1
|
Oliveira ISD, Pucca MB, Ferreira IG, Cerni FA, Jacob BDCDS, Wiezel GA, Pinheiro-Júnior EL, Cordeiro FA, Bordon KDCF, Arantes EC. State-of-the-art review of snake venom phosphodiesterases (svPDEs). Toxicon 2022; 217:121-130. [PMID: 35998712 DOI: 10.1016/j.toxicon.2022.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 10/15/2022]
Abstract
Phosphodiesterases (PDEs) constitute an enzyme group able to hydrolyze nucleic acids as well as some second messengers. Due to this ability and their expression in several human tissues and organs, PDEs can control a gamut of physiological processes. They are also involved in some pathological conditions, such as Alzheimer's disease and erectile dysfunction. PDEs are also expressed in snake venom glands, being called snake venoms phosphodiesterases, or simply svPDEs. The occurrence of these enzymes has already been reported in crotalid, elapid and viperid venoms, such as Crotalus, Naja and Trimeresurus, respectively, but not all of them have been characterized concerning their structure, activity and function. In this review, we are addressing general characteristics of svPDEs, in addition to their structural, biochemical and functional characteristics, and we also report some potential applications of svPDEs.
Collapse
Affiliation(s)
- Isadora Sousa de Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Manuela Berto Pucca
- Medical School, Federal University of Roraima, Boa Vista, RR, Brazil; Health Sciences Postgraduate Program, Federal University of Roraima, Boa Vista, RR, Brazil
| | - Isabela Gobbo Ferreira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe Augusto Cerni
- Health Sciences Postgraduate Program, Federal University of Roraima, Boa Vista, RR, Brazil
| | - Beatriz de Cássia da Silva Jacob
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gisele Adriano Wiezel
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ernesto Lopes Pinheiro-Júnior
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Francielle Almeida Cordeiro
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Karla de Castro Figueiredo Bordon
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Eliane Candiani Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
2
|
Hirabayashi Y, Maki K, Kinoshita K, Nakazawa T, Obika S, Naota M, Watanabe K, Suzuki M, Arato T, Fujisaka A, Fueki O, Ito K, Onodera H. Considerations of the Japanese Research Working Group for the ICH S6 & Related Issues Regarding Nonclinical Safety Assessments of Oligonucleotide Therapeutics: Comparison with Those of Biopharmaceuticals. Nucleic Acid Ther 2021; 31:114-125. [PMID: 33470890 PMCID: PMC7997717 DOI: 10.1089/nat.2020.0879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/11/2020] [Indexed: 11/13/2022] Open
Abstract
This white paper summarizes the current consensus of the Japanese Research Working Group for the ICH S6 & Related Issues (WGS6) on strategies for the nonclinical safety assessment of oligonucleotide-based therapeutics (ONTs), specifically focused on the similarities and differences to biotechnology-derived pharmaceuticals (biopharmaceuticals). ONTs, like biopharmaceuticals, have high species and target specificities. However, ONTs have characteristic off-target effects that clearly differ from those of biopharmaceuticals. The product characteristics of ONTs necessitate specific considerations when planning nonclinical studies. Some ONTs have been approved for human use and many are currently undergoing nonclinical and/or clinical development. However, as ONTs are a rapidly evolving class of drugs, there is still much to learn to achieve optimal strategies for the development of ONTs. There are no formal specific guidelines, so safety assessments of ONTs are principally conducted by referring to published white papers and conventional guidelines for biopharmaceuticals and new chemical entities, and each ONT is assessed on a case-by-case basis. The WGS6 expects that this report will be useful in considering nonclinical safety assessments and developing appropriate guidelines specific for ONTs.
