1
|
Romanchuk O. Cardiorespiratory dynamics during respiratory maneuver in athletes. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3. [DOI: https:/doi.org/10.3389/fnetp.2023.1276899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Introduction: The modern practice of sports medicine and medical rehabilitation requires the search for subtle criteria for the development of conditions and recovery of the body after diseases, which would have a prognostic value for the prevention of negative effects of training and rehabilitation tools, and also testify to the development and course of mechanisms for counteracting pathogenetic processes in the body. The purpose of this study was to determine the informative directions of the cardiorespiratory system parameters dynamics during the performing a maneuver with a change in breathing rate, which may indicate the body functional state violation.Methods: The results of the study of 183 healthy men aged 21.2 ± 2.3 years who regularly engaged in various sports were analyzed. The procedure for studying the cardiorespiratory system included conducting combined measurements of indicators of activity of the respiratory and cardiovascular systems in a sitting position using a spiroarteriocardiograph device. The duration of the study was 6 min and involved the sequential registration of three measurements with a change in breathing rate (spontaneous breathing, breathing at 0.1 Hz and 0.25 Hz).Results: Performing a breathing maneuver at breathing 0.1 Hz and breathing 0.25 Hz in comparison with spontaneous breathing leads to multidirectional significant changes in heart rate variability indicators–TP (ms2), LF (ms2), LFHF (ms2/ms2); of blood pressure variability indicators–TPDBP (mmHg2), LFSBP (mmHg2), LFDBP (mmHg2), HFSBP (mmHg2); of volume respiration variability indicators - LFR, (L×min-1)2; HFR, (L×min-1)2; LFHFR, (L×min-1)2/(L×min-1)2; of arterial baroreflex sensitivity indicators - BRLF (ms×mmHg-1), BRHF (ms×mmHg-1). Differences in indicators of systemic hemodynamics and indicators of cardiovascular and respiratory systems synchronization were also informative.Conclusion: According to the results of the study, it is shown that during performing a breathing maneuver with a change in the rate of breathing, there are significant changes in cardiorespiratory parameters, the analysis of which the increments made it possible to determine of the changes directions dynamics, their absolute values and informative limits regarding the possible occurrence of the cardiorespiratory interactions dysregulation.
Collapse
|
2
|
Romanchuk O. Cardiorespiratory dynamics during respiratory maneuver in athletes. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1276899. [PMID: 38020241 PMCID: PMC10643240 DOI: 10.3389/fnetp.2023.1276899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Introduction: The modern practice of sports medicine and medical rehabilitation requires the search for subtle criteria for the development of conditions and recovery of the body after diseases, which would have a prognostic value for the prevention of negative effects of training and rehabilitation tools, and also testify to the development and course of mechanisms for counteracting pathogenetic processes in the body. The purpose of this study was to determine the informative directions of the cardiorespiratory system parameters dynamics during the performing a maneuver with a change in breathing rate, which may indicate the body functional state violation. Methods: The results of the study of 183 healthy men aged 21.2 ± 2.3 years who regularly engaged in various sports were analyzed. The procedure for studying the cardiorespiratory system included conducting combined measurements of indicators of activity of the respiratory and cardiovascular systems in a sitting position using a spiroarteriocardiograph device. The duration of the study was 6 min and involved the sequential registration of three measurements with a change in breathing rate (spontaneous breathing, breathing at 0.1 Hz and 0.25 Hz). Results: Performing a breathing maneuver at breathing 0.1 Hz and breathing 0.25 Hz in comparison with spontaneous breathing leads to multidirectional significant changes in heart rate variability indicators-TP (ms2), LF (ms2), LFHF (ms2/ms2); of blood pressure variability indicators-TPDBP (mmHg2), LFSBP (mmHg2), LFDBP (mmHg2), HFSBP (mmHg2); of volume respiration variability indicators - LFR, (L×min-1)2; HFR, (L×min-1)2; LFHFR, (L×min-1)2/(L×min-1)2; of arterial baroreflex sensitivity indicators - BRLF (ms×mmHg-1), BRHF (ms×mmHg-1). Differences in indicators of systemic hemodynamics and indicators of cardiovascular and respiratory systems synchronization were also informative. Conclusion: According to the results of the study, it is shown that during performing a breathing maneuver with a change in the rate of breathing, there are significant changes in cardiorespiratory parameters, the analysis of which the increments made it possible to determine of the changes directions dynamics, their absolute values and informative limits regarding the possible occurrence of the cardiorespiratory interactions dysregulation.
