1
|
Guo Y, Jones EJ, Smart TF, Altheyab A, Gamage N, Stashuk DW, Piasecki J, Phillips BE, Atherton PJ, Piasecki M. Sex disparities of human neuromuscular decline in older humans. J Physiol 2025; 603:151-165. [PMID: 38857412 DOI: 10.1113/jp285653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/07/2024] [Indexed: 06/12/2024] Open
Abstract
Females typically live longer than males but, paradoxically, spend a greater number of later years in poorer health. The neuromuscular system is a critical component of the progression to frailty, and motor unit (MU) characteristics differ by sex in healthy young individuals and may adapt to ageing in a sex-specific manner due to divergent hormonal profiles. The purpose of this study was to investigate sex differences in vastus lateralis (VL) MU structure and function in early to late elderly humans. Intramuscular electromyography signals from 50 healthy older adults (M/F: 26/24) were collected from VL during standardized submaximal contractions and decomposed to quantify MU characteristics. Muscle size and neuromuscular performance were also measured. Females had higher MU firing rate (FR) than males (P = 0.025), with no difference in MU structure or neuromuscular junction transmission (NMJ) instability. All MU characteristics increased from low- to mid-level contractions (P < 0.05) without sex × level interactions. Females had smaller cross-sectional area of VL, lower strength and poorer force steadiness (P < 0.05). From early to late elderly, both sexes showed decreased neuromuscular function (P < 0.05) without sex-specific patterns. Higher VL MUFRs at normalized contraction levels previously observed in young are also apparent in old individuals, with no sex-based difference of estimates of MU structure or NMJ transmission instability. From early to late elderly, the deterioration of neuromuscular function and MU characteristics did not differ between sexes, yet function was consistently greater in males. These parallel trajectories underscore the lower initial level for older females and may offer insights into identifying critical intervention periods. KEY POINTS: Females generally exhibit an extended lifespan when compared to males, yet this is accompanied by a poorer healthspan and higher rates of frailty. In healthy young people, motor unit firing rate (MUFR) at normalized contraction intensities is widely reported to be higher in females than in age-matched males. Here we show in 50 people that older females have higher MUFR than older males with little difference in other MU parameters. The trajectory of decline from early to late elderly does not differ between sexes, yet function is consistently lower in females. These findings highlight distinguishable sex disparities in some MU characteristics and neuromuscular function, and suggest early interventions are needed for females to prevent functional deterioration to reduce the ageing health-sex paradox.
Collapse
Affiliation(s)
- Yuxiao Guo
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Eleanor J Jones
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Thomas F Smart
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Abdulmajeed Altheyab
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
- College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia
| | - Nishadi Gamage
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
- Neurophysiology of Human Movement Group, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Daniel W Stashuk
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Jessica Piasecki
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, Nottingham, UK
| | - Bethan E Phillips
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Philip J Atherton
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Mathew Piasecki
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Avrillon S, Hug F, Enoka RM, Caillet AHD, Farina D. The identification of extensive samples of motor units in human muscles reveals diverse effects of neuromodulatory inputs on the rate coding. eLife 2024; 13:RP97085. [PMID: 39651956 PMCID: PMC11627553 DOI: 10.7554/elife.97085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Movements are performed by motoneurons transforming synaptic inputs into an activation signal that controls muscle force. The control signal emerges from interactions between ionotropic and neuromodulatory inputs to motoneurons. Critically, these interactions vary across motoneuron pools and differ between muscles. To provide the most comprehensive framework to date of motor unit activity during isometric contractions, we identified the firing activity of extensive samples of motor units in the tibialis anterior (129 ± 44 per participant; n=8) and the vastus lateralis (130 ± 63 per participant; n=8) muscles during isometric contractions of up to 80% of maximal force. From this unique dataset, the rate coding of each motor unit was characterised as the relation between its instantaneous firing rate and the applied force, with the assumption that the linear increase in isometric force reflects a proportional increase in the net synaptic excitatory inputs received by the motoneuron. This relation was characterised with a natural logarithm function that comprised two stages. The initial stage was marked by a steep acceleration of firing rate, which was greater for low- than medium- and high-threshold motor units. The second stage comprised a linear increase in firing rate, which was greater for high- than medium- and low-threshold motor units. Changes in firing rate were largely non-linear during the ramp-up and ramp-down phases of the task, but with significant prolonged firing activity only evident for medium-threshold motor units. Contrary to what is usually assumed, our results demonstrate that the firing rate of each motor unit can follow a large variety of trends with force across the pool. From a neural control perspective, these findings indicate how motor unit pools use gain control to transform inputs with limited bandwidths into an intended muscle force.
Collapse
Affiliation(s)
- Simon Avrillon
- Department of Bioengineering, Faculty of Engineering, Imperial College LondonLondonUnited Kingdom
- Nantes Université, Laboratory 'Movement, Interactions, Performance'NantesFrance
| | - François Hug
- Université Côte d'Azur, LAMHESSNiceFrance
- The University of Queensland, School of Biomedical SciencesBrisbaneAustralia
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado BoulderBoulderUnited States
| | - Arnault HD Caillet
- Department of Bioengineering, Faculty of Engineering, Imperial College LondonLondonUnited Kingdom
| | - Dario Farina
- Department of Bioengineering, Faculty of Engineering, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
3
|
Sahinis C, Amiridis IG, Kannas TM, Farina D, Enoka RM, Kellis E. Distinct Neural Drives along the Semitendinosus Muscle. Med Sci Sports Exerc 2024; 56:2338-2348. [PMID: 39160760 DOI: 10.1249/mss.0000000000003530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
INTRODUCTION Conflicting results have been reported on the functional role of the proximal and distal compartments of the semitendinosus (ST) muscle. This study compared the discharge characteristics of motor units (MU) in the two compartments at three knee joint angles (0°: long length; 45°: intermediate length; and 90°: short length). METHODS Twenty men (21.4 ± 2.3 yr) performed steady isometric contractions with the knee flexors at four target forces: 10%, 20%, 40%, and 60% of maximum voluntary contraction. High-density EMG signals were recorded to examine the MU discharge characteristics in the two compartments. Measurements included recruitment threshold, mean discharge rate, coefficient of variation (CoV) for interspike interval, and SD of filtered cumulative spike train (fCST). Additionally, the within- and between-compartment association of the neural drive was calculated. RESULTS ANOVA indicated that maximal force, absolute EMG amplitude during the maximum voluntary contractions, and force steadiness (CoV for force) were greater at the longest muscle length than the other two lengths ( P < 0.05). Linear mixed models showed that both recruitment threshold and CoV for interspike interval were similar between compartments ( P > 0.05) at each of the three knee joint angles. However, the mean discharge rate and the variability in neural drive were greater for the proximal than the distal compartment ( P < 0.05). The between-compartment association in neural drive (filtered cumulative spike train) was relatively low. CONCLUSIONS There were distinct differences in MU discharge characteristics between the proximal and the distal compartments of ST across its operating range of muscle lengths, and each compartment received a relatively distinct neural drive. These findings emphasize the importance of recognizing differences in neural control of the ST compartments to guide related interventions and to inform rehabilitation strategies.
Collapse
Affiliation(s)
- Chrysostomos Sahinis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, GREECE
| | - Ioannis G Amiridis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, GREECE
| | - Theodoros M Kannas
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, GREECE
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, UNITED KINGDOM
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado, Boulder, CO
| | - Eleftherios Kellis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, GREECE
| |
Collapse
|
4
|
Fennell CRJ, Mauger AR, Hopker JG. Alpha band oscillations in common synaptic input are explanatory of the complexity of isometric knee extensor muscle torque signals. Exp Physiol 2024; 109:1938-1954. [PMID: 39162315 PMCID: PMC11522822 DOI: 10.1113/ep092031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024]
Abstract
We investigated whether the strength of oscillations in common synaptic input was explanatory of knee extensor (KE) torque signal complexity during fresh and fatigued submaximal isometric contractions, in adults aged from 18 to 90 years. The discharge times of motor units were derived from the vastus lateralis muscle of 60 participants using high-density surface EMG, during 20 s isometric KE contractions at 20% of maximal voluntary contraction, performed before and after a fatiguing repeated isometric KE contraction protocol at 60% of maximal voluntary contraction. Within-muscle coherence Z-scores were estimated using frequency-domain coherence analysis, and muscle torque complexity was assessed using multiscale entropy analysis and detrended fluctuation analysis. Alpha band (5-15 Hz) coherence was found to predict 23.1% and 31.4% of the variance in the complexity index under 28-scales (CI-28) and detrended fluctuation analysis α complexity metrics, respectively, during the fresh contractions. Delta, alpha and low beta band coherence were significantly increased due to fatigue. Fatigue-related changes in alpha coherence were significantly predictive of the fatigue-related changes in CI-28 and detrended fluctuation analysis α. The fatigue-related increase in sample entropy from scales 11 to 28 of the multiscale entropy analysis curves was significantly predicted by the increase in the alpha band coherence. Age was not a contributory factor to the fatigue-related changes in within-muscle coherence and torque signal complexity. These findings indicate that the strength of alpha band oscillations in common synaptic input can explain, in part, isometric KE torque signal complexity and the fatigue-related changes in torque signal complexity.
Collapse
Affiliation(s)
| | - Alexis R. Mauger
- School of Sport and Exercise SciencesUniversity of KentCanterburyUK
| | - James G. Hopker
- School of Sport and Exercise SciencesUniversity of KentCanterburyUK
| |
Collapse
|
5
|
Ruggiero L, Gruber M. Neuromuscular mechanisms for the fast decline in rate of force development with muscle disuse - a narrative review. J Physiol 2024. [PMID: 39467095 DOI: 10.1113/jp285667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
The removal of skeletal muscle tension (unloading or disuse) is followed by many changes in the neuromuscular system, including muscle atrophy and loss of isometric maximal strength (measured by maximal force, Fmax). Explosive strength, i.e. the ability to develop the highest force in the shortest possible time, to maximise rate of force development (RFD), is a fundamental neuromuscular capability, often more functionally relevant than maximal muscle strength. In the present review, we discuss data from studies that looked at the effect of muscle unloading on isometric maximal versus explosive strength. We present evidence that muscle unloading yields a greater decline in explosive relative to maximal strength. The longer the unloading duration, the smaller the difference between the decline in the two measures. Potential mechanisms that may explain the greater decline in measures of RFD relative to Fmax after unloading are higher recruitment thresholds and lower firing rates of motor units, slower twitch kinetics, impaired excitation-contraction coupling, and decreased tendon stiffness. Using a Hill-type force model, we showed that this ensemble of adaptations minimises the loss of force production at submaximal contraction intensities, at the expense of a disproportionately lower RFD. With regard to the high functional relevance of RFD on one hand, and the boosted detrimental effects of inactivity on RFD on the other hand, it seems crucial to implement specific exercises targeting explosive strength in populations that experience muscle disuse over a longer time.
Collapse
Affiliation(s)
- Luca Ruggiero
- Human Performance Research Centre, Department of Sports Science, University of Konstanz, Konstanz, Germany
| | - Markus Gruber
- Human Performance Research Centre, Department of Sports Science, University of Konstanz, Konstanz, Germany
| |
Collapse
|
6
|
Ishizaka R, Nojima I, Ishida K, Sugiura H, Takahashi A, Minami K, Watanabe T. Effects of Motor and Cognitive Dual-Task Demands on Ankle Dorsiflexor and Plantarflexor Force Control in Older Adults. Exp Aging Res 2024:1-16. [PMID: 39417385 DOI: 10.1080/0361073x.2024.2406172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Force steadiness can be impaired under dual-task conditions in older adults. Since this impairment is attributed to their limited attentional resources, we hypothesized that the degree of cortical activity involved in muscle contraction would affect force steadiness under dual-task conditions. To test this hypothesis, based on the premise that dorsiflexion requires more cortical resources than plantarflexion, we compared the effects of additional motor and cognitive task demands on force steadiness between dorsiflexion and plantarflexion contractions in young and older adults. METHOD Eighteen young and eighteen older adults performed a force tracking task by applying either isometric dorsiflexion or plantarflexion force concurrently with and without (control) secondary upper-limb motor or cognitive task. RESULTS Force steadiness was impaired by both secondary upper-limb motor and cognitive tasks for the dorsiflexors and plantarflexors in older adults. While force steadiness was impaired similarly by additional task demands regardless of the secondary task type for the dorsiflexors, the impairment effect was larger in the secondary cognitive than motor task for the plantarflexors. CONCLUSION The effects of dual-task demand on force steadiness could depend on the degree of cortical activity involved in muscle contraction in older adults.
