinal plant, is a rich source of phytoestrogens, especially isoflavonoids and chromenes. These phytoestrogens are well known; however, their biosynthetic genes remain largely uncharacterized. Cytochrome P450 (P450) is a large protein family that plays a crucial role in the biosynthesis of various compounds in plants, including phytoestrogens. Thus, we focused on P450s involved in the isoflavone hydroxylation that potentially participates in the biosynthesis of miroestrol. Three candidate P450s were isolated from the transcriptome libraries by considering the phylogenetic and expression data of each tissue of P. mirifica. The candidate P450s were functionally characterized both in vitro and in planta. Accordingly, the yeast microsome harboring PmCYP81E63 regiospecifically exhibited either 2' or 3' daidzein hydroxylation and genistein hydroxylation. Based on in silico calculation, PmCYP81E63 had higher binding energy with daidzein than with genistein, which supported the in vitro result of the isoflavone specificity. To confirm in planta function, the candidate P450s were then transiently co-expressed with isoflavone-related genes in Nicotiana benthamiana. Despite no daidzein in the infiltrated N. benthamiana leaves, genistein and hydroxygenistein biosynthesis were detectable by liquid Chromatography with tandem mass spectrometry (LC-MS/MS). Additionally, we demonstrated that PmCYP81E63 interacted with several enzymes related to isoflavone biosynthesis using bimolecular fluorescence complementation studies and a yeast two-hybrid analysis, suggesting a scheme of metabolon formation in the pathway. Our findings provide compelling evidence regarding the involvement of PmCYP81E63 in the early step of the proposed miroestrol biosynthesis in P. mirifica.
Collapse
Affiliation(s)
- Nithiwat Suntichaikamolkul
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Pathumwan, Bangkok 10330, Thailand
| | - Tomoyoshi Akashi
- Department of Applied Biological Sciences, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Panupong Mahalapbutr
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Muang District, Khon Kaen 40002, Thailand
| | - Kamonpan Sanachai
- Department of Biochemistry, Faculty of Science, Khon Kaen University, 123 Muang District, Khon Kaen 40002, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Pathumwan, Bangkok 10330, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, 254 Pathumwan, Bangkok 10330, Thailand
| | - Jean-Etienne Bassard
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du général Zimmer, Strasbourg 67084, France
| | - Hubert Schaller
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du général Zimmer, Strasbourg 67084, France
| | - Wanchai De-Eknamkul
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Pathumwan, Bangkok 10330, Thailand
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Pathumwan, Bangkok 10330, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, 254 Pathumwan, Bangkok 10330, Thailand
| | - Mami Yamazaki
- Laboratory of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
- Plant Molecular Science Center, Chiba University, 1-8-1 Inohana, Chuo-ku Chiba 260-8675, Japan
| | - Supaart Sirikantaramas
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Analysis of Isoflavones in Pueraria by UHPLC-Q-Orbitrap HRMS and Study on α-Glucosidase Inhibitory Activity. Foods 2022; 11:foods11213523. [DOI: 10.3390/foods11213523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022] Open
Abstract
Pueraria is a rich source of bioactive compounds, but there is a lack of comprehensive information concerning its composition. Therefore, a UHPLC-Q-Orbitrap HRMS method was developed to identify and quantify bioactive compounds in pueraria. Twelve isoflavones were quantified, with puerarin being the most abundant, followed by puerarin 6″-O-xyloside, 3′-methoxy puerarin, and 3′-hydroxy puerarin. A further 88 bioactive components in eight categories were also tentatively identified. The 12 isoflavones, except for genistein, exhibited α-glucosidase inhibitory activity. The binding of these compounds to the active site of α-glucosidase was confirmed via molecular docking analysis. These findings provide a basis for identifying pueraria as a promising functional food ingredient.
Collapse
|
4
|
Takahashi M, Morimoto K, Nishizaki Y, Masumoto N, Sugimoto N, Sato K, Inoue K. Study on the Synthesis of Methylated Reference and Their Application in the Quantity of Curcuminoids Using Single Reference Liquid Chromatography Based on Relative Molar Sensitivity. Chem Pharm Bull (Tokyo) 2022; 70:25-31. [PMID: 34980729 DOI: 10.1248/cpb.c21-00621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report on the recommendation of the simple and versatility of methylated reference (MR) to improve applications in the single reference (SR)-LC based on relative molar sensitivity (RMS). Three curcuminoids (Curs) such as curcumin, demethoxycurcumin and bisdemethoxycurcumin in turmeric products were determined using authentic standards and methylated curcumin. In addition, high-speed countercurrent chromatography (HSCCC) purification is necessary to separate Curs for indicating the RMS. For HSCCC separation, a biphasic solvent system was used to obtain these fractions, which were then subjected to 1H quantitative NMR to determine their contents in each test solution. Using these solutions, the RMS of Curs are calculated from slopes ratios of calibration curves (three ranges from 0-100 µmol/L, r2 > 0.998). The averaged RMS of Curs were 8.92 (relative standard deviation (RSD), 1.17%), 8.97 (2.18%), and 9.61 (0.77%), respectively. Cur concentrations in turmeric products can be determined using RMS, peak area, and MR content added in these samples. This proposed method, which is based on chemical methylation and the SR-LC assay has been successfully applied for the simple and reliable estimation of Curs in turmeric products.
Collapse
Affiliation(s)
- Miki Takahashi
- College of Pharmaceutical Sciences, Ritsumeikan University
| | - Koji Morimoto
- College of Pharmaceutical Sciences, Ritsumeikan University
| | | | | | | | | | - Koichi Inoue
- College of Pharmaceutical Sciences, Ritsumeikan University
| |
Collapse
|