Collapse
Affiliation(s)
- Oleksandr Romanchuk
- Department of Medical Rehabilitation, Ukrainian Research Institute of Medical Rehabilitation and Resort Therapy of the Ministry of Health of Ukraine, Odesa, Ukraine
| |
Collapse
|
3
|
Augmented Hemodynamic Responses in Obese Young Men during Dynamic Exercise: Role of the Muscle Metaboreflex. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17197321. [PMID: 33036416 PMCID: PMC7579031 DOI: 10.3390/ijerph17197321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 02/03/2023]
Abstract
Studies found that cardiovascular responses to exercise are enhanced in individuals with obesity and are associated with a greater cardiac output (CO) response compared to normal weight controls. However, the mechanisms underlying these altered responses during dynamic exercise are not clear. We investigated whether the cardiovascular responses mediated by the muscle metaboreflex (MMR) activation are augmented in obese men during both static and dynamic exercise. Twenty males (10 obese (OG) and 10 non-obese (NOG)) were studied. Changes in CO, mean arterial pressure (MAP), and total vascular conductance (TVC) were compared between the two groups during dynamic handgrip exercise (DHE), post-exercise muscular ischemia (PEMI), and dynamic exercise corresponding to 40%, 60% and 80% workloads. Subjects completed 2 min of DHE at 30% of MVC, followed by 2 min of PEMI. MAP, CO, and TVC responses to DHE and dynamic exercise were significantly higher in OG, whereas there were no differences during PEMI. Increases in CO and MAP during mild to heavy dynamic exercise were seen in both groups, but the changes in these variables were greater in the OG. There were no significant differences in TVC between the two groups. Compared to NOG, the augmented blood pressure response to DHE and dynamic exercise in OG was associated with a greater increase in CO. Thus, the augmented CO and MAP responses were not associated with the activation of the MMR. Consequently, additional factors specific to obesity, such as the mechanoreflex, may have been involved.
Collapse
|
4
|
Kim JK, Kim KA, Choi HM, Park SK, Stebbins CL. Grape Seed Extract Supplementation Attenuates the Blood Pressure Response to Exercise in Prehypertensive Men. J Med Food 2018; 21:445-453. [DOI: 10.1089/jmf.2017.0133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Jong-Kyung Kim
- Graduate School of Physical Education, Kyung Hee University, Yongin, Korea
| | - Kyung-Ae Kim
- Graduate School of Physical Education, Kyung Hee University, Yongin, Korea
| | - Hyun-Min Choi
- Graduate School of Physical Education, Kyung Hee University, Yongin, Korea
| | - Seung-Kook Park
- College of Life Science, Kyung Hee University, Yongin, Korea
| | - Charles L. Stebbins
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California at Davis, Davis, California, USA
| |
Collapse
|
5
|
Nguyen LS, Squara P. Non-Invasive Monitoring of Cardiac Output in Critical Care Medicine. Front Med (Lausanne) 2017; 4:200. [PMID: 29230392 PMCID: PMC5715400 DOI: 10.3389/fmed.2017.00200] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022] Open
Abstract
Critically ill patients require close hemodynamic monitoring to titrate treatment on a regular basis. It allows administering fluid with parsimony and adjusting inotropes and vasoactive drugs when necessary. Although invasive monitoring is considered as the reference method, non-invasive monitoring presents the obvious advantage of being associated with fewer complications, at the expanse of accuracy, precision, and step-response change. A great many methods and devices are now used over the world, and this article focuses on several of them, providing with a brief review of related underlying physical principles and validation articles analysis. Reviewed methods include electrical bioimpedance and bioreactance, respiratory-derived cardiac output (CO) monitoring technique, pulse wave transit time, ultrasound CO monitoring, multimodal algorithmic estimation, and inductance thoracocardiography. Quality criteria with which devices were reviewed included: accuracy (closeness of agreement between a measurement value and a true value of the measured), precision (closeness of agreement between replicate measurements on the same or similar objects under specified conditions), and step response change (delay between physiological change and its indication). Our conclusion is that the offer of non-invasive monitoring has improved in the past few years, even though further developments are needed to provide clinicians with sufficiently accurate devices for routine use, as alternative to invasive monitoring devices.