Collapse
Affiliation(s)
- Riku Ishizaka
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| | - Ippei Nojima
- Department of Health Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Kazuto Ishida
- Department of Physical Therapy, Faculty of Medical Science, Nagoya Women's University, Nagoya, Aichi, Japan
| | - Hideshi Sugiura
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Aoki Takahashi
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| | - Kodai Minami
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Tatsunori Watanabe
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
- Waseda Institute for Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| |
Collapse
|
7
|
Chardon MK, Wang YC, Garcia M, Besler E, Beauchamp JA, D'Mello M, Powers RK, Heckman CJ. Supercomputer framework for reverse engineering firing patterns of neuron populations to identify their synaptic inputs. eLife 2024; 12:RP90624. [PMID: 39412386 PMCID: PMC11483124 DOI: 10.7554/elife.90624] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
In this study, we develop new reverse engineering (RE) techniques to identify the organization of the synaptic inputs generating firing patterns of populations of neurons. We tested these techniques in silico to allow rigorous evaluation of their effectiveness, using remarkably extensive parameter searches enabled by massively-parallel computation on supercomputers. We chose spinal motoneurons as our target neural system, since motoneurons process all motor commands and have well-established input-output properties. One set of simulated motoneurons was driven by 300,000+ simulated combinations of excitatory, inhibitory, and neuromodulatory inputs. Our goal was to determine if these firing patterns had sufficient information to allow RE identification of the input combinations. Like other neural systems, the motoneuron input-output system is likely non-unique. This non-uniqueness could potentially limit this RE approach, as many input combinations can produce similar outputs. However, our simulations revealed that firing patterns contained sufficient information to sharply restrict the solution space. Thus, our RE approach successfully generated estimates of the actual simulated patterns of excitation, inhibition, and neuromodulation, with variances accounted for ranging from 75-90%. It was striking that nonlinearities induced in firing patterns by the neuromodulation inputs did not impede RE, but instead generated distinctive features in firing patterns that aided RE. These simulations demonstrate the potential of this form of RE analysis. It is likely that the ever-increasing capacity of supercomputers will allow increasingly accurate RE of neuron inputs from their firing patterns from many neural systems.
Collapse
Affiliation(s)
- Matthieu K Chardon
- Department of Neuroscience, Northwestern UniversityChicagoUnited States
- Northwestern-Argonne Institute of Science and Engineering (NAISE)EvanstonUnited States
| | - Y Curtis Wang
- Department of Electrical and Computer Engineering, California State University, Los AngelesLos AngelesUnited States
| | - Marta Garcia
- Argonne Leadership Computing Facility, Argonne National LaboratoryLemontUnited States
| | - Emre Besler
- Department of Electrical Engineering, Northwestern UniversityEvanstonUnited States
| | - J Andrew Beauchamp
- Department of Biomedical Engineering, Northwestern UniversityChicagoUnited States
| | | | - Randall K Powers
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Charles J Heckman
- Department of Neuroscience, Northwestern UniversityChicagoUnited States
- Physical Medicine and Rehabilitation, Shirley Ryan Ability LabChicagoUnited States
- Physical Therapy and Human Movement Sciences, Northwestern UniversityChicagoUnited States
| |
Collapse
|
8
|
Nuccio S, Germer CM, Casolo A, Borzuola R, Labanca L, Rocchi JE, Mariani PP, Felici F, Farina D, Falla D, Macaluso A, Sbriccoli P, Del Vecchio A. Neuroplastic alterations in common synaptic inputs and synergistic motor unit clusters controlling the vastii muscles of individuals with ACL reconstruction. J Appl Physiol (1985) 2024; 137:835-847. [PMID: 39024407 DOI: 10.1152/japplphysiol.00056.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024] Open
Abstract
This cross-sectional study aims to elucidate the neural mechanisms underlying the control of knee extension forces in individuals with anterior cruciate ligament reconstruction (ACLR). Eleven soccer players with ACLR and nine control players performed unilateral isometric knee extensions at 10% and 30% of their maximum voluntary force (MVF). Simultaneous recordings of high-density surface electromyography (HDEMG) and force output were conducted for each lower limb, and HDEMG data from the vastus lateralis (VL) and vastus medialis (VM) muscles were decomposed into individual motor unit spike trains. Force steadiness was estimated using the coefficient of variation of force. An intramuscular coherence analysis was adopted to estimate the common synaptic input (CSI) converging to each muscle. A factor analysis was applied to investigate the neural strategies underlying the control of synergistic motor neuron clusters, referred to as motor unit modes. Force steadiness was similar between lower limbs. However, motor neurons innervating the VL on the reconstructed side received a lower proportion of CSI at low-frequency bandwidths (<5 Hz) compared with the unaffected lower limbs (P < 0.01). Furthermore, the reconstructed side demonstrated a higher proportion of motor units associated with the neural input common to the synergistic muscle, as compared with the unaffected lower limbs (P < 0.01). These findings indicate that the VL muscle of reconstructed lower limbs contribute marginally to force steadiness and that a plastic rearrangement in synergistic clusters of motor units involved in the control of knee extension forces is evident following ACLR.NEW & NOTEWORTHY Chronic quadriceps dysfunction is common after anterior cruciate ligament reconstruction (ACLR). We investigated voluntary force control strategies by estimating common inputs to motor neurons innervating the vastii muscles. Our results showed attenuated common inputs to the vastus lateralis and plastic rearrangements in functional clusters of motor neurons modulating knee extension forces in the reconstructed limb. These findings suggest neuroplastic adjustments following ACLR that may occur to fine-tune the control of quadriceps forces.
Collapse
Affiliation(s)
- Stefano Nuccio
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Carina M Germer
- Departamento de Eletrônica e Engenharia Biomédica, Faculdade de Engenharia Elétrica e de Computação, Universidade Estadual de Campinas, São Paulo, Brazil
- Laboratório de Pesquisa em Neuroengenharia, Centro de Engenharia Biomédica, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Andrea Casolo
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Riccardo Borzuola
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Luciana Labanca
- Physical Medicine and Rehabilitation Unit, IRCSS-Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Jacopo E Rocchi
- Villa Stuart Sport Clinic - FIFA Medical Centre of Excellence, Rome, Italy
| | - Pier Paolo Mariani
- Villa Stuart Sport Clinic - FIFA Medical Centre of Excellence, Rome, Italy
| | - Francesco Felici
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrea Macaluso
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Paola Sbriccoli
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Alessandro Del Vecchio
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
9
|
Mesquita RNO, Taylor JL, Heckman CJ, Trajano GS, Blazevich AJ. Persistent inward currents in human motoneurons: emerging evidence and future directions. J Neurophysiol 2024; 132:1278-1301. [PMID: 39196985 DOI: 10.1152/jn.00204.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/30/2024] Open
Abstract
The manner in which motoneurons respond to excitatory and inhibitory inputs depends strongly on how their intrinsic properties are influenced by the neuromodulators serotonin and noradrenaline. These neuromodulators enhance the activation of voltage-gated channels that generate persistent (long-lasting) inward sodium and calcium currents (PICs) into the motoneurons. PICs are crucial for initiating, accelerating, and maintaining motoneuron firing. A greater accessibility to state-of-the-art techniques that allows both the estimation and examination of PIC modulation in tens of motoneurons in vivo has rapidly evolved our knowledge of how motoneurons amplify and prolong the effects of synaptic input. We are now in a position to gain substantial mechanistic insight into the role of PICs in motor control at an unprecedented pace. The present review briefly describes the effects of PICs on motoneuron firing and the methods available for estimating them before presenting the emerging evidence of how PICs can be modulated in health and disease. Our rapidly developing knowledge of the potent effects of PICs on motoneuron firing has the potential to improve our understanding of how we move, and points to new approaches to improve motor control. Finally, gaps in our understanding are highlighted and methodological advancements are suggested to encourage readers to explore outstanding questions to further elucidate PIC physiology.
Collapse
Affiliation(s)
- Ricardo N O Mesquita
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Discipline of Exercise and Sports Science, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Janet L Taylor
- Discipline of Exercise and Sports Science, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - C J Heckman
- Departments of Neuroscience, Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Anthony J Blazevich
- Discipline of Exercise and Sports Science, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| |
Collapse
|
10
|
Arvanitidis M, Jiménez-Grande D, Haouidji-Javaux N, Falla D, Martinez-Valdes E. Eccentric exercise-induced delayed onset trunk muscle soreness alters high-density surface EMG-torque relationships and lumbar kinematics. Sci Rep 2024; 14:18589. [PMID: 39127797 PMCID: PMC11316813 DOI: 10.1038/s41598-024-69050-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
We aimed to assess high-density surface electromyography (HDsEMG)-torque relationships in the presence of delayed onset trunk muscle soreness (DOMS) and the effect of these relationships on torque steadiness (TS) and lumbar movement during concentric/eccentric submaximal trunk extension contractions. Twenty healthy individuals attended three laboratory sessions (24 h apart). HDsEMG signals were recorded unilaterally from the thoracolumbar erector spinae with two 64-electrode grids. HDsEMG-torque signal relationships were explored via coherence (0-5 Hz) and cross-correlation analyses. Principal component analysis was used for HDsEMG-data dimensionality reduction and improvement of HDsEMG-torque-based estimations. DOMS did not reduce either concentric or eccentric trunk extensor muscle strength. However, in the presence of DOMS, improved TS, alongside an altered HDsEMG-torque relationship and kinematic changes were observed, in a contraction-dependent manner. For eccentric trunk extension, improved TS was observed, with greater lumbar flexion movement and a reduction in δ-band HDsEMG-torque coherence and cross-correlation. For concentric trunk extensions, TS improvements were observed alongside reduced thoracolumbar sagittal movement. DOMS does not seem to impair the ability to control trunk muscle force, however, perceived soreness induced changes in lumbar movement and muscle recruitment strategies, which could alter motor performance if the exposure to pain is maintained in the long term.
Collapse
Affiliation(s)
- Michail Arvanitidis
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - David Jiménez-Grande
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nadège Haouidji-Javaux
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Eduardo Martinez-Valdes
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
11
|
Daneshgar S, Tvrdy T, Enoka RM. Explaining the influence of practice on the grooved pegboard times of older adults: role of force steadiness. Exp Brain Res 2024; 242:1971-1982. [PMID: 38916760 DOI: 10.1007/s00221-024-06878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024]
Abstract
The purpose was to identify the variables that can explain the variance in the grooved pegboard times of older adults categorized as either fast or slow performers. Participants (n = 28; 60-83 years) completed two experimental sessions, before and after 6 practice sessions of the grooved pegboard test. The 2 groups were identified based on average pegboard times during the practice sessions. Average pegboard time during practice was 73 ± 11 s for the fast group and 85 ± 13 s for the slow group. Explanatory variables for the pegboard times before and after practice were the durations of 4 peg-manipulation phases and 12 measures of force steadiness (coefficient of variation [CV] for force) during isometric contractions with the index finger abductor and wrist extensor muscles. Time to complete the grooved pegboard test after practice decreased by 25 ± 11% for the fast group and by 28 ± 10% for the slow group. Multiple regression models explained more of the variance in the pegboard times for the fast group before practice (Adjusted R2 = 0.85) than after practice (R2 = 0.51), whereas the variance explained for the slow group was similar before (Adjusted R2 = 0.67) and after (Adjusted R2 = 0.64) practice. The explanatory variables differed between before and after practice for the fast group but only slightly for the slow group. These findings indicate that performance-based stratification of older adults can identify unique adjustments in motor function that are independent of chronological age.
