1
|
Hu H, Qi M, He P, Chen X, Li Z, Cheng H. Occurrence and risk assessment of quinolones and sulfonamides in freshwater aquaculture ponds in Northeast Zhejiang, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176066. [PMID: 39250971 DOI: 10.1016/j.scitotenv.2024.176066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/25/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Antibiotics play an essential role in the aquaculture industry, but their overuse and weak degradability inevitably lead to light to severe residues in natural and aquaculture environments. Most studies were interested in the occurrence, distribution, and ecological risks of a limited number of antibiotics in natural environments (rivers, lakes, and coastal regions) with a minor focus on antibiotic presence in either water, sediments, or organisms in aquaculture environments located in specific regions. In this study, we conducted a comprehensive investigation into the occurrence and distribution of up to 32 antibiotics [including 15 quinolones (QNs) and 17 sulfonamides (SAs)] in organisms and their corresponding environmental matrices from 26 freshwater aquaculture ponds in Northeast Zhejiang, China. A total of 13, 9, 7, and 7 antibiotics were detected in pond water, sediments, feeds, and aquaculture organisms, respectively, with concentration ranges of 0.6-92.2 ng/L, 0.4-1169.3 ng/g dw,
Collapse
Affiliation(s)
- Hongmei Hu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, PR China
| | - Mengyu Qi
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, PR China
| | - Pengfei He
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, PR China
| | - Xuechang Chen
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, PR China
| | - Zhenhua Li
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, PR China.
| | - Heyong Cheng
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
2
|
Yamaguchi T, Yokota M, Jinnai M, Minh DTN, Hoang ON, Le Thi H, Thanh PN, Hoang Hoai P, Nguyen Do P, Van CD, Motooka D, Nakamura S, Kawahara R, Kumeda Y, Hase A, Nakayama T. Detection of chromosome-mediated bla NDM-1-carrying Aeromonas spp. in the intestinal contents of fresh water river fish in Ho Chi Minh City, Vietnam. MARINE POLLUTION BULLETIN 2024; 198:115812. [PMID: 38043208 DOI: 10.1016/j.marpolbul.2023.115812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023]
Abstract
The spread of antibiotic-resistant bacteria is a global problem that should be addressed through the perspective of the "one health" concept. The purpose of this study was to determine the contamination rate of antibiotic-resistant Aeromonas spp. in fresh water river fish purchased from a fish market in Vietnam. We then defined the pattern of antibiotic resistance to assess antibiotic-resistant contamination. Antibiotic-resistant Aeromonas spp. were detected in the intestinal contents of 32 of 80 fish. blaNDM-1 was detected in seven strains. Extended-spectrum β-lactamase and AmpC β-lactamase-related genes were detected in 28 strains, including blaCTX-M-55, blaCTX-M-15, blaCTX-M-1, and blaDHA,blaFOX, and blaMOX. The blaNDM-1 detected in the seven Aeromonas spp. strains were found chromosomally. This finding suggests that the blaNDM gene is stable in the natural environment and may spread widely into animals and humans via Aeromonas spp. with a transposon. Our results suggest the importance of continuing to monitor carbapenemase genes in Aeromonas spp. to evaluate the possibility that they may spread in other Enterobacterales, and to elucidate the mechanism of spread.
Collapse
Affiliation(s)
| | - Masaharu Yokota
- Division of Microbiology Osaka Institute of Public Health, Osaka, Japan
| | - Michio Jinnai
- Kanagawa Prefectural Institute of Public Health, Kanagawa, Japan
| | | | | | - Hien Le Thi
- Institute of Public Health, Ho Chi Minh City, Viet Nam
| | | | | | | | | | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shota Nakamura
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Ryuji Kawahara
- Division of Microbiology Osaka Institute of Public Health, Osaka, Japan
| | | | | | - Tatsuya Nakayama
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
3
|
Zhou J, Chen T, Cui J, Chen Y, Zhao S, Qu JH, Wang Z, Pan J, Fan L. Responses of the microbial community and the production of extracellular polymeric substances to sulfamethazine shocks in a novel two-stage biological contact oxidation system. Front Microbiol 2023; 14:1240435. [PMID: 37711695 PMCID: PMC10499511 DOI: 10.3389/fmicb.2023.1240435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/01/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction The biological contact oxidation reactor is an effective technology for the treatment of antibiotic wastewater, but there has been little research investigating its performance on the sulfamethazine wastewater treatment. Methods In this study, a novel two-stage biological contact oxidation reactor was used for the first time to explore the impact of sulfamethazine (SMZ) on the performance, microbial community, extracellular polymeric substances (EPS), and antibiotic-resistant genes (ARGs). Results The chemical oxygen demand (COD) and ammonia nitrogen (NH 4 + -N) removal efficiencies kept stable at 86.93% and 83.97% with 0.1-1 mg/L SMZ addition and were inhibited at 3 mg/L SMZ. The presence of SMZ could affect the production and chemical composition of EPS in the biofilm, especially for the pronounced increase in TB-PN yield in response against the threat of SMZ. Metagenomics sequencing demonstrated that SMZ could impact on the microbial community, a high abundance of Candidatus_Promineofilum, unclassified_c__Anaerolineae, and unclassified_c__Betaproteobacteria were positively correlated to SMZ, especially for Candidatus_Promineofilum. Discussion Candidatus_Promineofilum not only had the ability of EPS secretion, but also was significantly associated with the primary SMZ resistance genes of sul1 and sul2, which developed resistance against SMZ pressure through the mechanism of targeted gene changes, further provided a useful and easy-implement technology for sulfamethazine wastewater treatment.