Collapse
Affiliation(s)
- Lee S Nguyen
- Critical Care Medicine Department, CMC Ambroise Paré, Neuilly-sur-Seine, France
| | - Pierre Squara
- Critical Care Medicine Department, CMC Ambroise Paré, Neuilly-sur-Seine, France
| |
Collapse
|
6
|
Doh HW, Stebbins CL, Choi HM, Park J, Nho H, Kim JK. Histamine H2 receptor blockade augments blood pressure responses to acute submaximal exercise in males. Appl Physiol Nutr Metab 2016; 41:605-10. [PMID: 27191340 DOI: 10.1139/apnm-2015-0450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Histamine is a potent vasodilator that has been found to increase during exercise. We tested the hypothesis that histamine would attenuate blood pressure (BP), cardiac output (CO), and vascular resistance responses to short-term, submaximal dynamic exercise during H2 receptor blockade. Fourteen healthy men (20-29 years of age) were studied. Systolic (SBP), diastolic (DBP), and mean arterial (MAP) BP and heart rate (HR) were assessed at rest and during the last minute of 10 min of submaximal cycling exercise (60% of peak oxygen consumption) in the absence and presence of histamine H2 receptor blockade (ranitidine, 300 mg). Stroke volume (SV) (impedance cardiography) and plasma norepinephrine (NE) were measured, and CO, rate × pressure product (RPP), and total peripheral resistance (TPR) were calculated. Plasma levels of histamine were also measured. H2 blockade had no effects on any variables at rest. During exercise, SBP (184 ± 3 mm Hg vs. 166 ± 2 mm Hg), MAP (121 ± 2 mm Hg vs. 112 ± 5 mm Hg), and RPP (25.9 ± 0.8 × 10(3) mm Hg·beats/min vs. 23.5 ± 0.8 × 10(3) mm Hg/beats·min) were greater during blocked conditions (P < 0.05), and an interaction was observed for TPR. SV, DBP, HR, and NE levels were unaffected by blockade. Plasma histamine increased from 1.83 ± 0.14 ng/mL at rest to 2.33 ± 0.23 ng/mL during exercise (P < 0.05) and was not affected by H2 blockade (1.56 ± 0.23 ng/mL vs. 1.70 ± 0.24 ng/mL). These findings suggest that, during submaximal exercise, histamine attenuates BP, vascular resistance, and the work of the heart via activation of H2 receptors and that these effects occurred primarily in the vasculature and not in the myocardium.