Collapse
Affiliation(s)
- Sajjad Daneshgar
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Taylor Tvrdy
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA.
| |
Collapse
|
12
|
Chung RS, Martin del Campo Vera R, Sundaram S, Cavaleri J, Gilbert ZD, Leonor A, Shao X, Zhang S, Kammen A, Mason X, Heck C, Liu CY, Kellis SS, Lee B. Beta-band power modulation in the human amygdala differentiates between go/no-go responses in an arm-reaching task. J Neural Eng 2024; 21:046019. [PMID: 38959877 PMCID: PMC11369913 DOI: 10.1088/1741-2552/ad5ebe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/22/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
Objective. Traditionally known for its involvement in emotional processing, the amygdala's involvement in motor control remains relatively unexplored, with sparse investigations into the neural mechanisms governing amygdaloid motor movement and inhibition. This study aimed to characterize the amygdaloid beta-band (13-30 Hz) power between 'Go' and 'No-go' trials of an arm-reaching task.Approach. Ten participants with drug-resistant epilepsy implanted with stereoelectroencephalographic (SEEG) electrodes in the amygdala were enrolled in this study. SEEG data was recorded throughout discrete phases of a direct reach Go/No-go task, during which participants reached a touchscreen monitor or withheld movement based on a colored cue. Multitaper power analysis along with Wilcoxon signed-rank and Yates-correctedZtests were used to assess significant modulations of beta power between the Response and fixation (baseline) phases in the 'Go' and 'No-go' conditions.Main results. In the 'Go' condition, nine out of the ten participants showed a significant decrease in relative beta-band power during the Response phase (p⩽ 0.0499). In the 'No-go' condition, eight out of the ten participants presented a statistically significant increase in relative beta-band power during the response phase (p⩽ 0.0494). Four out of the eight participants with electrodes in the contralateral hemisphere and seven out of the eight participants with electrodes in the ipsilateral hemisphere presented significant modulation in beta-band power in both the 'Go' and 'No-go' conditions. At the group level, no significant differences were found between the contralateral and ipsilateral sides or between genders.Significance.This study reports beta-band power modulation in the human amygdala during voluntary movement in the setting of motor execution and inhibition. This finding supplements prior research in various brain regions associating beta-band power with motor control. The distinct beta-power modulation observed between these response conditions suggests involvement of amygdaloid oscillations in differentiating between motor inhibition and execution.
Collapse
Affiliation(s)
- Ryan S Chung
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Roberto Martin del Campo Vera
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Shivani Sundaram
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Jonathon Cavaleri
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Zachary D Gilbert
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Andrea Leonor
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Xiecheng Shao
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Selena Zhang
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Alexandra Kammen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Xenos Mason
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States of America
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Christi Heck
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States of America
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States of America
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Spencer S Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States of America
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States of America
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States of America
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
13
|
Ma S, Mendez Guerra I, Caillet AH, Zhao J, Clarke AK, Maksymenko K, Deslauriers-Gauthier S, Sheng X, Zhu X, Farina D. NeuroMotion: Open-source platform with neuromechanical and deep network modules to generate surface EMG signals during voluntary movement. PLoS Comput Biol 2024; 20:e1012257. [PMID: 38959262 PMCID: PMC11251629 DOI: 10.1371/journal.pcbi.1012257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 07/16/2024] [Accepted: 06/15/2024] [Indexed: 07/05/2024] Open
Abstract
Neuromechanical studies investigate how the nervous system interacts with the musculoskeletal (MSK) system to generate volitional movements. Such studies have been supported by simulation models that provide insights into variables that cannot be measured experimentally and allow a large number of conditions to be tested before the experimental analysis. However, current simulation models of electromyography (EMG), a core physiological signal in neuromechanical analyses, remain either limited in accuracy and conditions or are computationally heavy to apply. Here, we provide a computational platform to enable future work to overcome these limitations by presenting NeuroMotion, an open-source simulator that can modularly test a variety of approaches to the full-spectrum synthesis of EMG signals during voluntary movements. We demonstrate NeuroMotion using three sample modules. The first module is an upper-limb MSK model with OpenSim API to estimate the muscle fibre lengths and muscle activations during movements. The second module is BioMime, a deep neural network-based EMG generator that receives nonstationary physiological parameter inputs, like the afore-estimated muscle fibre lengths, and efficiently outputs motor unit action potentials (MUAPs). The third module is a motor unit pool model that transforms the muscle activations into discharge timings of motor units. The discharge timings are convolved with the output of BioMime to simulate EMG signals during the movement. We first show how MUAP waveforms change during different levels of physiological parameter variations and different movements. We then show that the synthetic EMG signals during two-degree-of-freedom hand and wrist movements can be used to augment experimental data for regressing joint angles. Ridge regressors trained on the synthetic dataset were directly used to predict joint angles from experimental data. In this way, NeuroMotion was able to generate full-spectrum EMG for the first use-case of human forearm electrophysiology during voluntary hand, wrist, and forearm movements. All intermediate variables are available, which allows the user to study cause-effect relationships in the complex neuromechanical system, fast iterate algorithms before collecting experimental data, and validate algorithms that estimate non-measurable parameters in experiments. We expect this modular platform will enable validation of generative EMG models, complement experimental approaches and empower neuromechanical research.
Collapse
Affiliation(s)
- Shihan Ma
- Department of Bioengineering, Imperial College London, London, United Kingdom
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Irene Mendez Guerra
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | | | - Jiamin Zhao
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | - Xinjun Sheng
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
- Meta Robotics Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangyang Zhu
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
- Meta Robotics Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
14
|
Cabral HV, Cudicio A, Bonardi A, Del Vecchio A, Falciati L, Orizio C, Martinez-Valdes E, Negro F. Neural Filtering of Physiological Tremor Oscillations to Spinal Motor Neurons Mediates Short-Term Acquisition of a Skill Learning Task. eNeuro 2024; 11:ENEURO.0043-24.2024. [PMID: 38866498 PMCID: PMC11255391 DOI: 10.1523/eneuro.0043-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/17/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
The acquisition of a motor skill involves adaptations of spinal and supraspinal pathways to alpha motoneurons. In this study, we estimated the shared synaptic contributions of these pathways to understand the neural mechanisms underlying the short-term acquisition of a new force-matching task. High-density surface electromyography (HDsEMG) was acquired from the first dorsal interosseous (FDI; 7 males and 6 females) and tibialis anterior (TA; 7 males and 4 females) during 15 trials of an isometric force-matching task. For two selected trials (pre- and post-skill acquisition), we decomposed the HDsEMG into motor unit spike trains, tracked motor units between trials, and calculated the mean discharge rate and the coefficient of variation of interspike interval (COVISI). We also quantified the post/pre ratio of motor units' coherence within delta, alpha, and beta bands. Force-matching improvements were accompanied by increased mean discharge rate and decreased COVISI for both muscles. Moreover, the area under the curve within alpha band decreased by ∼22% (TA) and ∼13% (FDI), with no delta or beta bands changes. These reductions correlated significantly with increased coupling between force/neural drive and target oscillations. These results suggest that short-term force-matching skill acquisition is mediated by attenuation of physiological tremor oscillations in the shared synaptic inputs. Supported by simulations, a plausible mechanism for alpha band reductions may involve spinal interneuron phase-cancelling descending oscillations. Therefore, during skill learning, the central nervous system acts as a matched filter, adjusting synaptic weights of shared inputs to suppress neural components unrelated to the specific task.
Collapse
Affiliation(s)
- Hélio V Cabral
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia 25123, Italy
| | - Alessandro Cudicio
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia 25123, Italy
| | - Alberto Bonardi
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia 25123, Italy
| | - Alessandro Del Vecchio
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University, Erlangen 91052, Germany
| | - Luca Falciati
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia 25123, Italy
| | - Claudio Orizio
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia 25123, Italy
| | - Eduardo Martinez-Valdes
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B152TT, United Kingdom
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia 25123, Italy
| |
Collapse
|
15
|
Borzelli D, Vieira TMM, Botter A, Gazzoni M, Lacquaniti F, d'Avella A. Synaptic inputs to motor neurons underlying muscle coactivation for functionally different tasks have different spectral characteristics. J Neurophysiol 2024; 131:1126-1142. [PMID: 38629162 DOI: 10.1152/jn.00199.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 06/01/2024] Open
Abstract
The central nervous system (CNS) may produce the same endpoint trajectory or torque profile with different muscle activation patterns. What differentiates these patterns is the presence of cocontraction, which does not contribute to effective torque generation but allows to modulate joints' mechanical stiffness. Although it has been suggested that the generation of force and the modulation of stiffness rely on separate pathways, a characterization of the differences between the synaptic inputs to motor neurons (MNs) underlying these tasks is still missing. In this study, participants coactivated the same pair of upper-limb muscles, i.e., the biceps brachii and the triceps brachii, to perform two functionally different tasks: limb stiffness modulation or endpoint force generation. Spike trains of MNs were identified through decomposition of high-density electromyograms (EMGs) collected from the two muscles. Cross-correlogram showed a higher synchronization between MNs recruited to modulate stiffness, whereas cross-muscle coherence analysis revealed peaks in the β-band, which is commonly ascribed to a cortical origin. These peaks did not appear during the coactivation for force generation, thus suggesting separate cortical inputs for stiffness modulation. Moreover, a within-muscle coherence analysis identified two subsets of MNs that were selectively recruited to generate force or regulate stiffness. This study is the first to highlight different characteristics, and probable different neural origins, of the synaptic inputs driving a pair of muscles under different functional conditions. We suggest that stiffness modulation is driven by cortical inputs that project to a separate set of MNs, supporting the existence of a separate pathway underlying the control of stiffness.NEW & NOTEWORTHY The characterization of the pathways underlying force generation or stiffness modulation are still unknown. In this study, we demonstrated that the common input to motor neurons of antagonist muscles shows a high-frequency component when muscles are coactivated to modulate stiffness but not to generate force. Our results provide novel insights on the neural strategies for the recruitment of multiple muscles by identifying specific spectral characteristics of the synaptic inputs underlying functionally different tasks.
Collapse
Affiliation(s)
- Daniele Borzelli
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Taian M M Vieira
- Laboratory for Engineering of the Neuromuscular System, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
- PoliToBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Alberto Botter
- Laboratory for Engineering of the Neuromuscular System, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
- PoliToBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Marco Gazzoni
- Laboratory for Engineering of the Neuromuscular System, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
- PoliToBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine and Center of Space BioMedicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea d'Avella
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
16
|
Cabral HV, Inglis JG, Cudicio A, Cogliati M, Orizio C, Yavuz US, Negro F. Muscle contractile properties directly influence shared synaptic inputs to spinal motor neurons. J Physiol 2024; 602:2855-2872. [PMID: 38709959 DOI: 10.1113/jp286078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/18/2024] [Indexed: 05/08/2024] Open
Abstract
Alpha band oscillations in shared synaptic inputs to the alpha motor neuron pool can be considered an involuntary source of noise that hinders precise voluntary force production. This study investigated the impact of changing muscle length on the shared synaptic oscillations to spinal motor neurons, particularly in the physiological tremor band. Fourteen healthy individuals performed low-level dorsiflexion contractions at ankle joint angles of 90° and 130°, while high-density surface electromyography (HDsEMG) was recorded from the tibialis anterior (TA). We decomposed the HDsEMG into motor units spike trains and calculated the motor units' coherence within the delta (1-5 Hz), alpha (5-15 Hz), and beta (15-35 Hz) bands. Additionally, force steadiness and force spectral power within the tremor band were quantified. Results showed no significant differences in force steadiness between 90° and 130°. In contrast, alpha band oscillations in both synaptic inputs and force output decreased as the length of the TA was moved from shorter (90°) to longer (130°), with no changes in delta and beta bands. In a second set of experiments (10 participants), evoked twitches were recorded with the ankle joint at 90° and 130°, revealing longer twitch durations in the longer TA muscle length condition compared to the shorter. These experimental results, supported by a simple computational simulation, suggest that increasing muscle length enhances the muscle's low-pass filtering properties, influencing the oscillations generated by the Ia afferent feedback loop. Therefore, this study provides valuable insights into the interplay between muscle biomechanics and neural oscillations. KEY POINTS: We investigated whether changes in muscle length, achieved by changing joint position, could influence common synaptic oscillations to spinal motor neurons, particularly in the tremor band (5-15 Hz). Our results demonstrate that changing muscle length from shorter to longer induces reductions in the magnitude of alpha band oscillations in common synaptic inputs. Importantly, these reductions were reflected in the oscillations of muscle force output within the alpha band. Longer twitch durations were observed in the longer muscle length condition compared to the shorter, suggesting that increasing muscle length enhances the muscle's low-pass filtering properties. Changes in the peripheral contractile properties of motor units due to changes in muscle length significantly influence the transmission of shared synaptic inputs into muscle force output. These findings prove the interplay between muscle mechanics and neural adaptations.
