1
|
Qiu Y, Ozturk S, Cui X, Qin W, Wu Q, Liu S. Increased heat tolerance and transcriptome analysis of Salmonella enterica Enteritidis PT 30 heat-shocked at 42 ℃. Food Res Int 2023; 167:112636. [PMID: 37087231 DOI: 10.1016/j.foodres.2023.112636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
In this study, we compared the heat tolerance parameter (D65℃) values of Salmonella enterica serovar Enteritidis PT 30 (S. Enteritidis ) heat adapted at different degrees (at 42 ℃ for 20-180 min) and cultivated using two methods. The treated group with the highest D65℃ value (LP-42 ℃-60 min) and the untreated groups (Control-TSB and Control-TSA) were subjected to transcriptome analysis. Heat-adaptation increased the D65℃ values of S. Enteritidis by 24.5-60.8%. The D65℃ values of the LP-42 ℃-60 min group (1.85 ± 0.13 min, 7.7% higher) was comparable to that of the Control-TSA. A total of 483 up- and 443 downregulated genes of S. enteritidis were identified in the LP-42 ℃-60 min group (log2fold change > 1, adjusted p-value < 0.05). Among these genes, 5 co-expressed and 15 differentially expressed genes in the LP-42 ℃-60 min and Control-TSA grops possibly contributed to the high D65℃ values of S. Enteritidis . The Rpo regulon was involved in the heat adaptation of S. Enteritidis , as evidenced by the significant upregulation of rpoS, rpoN, and rpoE. KEGG enrichment pathways, such as biosynthesis of secondary metabolites, tricarboxylic acid, and ribosomes were identified and mapped to reveal the molecular mechanisms of S. enteritidis during heat adaptation. This study quantified the enhanced heat tolerance of S. Enteritidis heat adapted at different degrees of heat-adaptation. The results of this study may serve as a basis for elucidating the molecular mechanisms underlying the enhanced heat tolerance at the transcriptome level.
Collapse
Affiliation(s)
- Yan Qiu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Samet Ozturk
- Department of Food Engineering, Gümüşhane University, Gümüşhane, Turkey
| | - Xinyao Cui
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, China; Food Processing and Safety Institute, Sichuan Agricultural University, Ya'an, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Shuxiang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China; Food Processing and Safety Institute, Sichuan Agricultural University, Ya'an, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| |
Collapse
|
2
|
Tan Z, Lu P, Adewole D, Diarra M, Gong J, Yang C. Iron requirement in the infection of Salmonella and its relevance to poultry health. J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2020.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
3
|
Retnoningrum DS, Santika IWM, Kesuma S, Ekowati SA, Riani C. Construction and Characterization of a Medium Copy Number Expression Vector Carrying Auto-Inducible dps Promoter to Overproduce a Bacterial Superoxide Dismutase in Escherichia coli. Mol Biotechnol 2019; 61:231-240. [PMID: 30721405 DOI: 10.1007/s12033-018-00151-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Medium copy number expression vector and auto-inducible promoter could be a solution for producing recombinant therapeutic proteins in industrial scale regarding plasmid stability, cost, and product quality. This work aimed to construct a medium copy number pBR322-based expression vector carrying auto-inducible promoter, determine its ability to express heterologous gene, and study its segregational stability. Three stationary-phase promoters of Escherichia coli genes (gadA, dps and sbmC) were used to produce a superoxide dismutase from Staphylococcus equorum (rMnSODSeq) coding region from pBR322Δtet (pBR322-mini). Four plasmids were constructed with different promoters, i.e., T7 (pBMsod), gadA (pMCDsod), dps (pCADsod), and sbmC (pCDSsod) using pBR322-mini as backbone. Results showed that rMnSODSeq expression from pBMsod was significantly higher than that from pJExpress414sod (high copy number plasmid). Meanwhile, rMnSODSeq from pCADsod (auto-inducible promoter) was as high as from pBMsod (IPTG-inducible T7 promoter). rMnSODSeq expressed from pCADsod when bacterial cells entered stationary phase appeared as an active protein band of 23.5 kDa when analyzed by zymography and SDS-PAGE. pCADsod displayed the highest stability compared with pBMsod and pJEXpress414sod by plasmid retention assay. We demonstrate the use of an auto-inducible dps promoter to express high level of heterologous protein, an SOD of S. equorum, from a stable expression vector with medium copy number.
Collapse
Affiliation(s)
- Debbie Soefie Retnoningrum
- Laboratory of Pharmaceutical Biotechnology, School of Pharmacy, Institut Teknologi Bandung, Bandung, 40132, Indonesia.
