1
|
Badri A, Williams A, Awofiranye A, Datta P, Xia K, He W, Fraser K, Dordick JS, Linhardt RJ, Koffas MAG. Complete biosynthesis of a sulfated chondroitin in Escherichia coli. Nat Commun 2021; 12:1389. [PMID: 33654100 PMCID: PMC7925653 DOI: 10.1038/s41467-021-21692-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
Sulfated glycosaminoglycans (GAGs) are a class of important biologics that are currently manufactured by extraction from animal tissues. Although such methods are unsustainable and prone to contamination, animal-free production methods have not emerged as competitive alternatives due to complexities in scale-up, requirement for multiple stages and cost of co-factors and purification. Here, we demonstrate the development of single microbial cell factories capable of complete, one-step biosynthesis of chondroitin sulfate (CS), a type of GAG. We engineer E. coli to produce all three required components for CS production–chondroitin, sulfate donor and sulfotransferase. In this way, we achieve intracellular CS production of ~27 μg/g dry-cell-weight with about 96% of the disaccharides sulfated. We further explore four different factors that can affect the sulfation levels of this microbial product. Overall, this is a demonstration of simple, one-step microbial production of a sulfated GAG and marks an important step in the animal-free production of these molecules. Chondroitin sulfate (CS) is a type of sulfated glycosaminoglycan that is manufactured by extraction from animal tissues for the treatment of osteoarthritis and in drug delivery applications. Here, the authors report the development of single microbial cell factories capable of compete, one-step biosynthesis of animal-free CS production in E. coli.
Collapse
Affiliation(s)
- Abinaya Badri
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Asher Williams
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Adeola Awofiranye
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Payel Datta
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Ke Xia
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Wenqin He
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Keith Fraser
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mattheos A G Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA. .,Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
2
|
Badri A, Williams A, Xia K, Linhardt RJ, Koffas MAG. Increased 3'-Phosphoadenosine-5'-phosphosulfate Levels in Engineered Escherichia coli Cell Lysate Facilitate the In Vitro Synthesis of Chondroitin Sulfate A. Biotechnol J 2019; 14:e1800436. [PMID: 31180182 DOI: 10.1002/biot.201800436] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/01/2019] [Indexed: 12/16/2022]
Abstract
Chondroitin sulfates (CSs) are linear glycosaminoglycans that have important applications in the medical and food industries. Engineering bacteria for the microbial production of CS will facilitate a one-step, scalable production with good control over sulfation levels and positions in contrast to extraction from animal sources. To achieve this goal, Escherichia coli (E. coli) is engineered in this study using traditional metabolic engineering approaches to accumulate 3'-phosphoadenosine-5'-phosphosulfate (PAPS), the universal sulfate donor. PAPS is one of the least-explored components required for the biosynthesis of CS. The resulting engineered E. coli strain shows an ≈1000-fold increase in intracellular PAPS concentrations. This study also reports, for the first time, in vitro biotransformation of CS using PAPS, chondroitin, and chondroitin-4-sulfotransferase (C4ST), all synthesized from different engineered E. coli strains. A 10.4-fold increase is observed in the amount of CS produced by biotransformation by employing PAPS from the engineered PAPS-accumulating strain. The data from the biotransformation experiments also help evaluate the reaction components that need improved production to achieve a one-step microbial synthesis of CS. This will provide a new platform to produce CS.