Collapse
Affiliation(s)
- Hélio V Cabral
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| | - J Greig Inglis
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| | - Alessandro Cudicio
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| | - Marta Cogliati
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| | - Claudio Orizio
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| | - Utku S Yavuz
- Biomedical Signals and Systems, University of Twente, Enschede, Netherlands
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| |
Collapse
|
17
|
Caillet AH, Phillips ATM, Modenese L, Farina D. NeuroMechanics: Electrophysiological and computational methods to accurately estimate the neural drive to muscles in humans in vivo. J Electromyogr Kinesiol 2024; 76:102873. [PMID: 38518426 DOI: 10.1016/j.jelekin.2024.102873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
The ultimate neural signal for muscle control is the neural drive sent from the spinal cord to muscles. This neural signal comprises the ensemble of action potentials discharged by the active spinal motoneurons, which is transmitted to the innervated muscle fibres to generate forces. Accurately estimating the neural drive to muscles in humans in vivo is challenging since it requires the identification of the activity of a sample of motor units (MUs) that is representative of the active MU population. Current electrophysiological recordings usually fail in this task by identifying small MU samples with over-representation of higher-threshold with respect to lower-threshold MUs. Here, we describe recent advances in electrophysiological methods that allow the identification of more representative samples of greater numbers of MUs than previously possible. This is obtained with large and very dense arrays of electromyographic electrodes. Moreover, recently developed computational methods of data augmentation further extend experimental MU samples to infer the activity of the full MU pool. In conclusion, the combination of new electrode technologies and computational modelling allows for an accurate estimate of the neural drive to muscles and opens new perspectives in the study of the neural control of movement and in neural interfacing.
Collapse
Affiliation(s)
| | - Andrew T M Phillips
- Department of Civil and Environmental Engineering, Imperial College London, UK
| | - Luca Modenese
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.
| | - Dario Farina
- Department of Bioengineering, Imperial College London, UK.
| |
Collapse
|
18
|
Guo Y, Jones EJ, Škarabot J, Inns TB, Phillips BE, Atherton PJ, Piasecki M. Common synaptic inputs and persistent inward currents of vastus lateralis motor units are reduced in older male adults. GeroScience 2024; 46:3249-3261. [PMID: 38238546 PMCID: PMC11009172 DOI: 10.1007/s11357-024-01063-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/02/2024] [Indexed: 04/13/2024] Open
Abstract
Although muscle atrophy may partially account for age-related strength decline, it is further influenced by alterations of neural input to muscle. Persistent inward currents (PIC) and the level of common synaptic inputs to motoneurons influence neuromuscular function. However, these have not yet been described in the aged human quadriceps. High-density surface electromyography (HDsEMG) signals were collected from the vastus lateralis of 15 young (mean ± SD, 23 ± 5 y) and 15 older (67 ± 9 y) men during submaximal sustained and 20-s ramped contractions. HDsEMG signals were decomposed to identify individual motor unit discharges, from which PIC amplitude and intramuscular coherence were estimated. Older participants produced significantly lower knee extensor torque (p < 0.001) and poorer force tracking ability (p < 0.001) than young. Older participants also had lower PIC amplitude (p = 0.001) and coherence estimates in the alpha frequency band (p < 0.001) during ramp contractions when compared to young. Persistent inward currents and common synaptic inputs are lower in the vastus lateralis of older males when compared to young. These data highlight altered neural input to the clinically and functionally important quadriceps, further underpinning age-related loss of function which may occur independently of the loss of muscle mass.
Collapse
Affiliation(s)
- Yuxiao Guo
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research &, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Royal Derby Hospital Centre (Room 3011), Derby, DE22 3DT, UK
| | - Eleanor J Jones
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research &, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Royal Derby Hospital Centre (Room 3011), Derby, DE22 3DT, UK
| | - Jakob Škarabot
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Thomas B Inns
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research &, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Royal Derby Hospital Centre (Room 3011), Derby, DE22 3DT, UK
| | - Bethan E Phillips
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research &, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Royal Derby Hospital Centre (Room 3011), Derby, DE22 3DT, UK
| | - Philip J Atherton
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research &, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Royal Derby Hospital Centre (Room 3011), Derby, DE22 3DT, UK
| | - Mathew Piasecki
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research &, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Royal Derby Hospital Centre (Room 3011), Derby, DE22 3DT, UK.
| |
Collapse
|
19
|
Rong P, Heidrick L, Pattee GL. A multimodal approach to automated hierarchical assessment of bulbar involvement in amyotrophic lateral sclerosis. Front Neurol 2024; 15:1396002. [PMID: 38836001 PMCID: PMC11148322 DOI: 10.3389/fneur.2024.1396002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/01/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction As a hallmark feature of amyotrophic lateral sclerosis (ALS), bulbar involvement leads to progressive declines of speech and swallowing functions, significantly impacting social, emotional, and physical health, and quality of life. Standard clinical tools for bulbar assessment focus primarily on clinical symptoms and functional outcomes. However, ALS is known to have a long, clinically silent prodromal stage characterized by complex subclinical changes at various levels of the bulbar motor system. These changes accumulate over time and eventually culminate in clinical symptoms and functional declines. Detection of these subclinical changes is critical, both for mechanistic understanding of bulbar neuromuscular pathology and for optimal clinical management of bulbar dysfunction in ALS. To this end, we developed a novel multimodal measurement tool based on two clinically readily available, noninvasive instruments-facial surface electromyography (sEMG) and acoustic techniques-to hierarchically assess seven constructs of bulbar/speech motor control at the neuromuscular and acoustic levels. These constructs, including prosody, pause, functional connectivity, amplitude, rhythm, complexity, and regularity, are both mechanically and clinically relevant to bulbar involvement. Methods Using a custom-developed, fully automated data analytic algorithm, a variety of features were extracted from the sEMG and acoustic recordings of a speech task performed by 13 individuals with ALS and 10 neurologically healthy controls. These features were then factorized into 10 composite outcome measures using confirmatory factor analysis. Statistical and machine learning techniques were applied to these composite outcome measures to evaluate their reliability (internal consistency), validity (concurrent and construct), and efficacy for early detection and progress monitoring of bulbar involvement in ALS. Results The composite outcome measures were demonstrated to (1) be internally consistent and structurally valid in measuring the targeted constructs; (2) hold concurrent validity with the existing clinical and functional criteria for bulbar assessment; and (3) outperform the outcome measures obtained from each constituent modality in differentiating individuals with ALS from healthy controls. Moreover, the composite outcome measures combined demonstrated high efficacy for detecting subclinical changes in the targeted constructs, both during the prodromal stage and during the transition from prodromal to symptomatic stages. Discussion The findings provided compelling initial evidence for the utility of the multimodal measurement tool for improving early detection and progress monitoring of bulbar involvement in ALS, which have important implications in facilitating timely access to and delivery of optimal clinical care of bulbar dysfunction.
Collapse
Affiliation(s)
- Panying Rong
- Department of Speech-Language-Hearing: Sciences and Disorders, University of Kansas, Lawrence, KS, United States
| | - Lindsey Heidrick
- Department of Hearing and Speech, University of Kansas Medical Center, Kansas City, KS, United States
| | - Gary L Pattee
- Neurology Associate P.C., Lincoln, NE, United States
| |
Collapse
|
20
|
Yacoubi B, Christou EA. Rethinking force steadiness: a new perspective. J Appl Physiol (1985) 2024; 136:1260-1262. [PMID: 38299220 PMCID: PMC11368513 DOI: 10.1152/japplphysiol.00860.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/02/2024] Open
Affiliation(s)
- Basma Yacoubi
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Evangelos A Christou
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
- Department of Neurology, Norman Fixel Institute of Neurological Disorders, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
21
|
Amiridis IG, Kannas T, Sahinis C, Negro F, Trypidakis G, Kellis E, Enoka RM. More Variability in Tibialis Anterior Function during the Adduction of the Foot than Dorsiflexion of the Ankle. Med Sci Sports Exerc 2024; 56:851-859. [PMID: 38190382 DOI: 10.1249/mss.0000000000003377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
INTRODUCTION The aim of the study was to compare maximal force, force steadiness, and the discharge characteristics of motor units in the tibialis anterior (TA) muscle during submaximal isometric contractions for ankle dorsiflexion and adduction of the foot. METHODS Nineteen active young adults performed maximal and submaximal isometric dorsiflexion and adduction contractions at five target forces (5%, 10%, 20%, 40%, and 60% maximal voluntary contraction [MVC]). The activity of motor units in TA was recorded by high-density EMG. RESULTS The maximal force was similar between dorsiflexion and adduction, despite EMG amplitude for TA being greater ( P < 0.05) during dorsiflexion than adduction. Τhe coefficient of variation (CV) for force (force steadiness) during dorsiflexion was always less ( P < 0.05) than during adduction, except of 5% MVC force. No differences were observed for mean discharge rate; however, the regression between the changes in discharge rate relative to the change of force was significant for dorsiflexion ( R2 = 0.25, P < 0.05) but not for adduction. Discharge variability, however, was usually less during dorsiflexion. The CV for interspike interval was less ( P < 0.05) at 10%, 20%, and 40% MVC but greater at 60% MVC during dorsiflexion than adduction. Similarly, the SD values of the filtered cumulative spike train of the motor units in TA were less ( P < 0.05) at 5%, 10%, 20%, and 40% MVC during dorsiflexion than adduction. CONCLUSIONS Although the mean discharge rate of motor units in TA was similar during foot adduction and ankle dorsiflexion, discharge variability was less during dorsiflexion resulting in less accurate performance of the steady adduction contractions. The neural drive to bifunctional muscles differs during their accessory function, which must be considered for training and rehabilitation interventions.
Collapse
Affiliation(s)
- Ioannis G Amiridis
- Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, GREECE
| | - Theodoros Kannas
- Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, GREECE
| | - Chrysostomos Sahinis
- Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, GREECE
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, ITALY
| | - Georgios Trypidakis
- Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, GREECE
| | - Eleftherios Kellis
- Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, GREECE
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado, Boulder, CO
| |
Collapse
|
22
|
Roeder L, Breakspear M, Kerr GK, Boonstra TW. Dynamics of brain-muscle networks reveal effects of age and somatosensory function on gait. iScience 2024; 27:109162. [PMID: 38414847 PMCID: PMC10897916 DOI: 10.1016/j.isci.2024.109162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/16/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024] Open
Abstract
Walking is a complex motor activity that requires coordinated interactions between the sensory and motor systems. We used mobile EEG and EMG to investigate the brain-muscle networks involved in gait control during overground walking in young people, older people, and individuals with Parkinson's disease. Dynamic interactions between the sensorimotor cortices and eight leg muscles within a gait cycle were assessed using multivariate analysis. We identified three distinct brain-muscle networks during a gait cycle. These networks include a bilateral network, a left-lateralized network activated during the left swing phase, and a right-lateralized network active during the right swing. The trajectories of these networks are contracted in older adults, indicating a reduction in neuromuscular connectivity with age. Individuals with the impaired tactile sensitivity of the foot showed a selective enhancement of the bilateral network, possibly reflecting a compensation strategy to maintain gait stability. These findings provide a parsimonious description of interindividual differences in neuromuscular connectivity during gait.