Collapse
Affiliation(s)
- Hyung-Woo Doh
- a Graduate School of Physical Education, Kyung Hee University, Yongin, Korea
| | - Charles L Stebbins
- b Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA
| | - Hyun-Min Choi
- a Graduate School of Physical Education, Kyung Hee University, Yongin, Korea
| | - Joonsung Park
- a Graduate School of Physical Education, Kyung Hee University, Yongin, Korea
| | - Hosung Nho
- a Graduate School of Physical Education, Kyung Hee University, Yongin, Korea
| | - Jong-Kyung Kim
- a Graduate School of Physical Education, Kyung Hee University, Yongin, Korea
| |
Collapse
|
7
|
Lee JS, Stebbins CL, Jung E, Nho H, Kim JK, Chang MJ, Choi HM. Effects of chronic dietary nitrate supplementation on the hemodynamic response to dynamic exercise. Am J Physiol Regul Integr Comp Physiol 2015; 309:R459-66. [PMID: 26084693 DOI: 10.1152/ajpregu.00099.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/13/2015] [Indexed: 01/08/2023]
Abstract
While acute treatment with beetroot juice (BRJ) containing nitrate (NO3 (-)) can lower systolic blood pressure (SBP), afterload, and myocardial O2 demand during submaximal exercise, effects of chronic supplementation with BRJ (containing a relatively low dose of NO3 (-), 400 mg) on cardiac output (CO), SBP, total peripheral resistance (TPR), and the work of the heart in response to dynamic exercise are not known. Thus, in 14 healthy males (22 ± 1 yr), we compared effects of 15 days of both BRJ and nitrate-depleted beetroot juice (NDBRJ) supplementation on plasma concentrations of NOx (NO3 (-)/NO2 (-)), SBP, diastolic blood pressure (DBP), mean arterial pressure (MAP), CO, TPR, and rate pressure product (RPP) at rest and during progressive cycling exercise. Endothelial function was also assessed via flow-mediated dilation (FMD). BRJ supplementation increased plasma NOx from 83.8 ± 13.8 to 167.6 ± 13.2 μM. Compared with NDBRJ, BRJ reduced SBP, DBP, MAP, and TPR at rest and during exercise (P < 0.05). In addition, RPP was decreased during exercise, while CO was increased, but only at rest and the 30% workload (P < 0.05). BRJ enhanced FMD-induced increases in brachial artery diameter (pre: 12.3 ± 1.6%; post: 17.8 ± 1.9%). We conclude that 1) chronic supplementation with BRJ lowers blood pressure and vascular resistance at rest and during exercise and attenuates RPP during exercise and 2) these effects may be due, in part, to enhanced endothelium-induced vasodilation in contracting skeletal muscle. Findings suggest that BRJ can act as a dietary nutraceutical capable of enhancing O2 delivery and reducing work of the heart, such that exercise can be performed at a given workload for a longer period of time before the onset of fatigue.
Collapse
Affiliation(s)
- Jae-Seok Lee
- Graduate School of Physical Education, Kyung Hee University, Seoul, South Korea; and
| | - Charles L Stebbins
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California at Davis, Davis, California
| | - Eunji Jung
- Graduate School of Physical Education, Kyung Hee University, Seoul, South Korea; and
| | - Hosung Nho
- Graduate School of Physical Education, Kyung Hee University, Seoul, South Korea; and
| | - Jong-Kyung Kim
- Graduate School of Physical Education, Kyung Hee University, Seoul, South Korea; and
| | - Myoung-Jei Chang
- Graduate School of Physical Education, Kyung Hee University, Seoul, South Korea; and
| | - Hyun-Min Choi
- Graduate School of Physical Education, Kyung Hee University, Seoul, South Korea; and
| |
Collapse
|
8
|
Choi HM, Stebbins CL, Nho H, Kim MS, Chang MJ, Kim JK. Effects of Ovarian Cycle on Hemodynamic Responses during Dynamic Exercise in Sedentary Women. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:499-503. [PMID: 24381498 PMCID: PMC3874436 DOI: 10.4196/kjpp.2013.17.6.499] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/23/2013] [Accepted: 10/08/2013] [Indexed: 11/24/2022]
Abstract