Collapse
Affiliation(s)
- Abinaya Badri
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th St. CBIS 4005C, Troy, NY, 12180, USA
| | - Asher Williams
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th St. CBIS 4005C, Troy, NY, 12180, USA
| | - Ke Xia
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St. CBIS 4005C, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th St. CBIS 4005C, Troy, NY, 12180, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St. CBIS 4005C, Troy, NY, 12180, USA.,Department of Biology, Rensselaer Polytechnic Institute, 110 8th St. CBIS 4005C, Troy, NY, 12180, USA.,Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th St. CBIS 4005C, Troy, NY, 12180, USA
| | - Mattheos A G Koffas
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th St. CBIS 4005C, Troy, NY, 12180, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St. CBIS 4005C, Troy, NY, 12180, USA.,Department of Biology, Rensselaer Polytechnic Institute, 110 8th St. CBIS 4005C, Troy, NY, 12180, USA
| |
Collapse
|
3
|
Dowood RK, Adusumalli R, Tykesson E, Johnsen E, Lundanes E, Prydz K, Wilson SR. Determination of 3'-phosphoadenosine-5'-phosphosulfate in cells and Golgi fractions using hydrophilic interaction liquid chromatography-mass spectrometry. J Chromatogr A 2016; 1470:70-75. [PMID: 27720175 DOI: 10.1016/j.chroma.2016.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/29/2016] [Accepted: 10/02/2016] [Indexed: 11/28/2022]
Abstract
3'-Phosphoadenosine-5'-phosphosulfate (PAPS) is a key player in the sulfation of biomolecules, but methods for selective measurements are lacking. A liquid chromatography-mass spectrometry (LC-MS) approach for measuring PAPS was developed. A central feature of the method was employing hydrophilic interaction liquid chromatography (HILIC), which is highly suited for separating very polar/charged compounds, and is compatible with electrospray MS. Using simple instrumentation, the analysis time per sample was below 10min and the method was characterized by easy sample preparation. The method was used to monitor decreasing levels of PAPS as function of sodium chlorate treatment (an inhibitor of PAPS synthesis) in whole-cell lysates as well as Golgi-fractions. The method allowed PAPS to be chromatographically separated from ADP and ATP, which can interfere with measurements if a less resolving LC-MS method is used.
Collapse
Affiliation(s)
- Rua Kareem Dowood
- Department of Chemistry, University of Oslo, Post Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Ravi Adusumalli
- Department of Biosciences, University of Oslo, Post Box 1066, Blindern, NO-0316 Oslo, Norway
| | - Emil Tykesson
- Department of Experimental Medical Science, Lund University, Box 117, 221 00, Lund, Sweden
| | - Elin Johnsen
- Department of Chemistry, University of Oslo, Post Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Elsa Lundanes
- Department of Chemistry, University of Oslo, Post Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Kristian Prydz
- Department of Biosciences, University of Oslo, Post Box 1066, Blindern, NO-0316 Oslo, Norway
| | - Steven Ray Wilson
- Department of Chemistry, University of Oslo, Post Box 1033, Blindern, NO-0315 Oslo, Norway.
| |
Collapse
|
4
|
Sorrell I, Shipley RJ, Hearnden V, Colley HE, Thornhill MH, Murdoch C, Webb SD. Combined mathematical modelling and experimentation to predict polymersome uptake by oral cancer cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 10:339-48. [PMID: 24036098 DOI: 10.1016/j.nano.2013.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/12/2013] [Accepted: 08/29/2013] [Indexed: 01/24/2023]
Abstract
UNLABELLED This study is motivated by understanding and controlling the key physical properties underlying internalisation of nano drug delivery. We consider the internalisation of specific nanometre size delivery vehicles, comprised of self-assembling amphiphilic block copolymers, called polymersomes that have the potential to specifically deliver anticancer therapeutics to tumour cells. The possible benefits of targeted polymersome drug delivery include reduced off-target toxic effects in healthy tissue and increased drug uptake by diseased tissue. Through a combination of in vitro experimentation and mathematical modelling, we develop a validated model of nanoparticle uptake by cells via the clathrin-mediated endocytotic pathway, incorporating receptor binding, clustering and recycling. The model predicts how the characteristics of receptor targeting, and the size and concentration of polymersomes alter uptake by tumour cells. The number of receptors per cell was identified as being the dominant mechanism accounting for the difference between cell types in polymersome uptake rate. FROM THE CLINICAL EDITOR This article reports on a validated model developed through a combination of in vitro experimentation and mathematical modeling of nanoparticle uptake by cells via the clathrin-mediated endocytotic pathway. The model incorporates receptor binding, clustering, and recycling and predicts how the characteristics of receptor targeting, the size and concentration alter polymersome uptake by cancer cells.