Collapse
Affiliation(s)
- Luisa Roeder
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Information Systems, Faculty of Science, Queensland University of Technology, Brisbane, QLD, Australia
- Chair of Human Movement Science, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Michael Breakspear
- College of Engineering Science and Environment, College of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Graham K Kerr
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Tjeerd W Boonstra
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
23
|
Marsala MJ, Christie AD. Neuromuscular behaviour in the first dorsal interosseus following mental fatigue. Exp Physiol 2024; 109:416-426. [PMID: 38130030 PMCID: PMC10988746 DOI: 10.1113/ep091349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
We examined sex-specific changes to neuromuscular function in response to mental fatigue. Twenty-five young, healthy adults (13 F, 12 M) performed a mentally fatiguing task and control condition for 30 min on two separate days. Neuromuscular function was assessed in the first dorsal interosseous before and after each condition. Reaction time decreased after the mentally fatiguing task (P < 0.001, η2 = 0.47). Males and females reported higher levels of subjective fatigue after the mentally fatiguing task (P < 0.02, η2 = 0.07). Motor unit firing rate increased over time at 10% maximal voluntary contraction (MVC; P < 0.04, η2 = 0.16), and decreased over time at 50% MVC (P < 0.01, η2 = 0.14); however, this was not unique to either sex. During a variable force contraction, error decreased in females over time and increased in males (P < 0.05, η2 = 0.13), although changes were not unique to mental fatigue. Physiological function of the neuromuscular system was not specifically affected by mental fatigue in males or females.
Collapse
Affiliation(s)
- Michael J. Marsala
- School of Kinesiology, Faculty of Health SciencesThe University of Western OntarioOntarioCanada
| | - Anita D. Christie
- School of Kinesiology, Faculty of Health SciencesThe University of Western OntarioOntarioCanada
| |
Collapse
|
24
|
Darendeli A, Enoka RM. Control of motor output during steady submaximal contractions is modulated by contraction history. Exp Brain Res 2024; 242:675-683. [PMID: 38260992 PMCID: PMC10894765 DOI: 10.1007/s00221-023-06774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024]
Abstract
The purpose of the study was to investigate the influence of contraction history on force steadiness and the associated EMG activity during submaximal isometric contractions performed with the dorsiflexor muscles. The key feature of the protocol was a triangular ramp contraction performed in the middle of a steady contraction at a lower target force. The target force during the ramp contraction was 20% MVC greater than that during the steady contraction. Thirty-seven healthy individuals (21 men and 16 women) performed the submaximal tasks with the ankle dorsiflexors. Electromyography (EMG) signals were recorded from tibialis anterior with a pair of surface electrodes. The coefficient of variation for force was significantly greater during the second steady contraction compared with the first one at each of the seven target forces (p < 0.015; d = 0.38-0.92). Although the average applied force during the steady contractions before and after the triangular contraction was the same (p = 0.563), the mean EMG amplitude for the steady contractions performed after the triangular contraction was significantly greater at each of the seven target forces (p < 0.0001; d = 0.44-0.68). Also, there were significant differences in mean EMG frequency between the steady contractions performed before and after the triangular contraction (p < 0.01; d = 0.13-0.82), except at 10 and 20% MVC force. The greater force fluctuations during a steady submaximal contraction after an intervening triangular contraction indicate a change in the discharge characteristics of the involved motor units.
Collapse
Affiliation(s)
- Abdulkerim Darendeli
- Movement Neuroscience Laboratory, Department of Physical Therapy, Movement, and Rehabilitation Sciences, Northeastern University, Boston, MA, 02115, USA.
- Faculty of Sport Sciences, Sivas Cumhuriyet University, Sivas, Turkey.
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
25
|
Bao S, Lei Y. Motor unit activity and synaptic inputs to motoneurons in the caudal part of the injured spinal cord. J Neurophysiol 2024; 131:187-197. [PMID: 38117916 DOI: 10.1152/jn.00178.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 12/22/2023] Open
Abstract
Spinal cord injury (SCI) disrupts neuronal function below the lesion epicenter, causing disuse muscle atrophy. We investigated motor unit (MU) activity and synaptic inputs to motoneurons in the caudal region of the injured spinal cord. Participants with C4-C7 cervical injuries were studied. The extensor digitorum communis (EDC) muscle, which is mainly innervated by C8, was assessed for disuse muscle atrophy. Using advanced electromyography and signal-processing techniques, we examined the concurrent activation of a substantial population of MUs during force-tracking tasks. We found that in participants with SCI (n = 9), both MU discharge rates and the amplitudes of MU action potentials were significantly lower than in controls (n = 9). After SCI, MUs were recruited in a limited force range as the strength of muscle contractions increased, implying a disruption in the orderly MU recruitment pattern. Coherence analysis revealed reduced synaptic inputs to motoneurons in the delta band (0.5-5 Hz) for participants with SCI, suggesting diminished common synaptic inputs to the EDC muscle. In addition, participants with SCI exhibited greater muscle force variability. Using principal component analysis on low-frequency MU discharge rates, we found that the first common component (FCC) captured the most discharge variability in participants with SCI. The coefficients of variation (CV) of the FCC correlated with force signal CVs, suggesting force variability mainly results from common synaptic inputs to the EDC muscle after SCI. These results advance our understanding of the neurophysiology of disuse muscle atrophy in human SCI, paving the way for therapeutic interventions to restore muscle function.NEW & NOTEWORTHY This study analyzed motor unit (MU) function below the lesion epicenter in patients with spinal cord injury (SCI). We found reduced MU discharge rates and action potential amplitudes in participants with SCI compared with controls. The strength of common synaptic inputs to motoneurons was reduced in patients with SCI, with increased force variability primarily due to low-frequency oscillations of common inputs. This study enhances understanding of neurophysiological and behavioral changes in disuse muscle atrophy post-SCI.
Collapse
Affiliation(s)
- Shancheng Bao
- Department of Kinesiology & Sport Management, Texas A&M University, College Station, Texas, United States
| | - Yuming Lei
- Department of Kinesiology & Sport Management, Texas A&M University, College Station, Texas, United States
| |
Collapse
|
26
|
Rong P, Rasmussen L. A Fine-Grained Temporal Analysis of Multimodal Oral Diadochokinetic Performance to Assess Speech Impairment in Amyotrophic Lateral Sclerosis. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2024; 33:307-332. [PMID: 38064644 DOI: 10.1044/2023_ajslp-23-00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
PURPOSE This study used a semiautomated fine-grained temporal analysis to extract features of temporal oral diadochokinetic (DDK) performance across multiple modalities and tasks, from neurologically healthy and impaired individuals secondary to amyotrophic lateral sclerosis (ALS). The aims were to (a) delineate temporal oral DDK deficits relating to the neuromotor pathology of ALS and (b) identify the optimal task-feature combinations to detect speech impairment in ALS. METHOD Mandibular myoelectric, kinematic, and acoustic data were acquired from 13 individuals with ALS and 10 healthy controls producing three alternating motion rate tasks and one sequential motion rate task. Twenty-seven features were extracted from the multimodal data, characterizing three temporal constructs: duration/rate, variability, and coordination. The disease impacts on these features were assessed across tasks, and the task eliciting the greatest disease-related change was identified for each feature. Such "optimal" task-feature combinations were fed into logistic regression to differentiate individuals with ALS from healthy controls. RESULTS Temporal deficits in ALS were characterized by (a) increased duration and variability and reduced coordination of jaw muscle activities, (b) increased duration and variability and altered temporal symmetry of jaw velocity profile, (c) increased muscle-burst-to-peak-velocity duration, and (d) increased motion-to-voice onset duration. These temporal features were differentially affected across tasks. The optimal task-feature combinations, which were further clustered into three composite factors reflecting temporal variability, coarser-grained duration, and finer-grained duration, differentiated ALS from controls with an F1 score of 0.86 (precision = 1.00, recall = 0.75). CONCLUSIONS Temporal oral DDK deficits are likely attributed to a hierarchy of interrelated neurophysiological and biomechanical factors associated with the neuromotor pathology of ALS. These deficits, as assessed crossmodally, provide previously unavailable insights into the multifaceted timing impairment of oromotor performance in ALS. The optimal task-feature combinations targeting these deficits show promise as quantitative markers for (early) detection of speech impairment in ALS.
Collapse
Affiliation(s)
- Panying Rong
- Department of Speech-Language-Hearing: Sciences & Disorders, The University of Kansas, Lawrence
| | - Lily Rasmussen
- Department of Speech-Language-Hearing: Sciences & Disorders, The University of Kansas, Lawrence
| |
Collapse
|
27
|
Farina D, Gandevia S. The neural control of movement: a century of in vivo motor unit recordings is the legacy of Adrian and Bronk. J Physiol 2024; 602:281-295. [PMID: 38059891 PMCID: PMC10952757 DOI: 10.1113/jp285319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023] Open
Abstract
In two papers dated 1928 to 1929 in The Journal of Physiology, Edgar Adrian and Detlev Bronk described recordings from motor nerve and muscle fibres. The recordings from motor nerve fibres required progressive dissection of the nerve until a few fibres remained, from which isolated single fibre activity could be detected. The muscle fibre recordings were performed in humans during voluntary contractions with an intramuscular electrode - the concentric needle electrode - that they describe for the first time in the second paper. They recognised that muscle fibres would respond to each impulse sent by the innervating motor neurone and that therefore muscle fibre recordings provided information on the times of activation of the motor nerve fibres which were as accurate as a direct record from the nerve. These observations and the description of the concentric needle electrode opened the era of motor unit recordings in humans, which have continued for almost a century and have provided a comprehensive view of the neural control of movement at the motor unit level. Despite important advances in technology, many of the principles of motor unit behaviour that would be investigated in the subsequent decades were canvassed in the two papers by Adrian and Bronk. For example, they described the concomitant motor neurones' recruitment and rate coding for force modulation, synchronisation of motor unit discharges, and the dependence of discharge rate on motor unit recruitment threshold. Here, we summarise their observations and discuss the impact of their work. We highlight the advent of the concentric needle, and its subsequent influence on motor control research.
Collapse
Affiliation(s)
- Dario Farina
- Department of BioengineeringImperial College LondonLondonUK
| | - Simon Gandevia
- Neuroscience Research AustraliaSydney and University of New South WalesSydneyAustralia
| |
Collapse
|
28
|
Caillet AH, Phillips ATM, Farina D, Modenese L. Motoneuron-driven computational muscle modelling with motor unit resolution and subject-specific musculoskeletal anatomy. PLoS Comput Biol 2023; 19:e1011606. [PMID: 38060619 PMCID: PMC10729998 DOI: 10.1371/journal.pcbi.1011606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/19/2023] [Accepted: 10/16/2023] [Indexed: 12/20/2023] Open
Abstract
The computational simulation of human voluntary muscle contraction is possible with EMG-driven Hill-type models of whole muscles. Despite impactful applications in numerous fields, the neuromechanical information and the physiological accuracy such models provide remain limited because of multiscale simplifications that limit comprehensive description of muscle internal dynamics during contraction. We addressed this limitation by developing a novel motoneuron-driven neuromuscular model, that describes the force-generating dynamics of a population of individual motor units, each of which was described with a Hill-type actuator and controlled by a dedicated experimentally derived motoneuronal control. In forward simulation of human voluntary muscle contraction, the model transforms a vector of motoneuron spike trains decoded from high-density EMG signals into a vector of motor unit forces that sum into the predicted whole muscle force. The motoneuronal control provides comprehensive and separate descriptions of the dynamics of motor unit recruitment and discharge and decodes the subject's intention. The neuromuscular model is subject-specific, muscle-specific, includes an advanced and physiological description of motor unit activation dynamics, and is validated against an experimental muscle force. Accurate force predictions were obtained when the vector of experimental neural controls was representative of the discharge activity of the complete motor unit pool. This was achieved with large and dense grids of EMG electrodes during medium-force contractions or with computational methods that physiologically estimate the discharge activity of the motor units that were not identified experimentally. This neuromuscular model advances the state-of-the-art of neuromuscular modelling, bringing together the fields of motor control and musculoskeletal modelling, and finding applications in neuromuscular control and human-machine interfacing research.