This study tested the hypothesis that effects of the menstrual cycle on resting blood pressure carry over to dynamic exercise. Eleven healthy females were studied during the early (EP; low estrogen, low progesterone) and late follicular (LP; high estrogen, low progesterone) menstrual phases. Stroke volume (SV), heart rate (HR), cardiac output (CO), systolic blood pressure (SBP), diastolic blood pressure (DBP), and total vascular conductance (TVC) were assessed at rest and in response to mild and moderate cycling exercise during EP and LP. During EP, compared to LP, baseline SBP (111±1 vs. 103±2 mmHg), DBP (71±2 vs. 65±2 mmHg) and mean arterial pressure (MAP) (84±2 vs. 78±1 mmHg) were higher and TVC (47.0±1.5 vs. 54.9±4.2 ml/min/mmHg) was lower (p<0.05). During exercise, absolute values of SBP (Mild: 142±4 vs. 127±5 mmHg; Moderate: 157±4 vs. 144±5 mmHg) and MAP (Mild: 100±3 vs. 91±3 mmHg; Moderate: 110±3 vs. 101±3 mmHg) were also higher, while TVC was lower (Mild: 90.9±5.1 vs. 105.4±5.2 ml/min/mmHg; Moderate: 105.4±5.3 vs. 123.9±8.1 ml/min/mmHg) during EP (p<0.05). However, exercise-induced increases in SBP, MAP and TVC at both work intensities were similar between the two menstrual phases, even though norepinephrine concentrations were higher during LP. Results indicate that blood pressure during dynamic exercise fluctuates during the menstrual cycle. It is higher during EP than LP and appears to be due to additive effects of simultaneous increases in baseline blood pressure and reductions in baseline TVC.
Collapse
Affiliation(s)
- Hyun-Min Choi
- Graduate School of Physical Education, Kyung Hee University, Yongin 446-701, Korea
| | - Charles L Stebbins
- Department of Internal Medicine, University of California at Davis, Califonia 95616, USA
| | - Hosung Nho
- Graduate School of Physical Education, Kyung Hee University, Yongin 446-701, Korea
| | - Mi-Song Kim
- Graduate School of Physical Education, Kyung Hee University, Yongin 446-701, Korea
| | - Myoung-Jei Chang
- Graduate School of Physical Education, Kyung Hee University, Yongin 446-701, Korea
| | - Jong-Kyung Kim
- Graduate School of Physical Education, Kyung Hee University, Yongin 446-701, Korea
| |
Collapse
|
9
|
Bougault V, Lonsdorfer-Wolf E, Charloux A, Richard R, Geny B, Oswald-Mammosser M. Does Thoracic Bioimpedance Accurately Determine Cardiac Output in COPD Patients During Maximal or Intermittent Exercise? Chest 2005. [DOI: 10.1016/s0012-3692(15)34456-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
10
|
Bucklar GB, Kaplan V, Bloch KE. Signal processing technique for non-invasive real-time estimation of cardiac output by inductance cardiography (thoracocardiography). Med Biol Eng Comput 2003; 41:302-9. [PMID: 12803295 DOI: 10.1007/bf02348435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Inductance cardiography (thoracocardiography) non-invasively monitors changes in stroke volume by recording ventricular volume curves with an inductive plethysmographic transducer encircling the chest at the level of the heart. Clinical application of this method has been hampered, as data analysis has not been feasible in real time. Therefore a novel, real-time signal processing technique for inductance cardiography has been developed. Its essential concept consists in performance of multiple tasks by several, logically linked signal processing modules that have access to common databases. Based on these principles, a software application was designed that performs acquisition, display, filtering and ECG-triggered ensemble averaging of inductance signals and separates cardiogenic waveforms from noise related to respiration and other sources. The resulting ventricular volume curves are automatically analysed. Performance of the technique for monitoring cardiac output in real time was compared with thermodilution in four patients in an intensive care unit. The bias (mean difference) among 76 paired thoracocardiographic and thermodilution derived changes in cardiac output was 0%; limits of agreement (+/- 2 SD of the bias) were +/- 25%. It is concluded that the proposed signal processing technique for inductance cardiography holds promise for non-invasive, real-time estimation of changes in cardiac output.
Collapse
Affiliation(s)
- G B Bucklar
- Pulmonary Division, Department of Internal Medicine, University Hospital of Zürich, Switzerland
| | | | | |
Collapse
|