| | - I Wayan Martadi Santika
- Laboratory of Pharmaceutical Biotechnology, School of Pharmacy, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Suryanata Kesuma
- Laboratory of Pharmaceutical Biotechnology, School of Pharmacy, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Syahdu Ayu Ekowati
- Laboratory of Pharmaceutical Biotechnology, School of Pharmacy, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Catur Riani
- Laboratory of Pharmaceutical Biotechnology, School of Pharmacy, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| |
Collapse
|
4
|
Morishige Y, Koike A, Tamura-Ueyama A, Amano F. Induction of Viable but Nonculturable Salmonella in Exponentially Grown Cells by Exposure to a Low-Humidity Environment and Their Resuscitation by Catalase. J Food Prot 2017; 80:288-294. [PMID: 28221986 DOI: 10.4315/0362-028x.jfp-16-183] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Salmonella is a major cause of foodborne disease that sometimes occurs in massive outbreaks around the world. This pathogen is tolerant of low-humidity conditions. We previously described a method for induction of viable but nonculturable (VBNC) Salmonella enterica serovar Enteritidis by treatment with hydrogen peroxide (H2O2) and subsequent resuscitation with 0.3 mM sodium pyruvate. Here, we report a new method for the induction of the VBNC state in Salmonella Enteritidis cells, one involving dehydration. Exposure of Salmonella Enteritidis cells to dehydration stress under poor nutritional conditions (0.9% [wt/vol] NaCl) and 10 to 20% relative humidity at room temperature decreased the presence of culturable population to 0.0067%, but respiratory and glucose uptake active populations were maintained at 0.46 and 1.12%, respectively, meaning that approximately 1% may have entered the VBNC state. Furthermore, these VBNC cells could be resuscitated to acquire culturability by incubation with catalase in M9 minimal medium without glucose in a manner dependent on the dose of catalase but not sodium pyruvate. These results suggest that a low-humidity environment could cause Salmonella Enteritidis cells to enter the VBNC state and the cells could then be resuscitated for growth by treatment with catalase, suggesting a potential risk of Salmonella Enteritidis to survive in low water activity foods in the VBNC state and to start regrowth for foodborne illness.
Collapse
Affiliation(s)
- Yuta Morishige
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Atsushi Koike
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Ai Tamura-Ueyama
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Fumio Amano
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
5
|
The response of foodborne pathogens to osmotic and desiccation stresses in the food chain. Int J Food Microbiol 2016; 221:37-53. [PMID: 26803272 DOI: 10.1016/j.ijfoodmicro.2015.12.014] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/22/2015] [Accepted: 12/30/2015] [Indexed: 12/24/2022]
Abstract
In combination with other strategies, hyperosmolarity and desiccation are frequently used by the food processing industry as a means to prevent bacterial proliferation, and particularly that of foodborne pathogens, in food products. However, it is increasingly observed that bacteria, including human pathogens, encode mechanisms to survive and withstand these stresses. This review provides an overview of the mechanisms employed by Salmonella spp., Shiga toxin producing E. coli, Cronobacter spp., Listeria monocytogenes and Campylobacter spp. to tolerate osmotic and desiccation stresses and identifies gaps in knowledge which need to be addressed to ensure the safety of low water activity and desiccated food products.
Collapse
|
6
|
Song S, Lee B, Yeom JH, Hwang S, Kang I, Cho JC, Ha NC, Bae J, Lee K, Kim YH. MdsABC-Mediated Pathway for Pathogenicity in Salmonella enterica Serovar Typhimurium. Infect Immun 2015; 83:4266-76. [PMID: 26283336 PMCID: PMC4598412 DOI: 10.1128/iai.00653-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/11/2015] [Indexed: 12/20/2022] Open
Abstract
MdsABC is a Salmonella-specific tripartite efflux pump that has been implicated in the virulence of Salmonella enterica serovar Typhimurium; however, little is known about the virulence factors associated with this pump. We observed MdsABC expression-dependent alterations in the degree of resistance to extracellular oxidative stress and macrophage-mediated killing. Thin-layer chromatography and tandem mass spectrometry analyses revealed that overexpression of MdsABC led to increased secretion of 1-palmitoyl-2-stearoyl-phosphatidylserine (PSPS), affecting the ability of the bacteria to invade and survive in host cells. Overexpression of MdsABC and external addition of PSPS similarly rendered the mdsABC deletion strain resistant to diamide. Diagonal gel analysis showed that PSPS treatment reduced the diamide-mediated formation of disulfide bonds, particularly in the membrane fraction of the bacteria. Salmonella infection of macrophages induced the upregulation of MdsABC expression and led to an increase of intracellular bacterial number and host cell death, similar to the effects of MdsABC overexpression and PSPS pretreatment on the mdsABC deletion strain. Our study shows that MdsABC mediates a previously uncharacterized pathway that involves PSPS as a key factor for the survival and virulence of S. Typhimurium in phagocytic cells.
Collapse
Affiliation(s)
- Saemee Song
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Boeun Lee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ji-Hyun Yeom
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Soonhye Hwang
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ilnam Kang
- Department of Biological Sciences, Inha University, Incheon, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon, Republic of Korea
| | - Nam-Chul Ha
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jeehyeon Bae
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Yong-Hak Kim
- Department of Microbiology, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
7
|
Morishige Y, Tanda M, Fujimori K, Mino Y, Amano F. Induction of Viable but Non-culturable (VBNC) State in Salmonella Cultured in M9 Minimal Medium Containing High Glucose. Biol Pharm Bull 2014; 37:1617-25. [DOI: 10.1248/bpb.b14-00322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuta Morishige
- Laboratory of Biodefense & Regulation, Osaka University of Pharmaceutical Sciences
| | - Masaaki Tanda
- Laboratory of Biodefense & Regulation, Osaka University of Pharmaceutical Sciences
| | - Ko Fujimori
- Laboratory of Biodefense & Regulation, Osaka University of Pharmaceutical Sciences
| | - Yoshiki Mino
- Laboratory of Analytical Pharmacology, Osaka University of Pharmaceutical Sciences
| | - Fumio Amano
- Laboratory of Biodefense & Regulation, Osaka University of Pharmaceutical Sciences
| |
Collapse
|