1
|
Asami J, Quevedo BV, Santos AR, Giorno LP, Komatsu D, de Rezende Duek EA. The impact of non-deproteinization on physicochemical and biological properties of natural rubber latex for biomedical applications. Int J Biol Macromol 2023; 253:126782. [PMID: 37690638 DOI: 10.1016/j.ijbiomac.2023.126782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
Latex is a colloidal suspension derived from the Hevea brasiliensis tree, derived from natural rubber, poly(isoprene), and assorted constituents including proteins and phospholipids. These constituents are inherent to both natural rubber and latex serum. This investigation was undertaken to examine the impact of the deproteinization process on chemical and biological dynamics of natural rubber latex. Natural Rubber (NR) extracted from the pure latex (LNCP) was obtained through centrifugation, followed by six rounds of solvent purification (LP6). The structure was characterized using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), swelling test, surface zeta potential (ζ), scanning electron microscopy (SEM) and in vitro assay. The results revealed that the LP6 group presented decreased swelling kinetics, reduced cell adhesion and proliferation, and a smoother surface with decreased negative surface charge. Conversely, the LNCP group shown accelerated swelling, heightened adhesion and cellular growth, and a more negatively charged and rougher surface. As such, the attributes of latex serum and proteins have potential usage across numerous biomedical applications.
Collapse
Affiliation(s)
- Jessica Asami
- Mechanical Engineering Faculty (FEM), State University of Campinas (UNICAMP), Campinas, SP, Brazil; Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP, Brazil.
| | - Bruna V Quevedo
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP, Brazil; Postgraduate Program in Materials Sciences (PPGCM), Federal University of São Carlos (UFSCar), Sorocaba, SP, Brazil
| | - Arnaldo R Santos
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), São Bernardo do Campo, SP, Brazil
| | - Luciana Pastena Giorno
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), São Bernardo do Campo, SP, Brazil
| | - Daniel Komatsu
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP, Brazil
| | - Eliana Aparecida de Rezende Duek
- Mechanical Engineering Faculty (FEM), State University of Campinas (UNICAMP), Campinas, SP, Brazil; Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP, Brazil; Postgraduate Program in Materials Sciences (PPGCM), Federal University of São Carlos (UFSCar), Sorocaba, SP, Brazil
| |
Collapse
|
2
|
Nanomedicine for Immunotherapy Targeting Hematological Malignancies: Current Approaches and Perspective. NANOMATERIALS 2021; 11:nano11112792. [PMID: 34835555 PMCID: PMC8619332 DOI: 10.3390/nano11112792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Conventional chemotherapy has partial therapeutic effects against hematological malignancies and is correlated with serious side effects and great risk of relapse. Recently, immunotherapeutic drugs have provided encouraging results in the treatment of hematological malignancies. Several immunotherapeutic antibodies and cell therapeutics are in dynamic development such as immune checkpoint blockades and CAR-T treatment. However, numerous problems restrain the therapeutic effectiveness of tumor immunotherapy as an insufficient anti-tumor immune response, the interference of an immune-suppressive bone marrow, or tumoral milieu with the discharge of immunosuppressive components, access of myeloid-derived suppressor cells, monocyte intrusion, macrophage modifications, all factors facilitating the tumor to escape the anti-cancer immune response, finally reducing the efficiency of the immunotherapy. Nanotechnology can be employed to overcome each of these aspects, therefore having the possibility to successfully produce anti-cancer immune responses. Here, we review recent findings on the use of biomaterial-based nanoparticles in hematological malignancies immunotherapy. In the future, a deeper understanding of tumor immunology and of the implications of nanomedicine will allow nanoparticles to revolutionize tumor immunotherapy, and nanomedicine approaches will reveal their great potential for clinical translation.
Collapse
|