Collapse
Affiliation(s)
| | - Kazushige Maki
- Pharmaceuticals and Medical Devices Agency (PMDA), Chiyoda-ku, Japan
| | - Kiyoshi Kinoshita
- The Japan Pharmaceutical Manufacturers Association (JPMA), Chuo-ku, Japan
| | | | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Misaki Naota
- Pharmaceuticals and Medical Devices Agency (PMDA), Chiyoda-ku, Japan
| | - Kazuto Watanabe
- The Japan Pharmaceutical Manufacturers Association (JPMA), Chuo-ku, Japan
| | - Mutsumi Suzuki
- The Japan Pharmaceutical Manufacturers Association (JPMA), Chuo-ku, Japan
| | - Teruyo Arato
- Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | - Aki Fujisaka
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
- Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Osamu Fueki
- Pharmaceuticals and Medical Devices Agency (PMDA), Chiyoda-ku, Japan
| | - Kosuke Ito
- Pharmaceuticals and Medical Devices Agency (PMDA), Chiyoda-ku, Japan
| | | |
Collapse
|
3
|
Wang M, Wu H, Duan M, Yang Y, Wang G, Che F, Liu B, He W, Li Q, Zhang L. SS30, a novel thioaptamer targeting CD123, inhibits the growth of acute myeloid leukemia cells. Life Sci 2019; 232:116663. [PMID: 31323275 DOI: 10.1016/j.lfs.2019.116663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 01/08/2023]
Abstract
AIMS CD123 represents an important acute myeloid leukemia (AML) therapeutic target. CD123 aptamers may potentially serve as tumor-homing ligands with excellent affinity and specificity for AML targeted therapy, but their complexity, laborious preparation and nuclease digestion limited pharmacological application. The aim of this study was to develop the first CD123 thioaptamer to overcome these obstacles. MAIN METHODS Flow cytometry was utilized to assess the binding specificity, affinity and anti-nuclease ability of thioaptamer. CCK8, Annexin-V/DAPI, and colony forming assays were used to evaluate the anti-cancer ability of thioaptamer in vitro. The tumor volume, weights, survival rate, H&E staining of organs, and serum level of organ damage biomarkers of animal model were applied to investigate the anti-cancer ability of thioaptamer in vivo. Furthermore, we explored the binding mechanism between thioaptamer and CD123. KEY FINDINGS CD123 thioaptamer SS30 was able to bind to CD123 structure with high specificity in complex nuclease environment, the dissociation constant of 39.1 nM for CD123 peptide and 287.6 nM for CD123+ AML cells, while exhibiting minimal cross-reactivity to albumin. Furthermore, SS30 inhibited the proliferation and survival of AML cell lines and human AML blasts selectively in vitro (P < 0.01). In addition, SS30 prolonged the survival and inhibited tumor growth in a mouse xenograft tumor model in vivo. Of note, SS30 blocked the interaction between IL-3 and CD123, and decreased expression of p-STAT5 and p-AKT. SIGNIFICANCE The proliferation inhibition and nuclease resistance ability of SS30 made it as a more promising functional molecule for AML targeted therapy.
Collapse
Affiliation(s)
- Meng Wang
- Department of Orthopaedics, No. 946 Hospital of the PLA, YiNing, XinJiang 0086-835000, PR China
| | - Haibin Wu
- Shaanxi Institute of Pediatric Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi 0086-710003, PR China
| | - Mingyue Duan
- Shaanxi Institute of Pediatric Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi 0086-710003, PR China
| | - Ying Yang
- Shaanxi Institute of Pediatric Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi 0086-710003, PR China
| | - Guoxia Wang
- Shaanxi Institute of Pediatric Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi 0086-710003, PR China
| | - Fengyu Che
- Shaanxi Institute of Pediatric Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi 0086-710003, PR China
| | - Bailing Liu
- Department of Ultrasonography, Xi'an Children's Hospital, PR China
| | - Wei He
- Shaanxi Institute of Pediatric Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi 0086-710003, PR China
| | - Qiao Li
- Clinical Laboratory, Xi'an Children's Hospital, Xi'an, Shaanxi 0086-710003, PR China.
| | - Liyu Zhang
- Shaanxi Institute of Pediatric Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi 0086-710003, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 0086-710061, PR China.
| |
Collapse
|
4
|
Molecular Selection, Modification and Development of Therapeutic Oligonucleotide Aptamers. Int J Mol Sci 2016; 17:358. [PMID: 26978355 PMCID: PMC4813219 DOI: 10.3390/ijms17030358] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/01/2016] [Accepted: 02/29/2016] [Indexed: 12/16/2022] Open
Abstract
Monoclonal antibodies are the dominant agents used in inhibition of biological target molecules for disease therapeutics, but there are concerns of immunogenicity, production, cost and stability. Oligonucleotide aptamers have comparable affinity and specificity to targets with monoclonal antibodies whilst they have minimal immunogenicity, high production, low cost and high stability, thus are promising inhibitors to rival antibodies for disease therapy. In this review, we will compare the detailed advantages and disadvantages of antibodies and aptamers in therapeutic applications and summarize recent progress in aptamer selection and modification approaches. We will present therapeutic oligonucleotide aptamers in preclinical studies for skeletal diseases and further discuss oligonucleotide aptamers in different stages of clinical evaluation for various disease therapies including macular degeneration, cancer, inflammation and coagulation to highlight the bright commercial future and potential challenges of therapeutic oligonucleotide aptamers.