Collapse
Affiliation(s)
- Arnault H. Caillet
- Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Andrew T. M. Phillips
- Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Luca Modenese
- Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| |
Collapse
|
29
|
Ogawa A, Sakamoto M, Matsumoto A, Okusaki T, Sasaya R, Irie K, Liang N. Accuracy of Force Generation and Preparatory Prefrontal Oxygenation in Ballistic Hand Power and Precision Grips. J Mot Behav 2023; 56:226-240. [PMID: 37997191 DOI: 10.1080/00222895.2023.2283541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Abstract
It remains unclear whether accurate motor performance and cortical activation differ among grasping forms across several force levels. In the present study, a ballistic target force matching task (20%, 40%, 60%, and 80% of maximum voluntary force) with power grip, side pinch, and pulp pinch was utilized to explore the accuracy of the forces generated as well as the muscular activity of intrinsic and extrinsic hand muscles. By using near-infrared spectroscopy, we also examined bilateral dorsolateral prefrontal cortex (DLPFC) activation during the preparatory phase (initial 10 s) of the task. The accuracy of the power grip and pulp pinch was relatively higher than that of the side pinch, and the electromyographic activity of intrinsic hand muscles exhibited a similar trend for power grip and side pinch, while the opposite muscle recruitment pattern was observed for pulp pinch. The increment of DLPFC oxygenation across force levels differed among grasping forms, with greater activity at relatively higher levels in the power grip and side pinch, and at relatively lower levels in the pulp pinch. Taken together, the differential contribution of the DLPFC may be responsible for force generation depending on different grasping forms and force levels.
Collapse
Affiliation(s)
- Akari Ogawa
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mizuki Sakamoto
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Amiri Matsumoto
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tetsuei Okusaki
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ren Sasaya
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keisuke Irie
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nan Liang
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
30
|
Rong P, Taylor A. A Vowel-Centric View Toward Characterizing Temporal Organization of Motor Speech Activities in Neurologically Impaired and Healthy Speakers. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:3697-3720. [PMID: 37607386 DOI: 10.1044/2023_jslhr-23-00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
PURPOSE This study tested the hypotheses that (a) motor speech activities are temporally organized around the nuclei into vowel-centric units that hold both stability and flexibility and (b) such temporal organization is impacted by motor speech impairment. METHOD Thirteen individuals with amyotrophic lateral sclerosis and 10 healthy controls read a sentence 3 times at each of the following rates: habitual, fast, and slow. Articulatory gestures and phonatory event were assessed in two vowel-centric units, as operationally defined within and across the boundaries of two target words-cat and must-to accommodate common coda omission and coarticulation. Twelve absolute and relative timing measures centering on the nucleus were derived to characterize the temporal organization of each unit. These measures were evaluated in terms of (a) their relations with global duration across rate conditions and (b) between-groups differences for the habitual rate condition. RESULTS Both vowel-centric units remained stable in relative timing between the articulatory gestures approaching and moving away from the nucleus across rate conditions. Relative timing between the articulatory gestures and phonatory event at smaller temporal granularities varied with global duration, but in different ways for neurologically impaired and healthy speakers. Disease impacts on relative timing were only detected across word boundaries. All absolute timing measures revealed consistent temporal scaling effects and disease-related prolongations. CONCLUSIONS The findings provide preliminary support for vowel-centric temporal organization of motor speech activities. Such temporal organization holds some extent of both stability and flexibility, which may facilitate the parsing of syllabic events during auditory processing, while accommodating task-specific suprasegmental variations. The timing impairments in amyotrophic lateral sclerosis are likely attributed to the disease-imposed dynamic constraints, reducing the entrainment of the related motor speech activities to the underlying linguistic elements. These findings have potential implications in guiding the assessment and management of temporal speech deficits in ALS.
Collapse
Affiliation(s)
- Panying Rong
- Department of Speech-Language-Hearing: Sciences & Disorders, University of Kansas, Lawrence
| | - Ava Taylor
- Department of Speech-Language-Hearing: Sciences & Disorders, University of Kansas, Lawrence
| |
Collapse
|
31
|
Levine J, Avrillon S, Farina D, Hug F, Pons JL. Two motor neuron synergies, invariant across ankle joint angles, activate the triceps surae during plantarflexion. J Physiol 2023; 601:4337-4354. [PMID: 37615253 PMCID: PMC10952824 DOI: 10.1113/jp284503] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023] Open
Abstract
Recent studies have suggested that the nervous system generates movements by controlling groups of motor neurons (synergies) that do not always align with muscle anatomy. In this study, we determined whether these synergies are robust across tasks with different mechanical constraints. We identified motor neuron synergies using principal component analysis (PCA) and cross-correlations between smoothed discharge rates of motor neurons. In part 1, we used simulations to validate these methods. The results suggested that PCA can accurately identify the number of common inputs and their distribution across active motor neurons. Moreover, the results confirmed that cross-correlation can separate pairs of motor neurons that receive common inputs from those that do not receive common inputs. In part 2, 16 individuals performed plantarflexion at three ankle angles while we recorded EMG signals from the gastrocnemius lateralis (GL) and medialis (GM) and the soleus (SOL) with grids of surface electrodes. The PCA revealed two motor neuron synergies. These motor neuron synergies were relatively stable, with no significant differences in the distribution of motor neuron weights across ankle angles (P = 0.62). When the cross-correlation was calculated for pairs of motor units tracked across ankle angles, we observed that only 13.0% of pairs of motor units from GL and GM exhibited significant correlations of their smoothed discharge rates across angles, confirming the low level of common inputs between these muscles. Overall, these results highlight the modularity of movement control at the motor neuron level, suggesting a sensible reduction of computational resources for movement control. KEY POINTS: The CNS might generate movements by activating groups of motor neurons (synergies) with common inputs. We show here that two main sources of common inputs drive the motor neurons innervating the triceps surae muscles during isometric ankle plantarflexions. We report that the distribution of these common inputs is globally invariant despite changing the mechanical constraints of the tasks, i.e. the ankle angle. These results suggest the functional relevance of the modular organization of the CNS to control movements.
Collapse
Affiliation(s)
- Jackson Levine
- Legs + Walking LabShirley Ryan AbilityLabChicagoILUSA
- Department of Physical Medicine and RehabilitationFeinberg School of MedicineNorthwestern UniversityChicagoILUSA
- Department of Biomedical EngineeringMcCormick School of EngineeringNorthwestern UniversityChicagoILUSA
| | - Simon Avrillon
- Legs + Walking LabShirley Ryan AbilityLabChicagoILUSA
- Department of Physical Medicine and RehabilitationFeinberg School of MedicineNorthwestern UniversityChicagoILUSA
- Department of BioengineeringFaculty of Engineering, Imperial College LondonLondonUK
| | - Dario Farina
- Department of BioengineeringFaculty of Engineering, Imperial College LondonLondonUK
| | - François Hug
- Université Côte d'Azur, LAMHESSNiceFrance
- School of Biomedical SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - José L. Pons
- Legs + Walking LabShirley Ryan AbilityLabChicagoILUSA
- Department of Physical Medicine and RehabilitationFeinberg School of MedicineNorthwestern UniversityChicagoILUSA
- Department of Biomedical EngineeringMcCormick School of EngineeringNorthwestern UniversityChicagoILUSA
| |
Collapse
|
32
|
Harrison S, Clark NC, Ansdell P, Pethick J. Sex differences in knee extensor torque control. J Electromyogr Kinesiol 2023; 72:102806. [PMID: 37566938 DOI: 10.1016/j.jelekin.2023.102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/30/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
There is currently equivocal evidence regarding sex-related differences in measures of muscle force and torque control. To that end, we investigated sex differences in knee extensor muscle torque control, using both magnitude- and complexity-based measures, across contraction intensities typical of activities of daily living. 50 participants (25 male, median age [and interquartile range] 23.0 [20.0-33.0]; 25 female, median age [and interquartile range] 21.0 [20.0-40.5]) performed a series of intermittent isometric knee extensor contractions at 10, 20 and 40% maximal voluntary contraction (MVC). Torque was measured in N·m and torque control was quantified according to the magnitude (standard deviation [SD], coefficient of variation [CV]) and complexity (approximate entropy [ApEn], detrended fluctuation analysis [DFA] α) of torque fluctuations. Males exhibited a significantly greater absolute magnitude (i.e., SD) of knee extensor torque fluctuations during contractions at 10% (P = 0.011), 20% (P = 0.002) and 40% MVC (P = 0.003), though no sex differences were evident when fluctuations were normalised to mean torque output (i.e., CV). Males exhibited significantly lower ApEn during contractions at 10% (P = 0.002) and 20% MVC (P = 0.024) and significantly greater DFA α during contractions at 10% (P = 0.003) and 20% MVC (P = 0.001). These data suggest sex differences in muscle torque control strategies and highlight the need to consider both the magnitude and complexity of torque fluctuations when examining sex differences in muscle force control.
Collapse
Affiliation(s)
- Savanna Harrison
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK
| | - Nicholas C Clark
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK
| | - Paul Ansdell
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| | - Jamie Pethick
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK.
| |
Collapse
|
33
|
Lecce E, Nuccio S, Del Vecchio A, Conti A, Nicolò A, Sacchetti M, Felici F, Bazzucchi I. Sensorimotor integration is affected by acute whole-body vibration: a coherence study. Front Physiol 2023; 14:1266085. [PMID: 37772061 PMCID: PMC10523146 DOI: 10.3389/fphys.2023.1266085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/01/2023] [Indexed: 09/30/2023] Open
Abstract
Introduction: Several whole-body vibration (WBV) effects on performance have been related to potential changes in the neural drive, motor unit firing rate, and sensorimotor integration. In the present paper, motor unit coherence analysis was performed to detect the source of neural modulation based on the frequency domain. Methods: Thirteen men [25 ± 2.1 years; Body Mass Index (BMI) = 23.9 ± 1.3 kg m2; maximal voluntary force (MVF): 324.36 ± 41.26 N] performed sustained contractions of the Tibialis Anterior (TA) at 10%MVF before and after acute WBV. The vibrating stimulus was applied barefoot through a platform to target the TA. High-Density surface Electromyography (HDsEMG) was used to record the myoelectrical activity of TA to evaluate coherence from motor unit cumulative spike-trains (CSTs). Results: Mean coherence showed a significant decrease in the alpha and low-beta bandwidths (alpha: from 0.143 ± 0.129 to 0.132 ± 0.129, p = 0.035; low-beta: from 0.117 ± 0.039 to 0.086 ± 0.03, p = 0.0001), whereas no significant changes were found in the other ones (p > 0.05). The discharge rate (DR) and the Force Covariance (CovF%) were not significantly affected by acute WBV exposure (p > 0.05). Discussion: According to the significant effects found in alpha and low-beta bandwidths, which reflect sensorimotor integration parameters, accompanied by no differences in the DR and CovF%, the present results underlined that possible neural mechanisms at the base of the previously reported performance enhancements following acute WBV are likely based on sensorimotor integration rather than direct neural drive modulation.