Collapse
Affiliation(s)
- Ian Sorrell
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Rebecca J Shipley
- Department of Mechanical Engineering, University College London, Torrington Place, London, UK
| | - Vanessa Hearnden
- School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield, UK
| | - Helen E Colley
- School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield, UK
| | - Martin H Thornhill
- School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield, UK
| | - Craig Murdoch
- School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield, UK
| | - Steven D Webb
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK.
| |
Collapse
|
5
|
Cheng J, Che N, Li H, Ma K, Wu S, Fang J, Gao R, Liu J, Yan X, Li C, Dong F. Extraction, derivatization, and determination of metabolome in human macrophages. J Sep Sci 2013; 36:1418-28. [PMID: 23526673 DOI: 10.1002/jssc.201201158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 12/26/2022]
Abstract
A GC/TOF-MS was applied to the determination of metabolites in human macrophages. The extraction conditions and quenching conditions were investigated and optimized. The results indicated that 0.9% w/v sodium chloride at 4°C was the most favorable condition to quench macrophage, 1 mL 50% ACN for 2 min in ice bath was the optimal condition to extract 5 × 10(6) cells. Two hundred six peaks could be detectable with peak area over 50 using this method. Among these peaks, 45 peaks with the similarity over 700 were identified using standard compounds for endogenous metabolites. Thirty-seven out of 45 metabolites could be quantified directly by this method. Twenty metabolites were selected randomly, and 15 amino acids were used for method validation. The correlation coefficients (r) ranging from 0.9902 to 0.9977 were obtained for 15 amino acids in the range of 2.35-150.20 μg/mL. The intraday and interday precisions were lower than 19.90% for the randomly selected 20 endogenous metabolites. Using this development method and multivariate statistical technique, several potential biomarkers were found from human macrophages infected by different Mycobacterium tuberculosis (M. tuberculosis) strains. The results suggest that the method could be applied to the investigation of the pathogenicity of tuberculosis.
Collapse
Affiliation(s)
- Jianhua Cheng
- National Center of Biomedical Analysis, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Antonilli L, De Carolis L, Brusadin V, Togna AR, Dovizio M, Togna GI, Patrignani P, Nencini P. Repeated exposure to codeine alters morphine glucuronidation by affecting UGT gene expression in the rat. Eur J Pharmacol 2012; 693:7-14. [PMID: 23010468 DOI: 10.1016/j.ejphar.2012.07.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 07/05/2012] [Accepted: 07/11/2012] [Indexed: 11/24/2022]
Abstract
We have previously found that phenantrenic opioids, such as heroin or naltrexone, modulate morphine glucuronidation in the rat. Here we further investigated the effects of phenantrenic opioids on morphine glucuronidation comparing the effects of codeine and heroin. In particular, we measured the synthesis of morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) from morphine: in the liver microsomal preparations obtained from rats repeatedly treated with two different doses of codeine (ex vivo study); in primary cultures of rat hepatocytes previously incubated for 72h with codeine, or heroin (in vitro study); in the latter conditions, the levels of expression of genes coding for uridine-5'-diphosphate-glucuronosyltransferases (UGTs) A1, A6, A7 and 2B1 were also determined; finally, the levels of glucuronic acid in rat hepatocytes previously incubated for 72h with codeine or heroin were assessed. The ex vivo study shows that codeine exposure in vivo stimulated liver microsomal M3G formation and de novo synthesis of M6G. Differently, in primary hepatocyte cultures both codeine and heroin inhibited M3G formation, whereas heroin only stimulated de novo synthesis of M6G; moreover, codeine significantly reduced UGT2B1 expression at 6h and caused a trend toward inhibition of UGT1A1 expression at 72h; heroin enhanced UGT2B1 expression and inhibited that of UGT1A1 at 72h; finally, both codeine and heroin depleted UDPGA content of hepatocytes. In conclusion, codeine affects liver glucuronidation of morphine enlightening the possible contribution of changes in the spectrum of UGT gene expression and co-factor synthesis in this phenomenon.