Collapse
|
5
|
Kolesnikov AV, Kozyr’ AV, Shemyakin IG. The prospects for using aptamers in diagnosing bacterial infections. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2012. [DOI: 10.3103/s0891416812020048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Selecting Molecular Recognition. What Can Existing Aptamers Tell Us about Their Inherent Recognition Capabilities and Modes of Interaction? Pharmaceuticals (Basel) 2012; 5:493-513. [PMID: 24281560 PMCID: PMC3763653 DOI: 10.3390/ph5050493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/19/2012] [Accepted: 05/10/2012] [Indexed: 01/02/2023] Open
Abstract
The use of nucleic acid derived aptamers has rapidly expanded since the introduction of SELEX in 1990. Nucleic acid aptamers have demonstrated their ability to target a broad range of molecules in ways that rival antibodies, but advances have been very uneven for different biochemical classes of targets, and clinical applications have been slow to emerge. What sets different aptamers apart from each other and from rivaling molecular recognition platforms, specifically proteins? What advantages do aptamers as a reagent class offer, and how do the chemical properties and selection procedures of aptamers influence their function? Do the building blocks of nucleic acid aptamers dictate inherent limitations in the nature of molecular targets, and do existing aptamers give us insight in how these challenges might be overcome? This review is written as an introduction for potential endusers of aptamer technology who are evaluating the advantages of aptamers as a versatile, affordable, yet highly expandable platform to target a broad range of biological processes or interactions.
Collapse
|
7
|
Zheng X, Ji P, Hu J. Sonoporation using microbubbles promotes lipofectamine-mediated siRNA transduction to rat retina. Bosn J Basic Med Sci 2012; 11:147-52. [PMID: 21875415 DOI: 10.17305/bjbms.2011.2565] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ultrasound-targeted microbubble destruction(UTMD) has been utilized to deliver naked siRNA into cells in in vitro settings. But whether UTMD can safely deliver naked siRNA into in vivo cells have remained unknown. This work was performed to investigate the feasibility of UTMD-enhanced naked siRNA transduction (or combined with Lipofectamine 2000) in vivo retinal cells and compare the performance between UTMD and ultrasonic irradiation alone in this enhancing effect. A dose of Cy3-labeled siRNA was injected into the vitreous cavity of rat eyes under the different conditions of Lipofectamine 2000 or/and UTMD. Transduction efficiency was assessed by fluorescence microscopy and flow cytometry. Cell and tissue damage was assessed by trypan blue exclusion test and hematoxylineosin staining, respectively. The quantity and the density of transducted cells in the group received Lipofectamine 2000 and UTMD was far more than that in other groups. The number of transducted cells in the group received Lipofectamine 2000 and ultrasonic irradiation alone was slightly more than that in the group received Lipofectamine 2000. Cy3-siRNA-positive cells can also seen in the group received UTMD alone, although the transduction efficiency is extremely low. Cell viability in each group was more than 90%, and retinal architecture in each group was well preserved. These results indicated that UTMD, with a significantly higher performance than ultrasonic irradiation alone, can effectively enhance the Lipofectamine 2000-mediated naked siRNA transduction in vivo reinal cells without any cell or tissue damage. This method can serve as a novel approach to treat the diseases of eye ground.
Collapse
Affiliation(s)
- Xiaozhi Zheng
- Department of Ultrasound, The Fourth Affiliated Hospital of Nantong University (The First People's Hospital of Yancheng), Jiangsu Province, China
| | | | | |
Collapse
|
8
|
Yuan Y, Fueangfung S, Lin X, Pokharel D, Fang S. Synthetic 5′-phosphorylated oligodeoxynucleotide purification through catching full-length sequences by polymerization. RSC Adv 2012. [DOI: 10.1039/c2ra01357f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|