Collapse
Affiliation(s)
- E. Lecce
- Department of Movement, Human, and Health Sciences, Laboratory of Exercise Physiology, University of Rome “Foro Italico”, Rome, Italy
| | - S. Nuccio
- Department of Movement, Human, and Health Sciences, Laboratory of Exercise Physiology, University of Rome “Foro Italico”, Rome, Italy
| | - A. Del Vecchio
- Department Artificial Intelligence in Biomedical Engineering, Faculty of Engineering, Zentralinstitut für Medizintechnik (ZIMT), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - A. Conti
- Department of Movement, Human, and Health Sciences, Laboratory of Exercise Physiology, University of Rome “Foro Italico”, Rome, Italy
| | - A. Nicolò
- Department of Movement, Human, and Health Sciences, Laboratory of Exercise Physiology, University of Rome “Foro Italico”, Rome, Italy
| | - M. Sacchetti
- Department of Movement, Human, and Health Sciences, Laboratory of Exercise Physiology, University of Rome “Foro Italico”, Rome, Italy
| | - F. Felici
- Department of Movement, Human, and Health Sciences, Laboratory of Exercise Physiology, University of Rome “Foro Italico”, Rome, Italy
| | - I. Bazzucchi
- Department of Movement, Human, and Health Sciences, Laboratory of Exercise Physiology, University of Rome “Foro Italico”, Rome, Italy
| |
Collapse
|
34
|
Alix-Fages C, Jiménez-Martínez P, de Oliveira DS, Möck S, Balsalobre-Fernández C, Del Vecchio A. Mental fatigue impairs physical performance but not the neural drive to the muscle: a preliminary analysis. Eur J Appl Physiol 2023; 123:1671-1684. [PMID: 36988671 DOI: 10.1007/s00421-023-05189-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
Mental fatigue (MF) does not only affect cognitive but also physical performance. This study aimed to explore the effects of MF on muscle endurance, rate of perceived exertion (RPE), and motor units' activity. Ten healthy males participated in a randomised crossover study. The subjects attended two identical experimental sessions separated by 3 days with the only difference of a cognitive task (incongruent Stroop task [ST]) and a control condition (watching a documentary). Perceived MF and motivation were measured for each session at baseline and after each cognitive task. Four contractions at 20% of maximal voluntary contraction (MVIC) were performed at baseline, after each cognitive and after muscle endurance task while measuring motor units by high-density surface electromyography. Muscle endurance until failure at 50% of MVIC was measured after each cognitive task and the RPE was measured right after failure. ST significantly increased MF (p = 0.001) reduced the motivation (p = 0.008) for the subsequent physical task and also impaired physical performance (p = 0.044). However, estimates of common synaptic inputs and motor unit discharge rates as well as RPE were not affected by MF (p > 0.11). In conclusion, MF impairs muscle endurance and motivation for the physical task but not the neural drive to the muscle at any frequency bands. Although it is physiologically possible for mentally fatigued subjects to generate an optimal neuromuscular function, the altered motivation seems to limit physical performance. Preliminarily, our results suggest that the corticospinal pathways are not affected by MF.
Collapse
Affiliation(s)
- Carlos Alix-Fages
- Applied Biomechanics and Sport Technology Research Group, Autonomous University of Madrid, C/ Fco Tomas Y Valiente 3, Cantoblanco, 28049, Madrid, Spain.
- ICEN Institute, Madrid, Spain.
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, Valencia, Spain.
| | - Pablo Jiménez-Martínez
- ICEN Institute, Madrid, Spain
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, Valencia, Spain
| | - Daniela Souza de Oliveira
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 91, 91052, Erlangen, Germany
| | - Sebastian Möck
- Department of Exercise Science, Olympic Training and Testing Center of Hessen, Frankfurt Am Main, Germany
| | - Carlos Balsalobre-Fernández
- Applied Biomechanics and Sport Technology Research Group, Autonomous University of Madrid, C/ Fco Tomas Y Valiente 3, Cantoblanco, 28049, Madrid, Spain
| | - Alessandro Del Vecchio
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 91, 91052, Erlangen, Germany.
| |
Collapse
|
35
|
Ibáñez J, Zicher B, Brown KE, Rocchi L, Casolo A, Del Vecchio A, Spampinato D, Vollette CA, Rothwell JC, Baker SN, Farina D. Standard intensities of transcranial alternating current stimulation over the motor cortex do not entrain corticospinal inputs to motor neurons. J Physiol 2023; 601:3187-3199. [PMID: 35776944 DOI: 10.1113/jp282983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
Transcranial alternating current stimulation (TACS) is commonly used to synchronize a cortical area and its outputs to the stimulus waveform, but gathering evidence for this based on brain recordings in humans is challenging. The corticospinal tract transmits beta oscillations (∼21 Hz) from the motor cortex to tonically contracted limb muscles linearly. Therefore, muscle activity may be used to measure the level of beta entrainment in the corticospinal tract due to TACS over the motor cortex. Here, we assessed whether TACS is able to modulate the neural inputs to muscles, which would provide indirect evidence for TACS-driven neural entrainment. In the first part of the study, we ran simulations of motor neuron (MN) pools receiving inputs from corticospinal neurons with different levels of beta entrainment. Results suggest that MNs are highly sensitive to changes in corticospinal beta activity. Then, we ran experiments on healthy human subjects (N = 10) in which TACS (at 1 mA) was delivered over the motor cortex at 21 Hz (beta stimulation), or at 7 Hz or 40 Hz (control conditions) while the abductor digiti minimi or the tibialis anterior muscle were tonically contracted. Muscle activity was measured using high-density electromyography, which allowed us to decompose the activity of pools of motor units innervating the muscles. By analysing motor unit pool activity, we observed that none of the TACS conditions could consistently alter the spectral contents of the common neural inputs received by the muscles. These results suggest that 1 mA TACS over the motor cortex given at beta frequencies does not entrain corticospinal activity. KEY POINTS: Transcranial alternating current stimulation (TACS) is commonly used to entrain the communication between brain regions. It is challenging to find direct evidence supporting TACS-driven neural entrainment due to the technical difficulties in recording brain activity during stimulation. Computational simulations of motor neuron pools receiving common inputs in the beta (∼21 Hz) band indicate that motor neurons are highly sensitive to corticospinal beta entrainment. Motor unit activity from human muscles does not support TACS-driven corticospinal entrainment.
Collapse
Affiliation(s)
- Jaime Ibáñez
- BSICoS group, I3A Institute, University of Zaragoza, IIS Aragón, Zaragoza, Spain
- Department of Bioengineering, Imperial College, London, UK
- Department for Clinical and movement neurosciences, Institute of Neurology, University College London, UK
| | - Blanka Zicher
- Department of Bioengineering, Imperial College, London, UK
| | - Katlyn E Brown
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Lorenzo Rocchi
- Department for Clinical and movement neurosciences, Institute of Neurology, University College London, UK
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Andrea Casolo
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Alessandro Del Vecchio
- Department of Artificial Intelligence in Biomedical Engineering, Faculty of Engineering, 17 Friedrich-Alexander University, Erlangen, Germany
| | - Danny Spampinato
- Non-Invasive Brain Stimulation Unit, Department of Behavioral and Clinical Neurology, Santa Lucia Foundation, Rome, Italy
| | | | | | - Stuart N Baker
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Dario Farina
- Department of Bioengineering, Imperial College, London, UK
| |
Collapse
|
36
|
Hug F, Avrillon S, Sarcher A, Del Vecchio A, Farina D. Correlation networks of spinal motor neurons that innervate lower limb muscles during a multi-joint isometric task. J Physiol 2023; 601:3201-3219. [PMID: 35772071 DOI: 10.1113/jp283040] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
Movements are reportedly controlled through the combination of synergies that generate specific motor outputs by imposing an activation pattern on a group of muscles. To date, the smallest unit of analysis of these synergies has been the muscle through the measurement of its activation. However, the muscle is not the lowest neural level of movement control. In this human study (n = 10), we used a purely data-driven method grounded on graph theory to extract networks of motor neurons based on their correlated activity during an isometric multi-joint task. Specifically, high-density surface electromyography recordings from six lower limb muscles were decomposed into motor neurons spiking activity. We analysed these activities by identifying their common low-frequency components, from which networks of correlated activity to the motor neurons were derived and interpreted as networks of common synaptic inputs. The vast majority of the identified motor neurons shared common inputs with other motor neuron(s). In addition, groups of motor neurons were partly decoupled from their innervated muscle, such that motor neurons innervating the same muscle did not necessarily receive common inputs. Conversely, some motor neurons from different muscles-including distant muscles-received common inputs. The study supports the theory that movements are produced through the control of small numbers of groups of motor neurons via common inputs and that there is a partial mismatch between these groups of motor neurons and muscle anatomy. We provide a new neural framework for a deeper understanding of the structure of common inputs to motor neurons. KEY POINTS: A central and unresolved question is how spinal motor neurons are controlled to generate movement. We decoded the spiking activities of dozens of spinal motor neurons innervating six muscles during a multi-joint task, and we used a purely data-driven method grounded on graph theory to extract networks of motor neurons based on their correlated activity (considered as common input). The vast majority of the identified motor neurons shared common inputs with other motor neuron(s). Groups of motor neurons were partly decoupled from their innervated muscle, such that motor neurons innervating the same muscle did not necessarily receive common inputs. Conversely, some motor neurons from different muscles, including distant muscles, received common inputs. The study supports the theory that movement is produced through the control of groups of motor neurons via common inputs and that there is a partial mismatch between these groups of motor neurons and muscle anatomy.
Collapse
Affiliation(s)
- François Hug
- LAMHESS, Université Côte d'Azur, Nice, France
- Laboratory 'Movement, Interactions, Performance' (EA 4334), Nantes University, Nantes, France
- Institut Universitaire de France (IUF), Paris, France
| | - Simon Avrillon
- Legs + Walking AbilityLab, Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
- Neuromechanics & Rehabilitation Technology Group, Department of Bioengineering, Faculty of Engineering, Imperial College London, London, UK
| | - Aurélie Sarcher
- Laboratory 'Movement, Interactions, Performance' (EA 4334), Nantes University, Nantes, France
| | - Alessandro Del Vecchio
- Neuromuscular Physiology and Neural Interfacing Group, Department of Artificial Intelligence in Biomedical Engineering, Faculty of Engineering, Erlangen-Nuremberg, Friedrich-Alexander University, Erlangen, Germany
| | - Dario Farina
- Neuromechanics & Rehabilitation Technology Group, Department of Bioengineering, Faculty of Engineering, Imperial College London, London, UK
| |
Collapse
|
37
|
Pethick J, Moran J, Behm DG. Prolonged static stretching increases the magnitude and decreases the complexity of knee extensor muscle force fluctuations. PLoS One 2023; 18:e0288167. [PMID: 37478104 PMCID: PMC10361527 DOI: 10.1371/journal.pone.0288167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/21/2023] [Indexed: 07/23/2023] Open
Abstract
Static stretching decreases maximal muscle force generation in a dose-response manner, but its effects on the generation of task-relevant and precise levels of submaximal force, i.e. force control, is unclear. We investigated the effect of acute static stretching on knee extensor force control, quantified according to both the magnitude and complexity of force fluctuations. Twelve healthy participants performed a series of isometric knee extensor maximal voluntary contractions (MVCs) and targeted intermittent submaximal contractions at 25, 50 and 75% MVC (3 x 6 seconds contraction separated by 4 seconds rest, with 60 seconds rest between each intensity) prior to, and immediately after, one of four continuous static stretch conditions: 1) no stretch; 2) 30-second stretch; 3) 60-second stretch; 4) 120-second stretch. The magnitude of force fluctuations was quantified using the standard deviation (SD) and coefficient of variation (CV), while the complexity of fluctuations was quantified using approximate entropy (ApEn) and detrended fluctuation analysis (DFA) α. These measures were calculated using the steadiest 5 seconds of the targeted submaximal contractions at each intensity (i.e., that with the lowest SD). Significant decreases in MVC were evident following the 30, 60 and 120-second stretch conditions (all P < 0.001), with a significant correlation observed between stretch duration and the magnitude of decrease in MVC (r = -0.58, P < 0.001). The 120-second stretch resulted in significant increases in SD at 50% MVC (P = 0.007) and CV at 50% (P = 0.009) and 75% MVC (P = 0.005), and a significant decrease in ApEn at 75% MVC (P < 0.001). These results indicate that the negative effects of prolonged static stretching extend beyond maximal force generation tasks to those involving generation of precise levels of force during moderate- to high-intensity submaximal contractions.