Collapse
Affiliation(s)
- Jia Zhou
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Tian Chen
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Jing Cui
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Yan Chen
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Shuai Zhao
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Jian-Hang Qu
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Zitong Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Jingshi Pan
- College of International Education, Henan University of Technology, Zhengzhou, Henan, China
| | - Lixin Fan
- College of International Education, Henan University of Technology, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Li B, Wang Y, Zhao H, Yin K, Liu Y, Wang D, Zong H, Xing M. Oxidative stress is involved in the activation of NF-κB signal pathway and immune inflammatory response in grass carp gill induced by cypermethrin and/or sulfamethoxazole. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19594-19607. [PMID: 34718981 DOI: 10.1007/s11356-021-17197-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
At present, the concentration of environmental pollutants, such as pesticides and antibiotics exposed in environment, especially in aquatic environment is increasing. Research on environmental pollutants has exploded in the last few years. However, studies on the combined effects of pesticides and antibiotics on fish are rare, especially the toxic damage to gill tissue is vague. In this paper, cypermethrin (CMN) and sulfamethoxazole (SMZ) were analyzed and found that there was a strong correlation between the pathways affected by the first 30 genes regulated by CMN and SMZ, respectively. Therefore, the toxic effects of CMN (0.651 μg L-1) and/or SMZ (0.3 μg L-1) on grass carp gill were studied in this paper. Histopathology, quantitative real-time PCR, and other methods were used to detect the tissue morphology, oxidative stress level, inflammation, and apoptosis-related indicators of the fish gills after exposure of 42 days. It was found that compared with the single exposure (CMN/SMZ) group, the combined exposure (MIX) group had a more pronounced oxidative stress index imbalance. At the same time, nuclear factor-κB (NF-κB) signal pathway was activated and immuno-inflammatory reaction appeared in MIX group. The expression of tumor necrosis factor (TNF-α) in the rising range is 2.94 times that of the C group, while the expression of interleukin 8 (IL-8) is as high as 32.67 times. This study reveals the harm of CMN and SMZ to fish, and provides a reference and basis for the rational use of pesticides and antibiotics.
Collapse
Affiliation(s)
- Baoying Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Kai Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Dongxu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Hui Zong
- Guangdong Polytechnic of Science and Trade, Guangzhou, 510000, People's Republic of China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
5
|
Mitchell J, Purohit M, Jewell CP, Read JM, Marrone G, Diwan V, Stålsby Lundborg C. Trends, relationships and case attribution of antibiotic resistance between children and environmental sources in rural India. Sci Rep 2021; 11:22599. [PMID: 34799577 PMCID: PMC8604955 DOI: 10.1038/s41598-021-01174-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/21/2021] [Indexed: 12/29/2022] Open
Abstract
Bacterial antibiotic resistance is an important global health threat and the interfaces of antibiotic resistance between humans, animals and the environment are complex. We aimed to determine the associations and overtime trends of antibiotic resistance between humans, animals and water sources from the same area and time and estimate attribution of the other sources to cases of human antibiotic resistance. A total of 125 children (aged 1-3 years old) had stool samples analysed for antibiotic-resistant bacteria at seven time points over two years, with simultaneous collection of samples of animal stools and water sources in a rural Indian community. Newey-West regression models were used to calculate temporal associations, the source with the most statistically significant relationships was household drinking water. This is supported by use of SourceR attribution modelling, that estimated the mean attribution of cases of antibiotic resistance in the children from animals, household drinking water and wastewater, at each time point and location, to be 12.6% (95% CI 4.4-20.9%), 12.1% (CI 3.4-20.7%) and 10.3% (CI 3.2-17.3%) respectively. This underlines the importance of the 'one health' concept and requires further research. Also, most of the significant trends over time were negative, suggesting a possible generalised improvement locally.
Collapse
Affiliation(s)
- Joseph Mitchell
- Department of Global Public Health, Health Systems and Policy (HSP): Improving Use of Medicines, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Manju Purohit
- Department of Global Public Health, Health Systems and Policy (HSP): Improving Use of Medicines, Karolinska Institutet, 171 77, Stockholm, Sweden.
- Department of Pathology, R.D. Gardi Medical College, Ujjain, 456006, India.
| | - Chris P Jewell
- Faculty of Health and Medicine, Lancaster Medical School, Lancaster University, Lancaster, England, UK
| | - Jonathan M Read
- Faculty of Health and Medicine, Lancaster Medical School, Lancaster University, Lancaster, England, UK
| | - Gaetano Marrone
- Department of Global Public Health, Health Systems and Policy (HSP): Improving Use of Medicines, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Vishal Diwan
- Department of Global Public Health, Health Systems and Policy (HSP): Improving Use of Medicines, Karolinska Institutet, 171 77, Stockholm, Sweden
- Division of Environmental Monitoring and Exposure Assessment (Water and Soil), ICMR - National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Cecilia Stålsby Lundborg
- Department of Global Public Health, Health Systems and Policy (HSP): Improving Use of Medicines, Karolinska Institutet, 171 77, Stockholm, Sweden
| |
Collapse
|