Collapse
Affiliation(s)
- Letizia Antonilli
- Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Towards quantitative metabolomics of mammalian cells: development of a metabolite extraction protocol. Anal Biochem 2010; 404:155-64. [PMID: 20435011 DOI: 10.1016/j.ab.2010.04.031] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/29/2010] [Accepted: 04/27/2010] [Indexed: 11/23/2022]
Abstract
Metabolomics aims to quantify all metabolites within an organism, thereby providing valuable insight into the metabolism of cells. To study intracellular metabolites, they are first extracted from the cells. The ideal extraction procedure should immediately quench metabolism and quantitatively extract all metabolites, a significant challenge given the rapid turnover and physicochemical diversity of intracellular metabolites. We have evaluated several quenching and extraction solutions for their suitability for mammalian cells grown in suspension. Quenching with 60% methanol (buffered or unbuffered) resulted in leakage of intracellular metabolites from the cells. In contrast, quenching with cold isotonic saline (0.9% [w/v] NaCl, 0.5 degrees C) did not damage cells and effectively halted conversion of ATP to ADP and AMP, indicative of metabolic arrest. Of the 12 different extraction methods tested, cold extraction in 50% aqueous acetonitrile was superior to other methods. The recovery of a mixture of standards was excellent, and the concentration of extracted intracellular metabolites was higher than for the other methods tested. The final protocol is easy to implement and can be used to study the intracellular metabolomes of mammalian cells.
Collapse
|
8
|
Graziani M, Antonilli L, Togna AR, Brusadin V, Viola S, Togna G, Badiani A, Nencini P. Non-opioid induction of morphine-6-glucuronide synthesis is elicited by prolonged exposure of rat hepatocytes to heroin. Drug Alcohol Depend 2008; 98:179-84. [PMID: 18597954 DOI: 10.1016/j.drugalcdep.2008.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 05/13/2008] [Accepted: 05/18/2008] [Indexed: 11/16/2022]
Abstract
BACKGROUND Liver metabolism of morphine leads to the formation of morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G), the latter possessing strong opioid activity that however differs from that of the parent compound. In previous studies conducted in rats we have shown that repeated in vivo exposure to phenanthrene class of mu opioid receptor (MOR) agonists or antagonists (heroin, morphine, and naltrexone), but not to non-phenanthrene class of MOR agonist methadone, affects morphine glucuronidation by liver microsomes. METHODS In the present study, we measured the in vitro formation of M3G and M6G by rat hepatocytes incubated for 120 min with morphine (0.1-1.0 mM) after 72h pre-incubation with one of the following MOR agonists: heroin (3.3 or 6.6 microM), morphine (7.8 microM), or methadone (12 microM). The MOR antagonist naltrexone (10 or 25 microM) was also tested, alone or in combination with heroin. The amount of M3G and M6G synthesized was then measured by HPLC method. RESULTS Heroin inhibited M3G synthesis and induced the formation of M6G, which under basal conditions is not synthesized in rats. Heroin effects were not blocked by naltrexone. Morphine, but not methadone, produced effects similar to those of heroin but more modest in intensity. Pre-incubation with naltrexone alone slightly increased M3G synthesis, but had no effect on M6G formation. CONCLUSIONS These results are in agreement with those of previous ex vivo studies and indicate that exposure to heroin or, to a lesser extent, morphine, can affect morphine glucuronidation via direct non-opioid actions on the hepatocytes.
Collapse
Affiliation(s)
- Manuela Graziani
- Department of Human Physiology and Pharmacology Vittorio Erspamer, University of Rome Sapienza, Piazzale Aldo Moro 5, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
9
|
|