Collapse
Affiliation(s)
- Jamie Pethick
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, Essex, United Kingdom
| | - Jason Moran
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, Essex, United Kingdom
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
38
|
Ofner P, Lee MJ, Farina D, Mehring C. Mental Tasks Modulate Motor-Units Above 10 Hz and are a Potential Control Signal for Movement Augmentation: a Preliminary Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083291 DOI: 10.1109/embc40787.2023.10340378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Spinal motor neurons receive a wide range of input frequencies. However, only frequencies below ca. 10 Hz are directly translated into motor output. Frequency components above 10 Hz are filtered out by neural pathways and muscle dynamics. These higher frequency components may have an indirect effect on motor output, or may simply represent movement-independent oscillations that leak down from supraspinal areas such as the motor cortex. If movement-independent oscillations leak down from supraspinal areas, they could provide a potential control signal in movement augmentation applications. We analysed high-density electromyography (HD-EMG) signals from the tibialis anterior muscle while human subjects performed various mental tasks. The subjects performed an isometric dorsiflexion of the right foot at a low level of force while simultaneously (1) imagining a movement of the right foot, (2) imagining a movement of both hands, (3) performing a mathematical task, or (4) performing no additional task. We classified the channel-averaged HD-EMG signals and the cumulative spike train (CST) of motor-units using a filter bank and a linear classifier. We found that in some subjects, the mental task can be classified from the channel-averaged HD-EMG signals and the CST in oscillations above 10 Hz. Furthermore, we found that these oscillation modulations are incompatible with a systematic and task-dependent change in force level. Our preliminary findings from a limited number of subjects suggest that some mental task-induced oscillations from supraspinal areas leak down to spinal motor neurons and are discriminable via EMG or CST signals at the innervated muscle.
Collapse
|
39
|
Farina D, Enoka RM. Evolution of surface electromyography: From muscle electrophysiology towards neural recording and interfacing. J Electromyogr Kinesiol 2023; 71:102796. [PMID: 37343466 DOI: 10.1016/j.jelekin.2023.102796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Surface electromyography (EMG) comprises a recording of electrical activity from the body surface generated by muscle fibres during muscle contractions. Its characteristics depend on the fibre membrane potentials and the neural activation signal sent from the motor neurons to the muscles. EMG has been classically used as the primary investigation tool in kinesiology studies in a variety of applications. More recently, surface EMG techniques have evolved from single-channel methods to high-density systems with hundreds of electrodes. High-density EMG recordings can be deconvolved to estimate the discharge times of spinal motor neurons innervating the recorded muscles, with algorithms that have been developed and validated in the last two decades. Within limits and with some variability across muscles, these techniques provide a non-invasive method to study relatively large populations of motor neurons in humans. Surface EMG is thus evolving from a peripheral measure of muscle electrical activity towards a neural recording and neural interfacing signal. These advances in technology have had a major impact on our fundamental understanding of the neural control of movement and have exposed new perspectives in neurotechnologies. Here we provide an overview and perspective of modern EMG technology, as derived from past achievements, and its impact in neurophysiology and neural engineering.
Collapse
Affiliation(s)
- Dario Farina
- Department of Bioengineering, Imperial College London, United Kingdom.
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado Boulder, CO, United States
| |
Collapse
|
40
|
Pereira HM, Hunter SK. Cognitive challenge as a probe to expose sex- and age-related differences during static contractions. Front Physiol 2023; 14:1166218. [PMID: 37260592 PMCID: PMC10227451 DOI: 10.3389/fphys.2023.1166218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
Despite activities of daily living being frequently performed simultaneously with a cognitive task, motor function is often investigated in isolation, which can hinder the applicability of findings. This brief review presents evidence that 1) performing a cognitive challenge simultaneously with a motor task can negatively impact force steadiness and fatigability of limb muscles during a static contraction, 2) the negative impact on old adults (>65 years old), particularly older women is greater than young when a cognitive challenge is simultaneously performed with a static motor task, 3) age-related mechanisms potentially explain impairments in motor performance in the presence of a cognitive challenge, and 4) the mechanisms for the age-related decrements in motor performance can be distinct between men and women. These observations are highly relevant to the older adults, given the increased risk of accidents and injury when a motor task is performed with a high cognitive-demand task, especially in light of the expanding reliance on an aging workforce.
Collapse
Affiliation(s)
- Hugo M. Pereira
- Department of Health and Exercise Science, The University of Oklahoma, Norman, OK, United States
| | - Sandra K. Hunter
- Department of Physical Therapy, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
41
|
Raikova R, Krutki P, Celichowski J. Skeletal muscle models composed of motor units: A review. J Electromyogr Kinesiol 2023; 70:102774. [PMID: 37099899 DOI: 10.1016/j.jelekin.2023.102774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/28/2023] Open
Abstract
The mathematical muscle models should include several aspects of muscle structure and physiology. First, muscle force is the sum of forces of multiple motor units (MUs), which have different contractile properties and play different roles in generating muscle force. Second, whole muscle activity is an effect of net excitatory inputs to a pool of motoneurons innervating the muscle, which have different excitability, influencing MU recruitment. In this review, we compare various methods for modeling MU twitch and tetanic forces and then discuss muscle models composed of different MU types and number. We first present four different analytical functions used for twitch modeling and show limitations related to the number of twitch describing parameters. We also show that a nonlinear summation of twitches should be considered in modeling tetanic contractions. We then compare different muscle models, most of which are variations of Fuglevand's model, adopting a common drive hypothesis and the size principle. We pay attention to integrating previously developed models into a consensus model based on physiological data from in vivo experiments on the rat medial gastrocnemius muscle and its respective motoneurons. Finally, we discuss the shortcomings of existing models and potential applications for studying MU synchronization, potentiation, and fatigue.
Collapse
Affiliation(s)
- Rositsa Raikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Bulgaria.
| | - Piotr Krutki
- Department of Neurobiology, Poznan University of Physical Education, Poland
| | - Jan Celichowski
- Department of Neurobiology, Poznan University of Physical Education, Poland
| |
Collapse
|
42
|
Lafe CW, Liu F, Simpson TW, Moon CH, Collinger JL, Wittenberg GF, Urbin MA. Force oscillations underlying precision grip in humans with lesioned corticospinal tracts. Neuroimage Clin 2023; 38:103398. [PMID: 37086647 PMCID: PMC10173012 DOI: 10.1016/j.nicl.2023.103398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/23/2023] [Accepted: 04/02/2023] [Indexed: 04/24/2023]
Abstract
Stability of precision grip depends on the ability to regulate forces applied by the digits. Increased frequency composition and temporal irregularity of oscillations in the force signal are associated with enhanced force stability, which is thought to result from increased voluntary drive along the corticospinal tract (CST). There is limited knowledge of how these oscillations in force output are regulated in the context of dexterous hand movements like precision grip, which are often impaired by CST damage due to stroke. The extent of residual CST volume descending from primary motor cortex may help explain the ability to modulate force oscillations at higher frequencies. Here, stroke survivors with longstanding hand impairment (n = 17) and neurologically-intact controls (n = 14) performed a precision grip task requiring dynamic and isometric muscle contractions to scale and stabilize forces exerted on a sensor by the index finger and thumb. Diffusion spectrum imaging was used to quantify total white matter volume within the residual and intact CSTs of stroke survivors (n = 12) and CSTs of controls (n = 14). White matter volumes within the infarct region and an analogous portion of overlap with the CST, mirrored onto the intact side, were also quantified in stroke survivors. We found reduced ability to stabilize force and more restricted frequency ranges in force oscillations of stroke survivors relative to controls; though, more broadband, irregular output was strongly related to force-stabilizing ability in both groups. The frequency composition and temporal irregularity of force oscillations observed in stroke survivors did not correlate with maximal precision grip force, suggesting that it is not directly related to impaired force-generating capacity. The ratio of residual to intact CST volumes contained within infarct and mirrored compartments was associated with more broadband, irregular force oscillations in stroke survivors. Our findings provide insight into granular aspects of dexterity altered by corticospinal damage and supply preliminary evidence to support that the ability to modulate force oscillations at higher frequencies is explained, at least in part, by residual CST volume in stroke survivors.
Collapse
Affiliation(s)
- Charley W Lafe
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA 15206, USA
| | - Fang Liu
- Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tyler W Simpson
- Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Chan Hong Moon
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jennifer L Collinger
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA 15206, USA; Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - George F Wittenberg
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA 15206, USA; Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael A Urbin
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA 15206, USA; Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
43
|
Garbisu-Hualde A, Gutierrez L, Fernández-Peña E, Santos-Concejero J. Intermittent Voluntary Isometric Contractions Effects on Performance Enhancement and Sticking Region Kinematics in the Bench Press. J Hum Kinet 2023; 87:105-118. [PMID: 37229417 PMCID: PMC10203844 DOI: 10.5114/jhk/161777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/18/2023] [Indexed: 05/27/2023] Open
Abstract
During the last years, post-activation performance enhancement (PAPE) has gained notorious popularity due to the capacity to improve the acute rate of force development (RFD) using different strategies with different muscle contraction regimes as conditioning stimuli. The aim of the present study was to analyse the role of a maximal isometric post-activation performance enhancement (PAPE) protocol in performance and its effects on the kinematics of the sticking region. Twenty-one trained participants (age 26.4 ± 5.4 years) underwent two experimental sessions: an experimental session consisting of a single set and a single repetition of the bench press at the 93% of 1RM (which is considered a traditional conditioning activity to induce PAPE) (TRAD) and an isometric experimental session (ISO) consisting of 15 maximal voluntary isometric contractions in the sticking region of the medium grip bench press lasting 1 s with a 1 s rest interval between contractions. Both TRAD and ISO experimental conditions improved performance from post0 to post4, post8, post12 and post16, but only the ISO condition improved performance from the start of the lift to the start of the sticking region from pre to post (p < 0.001), and only the ISO condition improved maximum (p = 0.005) and minimum (p = 0.025) peak velocities. The results of this study suggest that short duration maximal voluntary isometric contractions improve the velocity of the lift prior to the initiation of the sticking region, which ultimately improves the impulse and facilitates the lift.
Collapse
Affiliation(s)
- Arkaitz Garbisu-Hualde
- Department of Physical Education and Sport, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Laura Gutierrez
- Department of Physical Education and Sport, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Eneko Fernández-Peña
- Department of Physical Education and Sport, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Jordan Santos-Concejero
- Department of Physical Education and Sport, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| |
Collapse
|
44
|
Alessandro C, Prashara A, Tentler DP, Tresch MC. Inhibition of knee joint sensory afferents alters covariation across strides between quadriceps muscles during locomotion. J Appl Physiol (1985) 2023; 134:957-968. [PMID: 36759157 PMCID: PMC10069963 DOI: 10.1152/japplphysiol.00591.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Sport-related injuries to articular structures often alter the sensory information conveyed by joint structures to the nervous system. However, the role of joint sensory afferents in motor control is still unclear. Here, we evaluate the role of knee joint sensory afferents in the control of quadriceps muscles, hypothesizing that such sensory information modulates control strategies that limit patellofemoreal joint loading. We compared locomotor kinematics and muscle activity before and after inhibition of knee sensory afferents by injection of lidocaine into the knee capsule of rats. We evaluated whether this inhibition reduced the strength of correlation between the activity of vastus medialis (VM) and vastus lateralis (VL) both across strides and within each stride, coordination patterns that limit net mediolateral patellofemoral forces. We also evaluated whether this inhibition altered correlations among the other quadriceps muscle activity, the time-profiles of individual EMG envelopes, or movement kinematics. Neither the EMG envelopes nor limb kinematics was affected by the inhibition of knee sensory afferents. This perturbation also did not affect the correlations between VM and VL, suggesting that the regulation of patellofemoral joint loading is mediated by different mechanisms. However, inhibition of knee sensory afferents caused a significant reduction in the correlation between vastus intermedius (VI) and both VM and VL across, but not within, strides. Knee joint sensory afferents may therefore modulate the coordination between the vasti muscles but only at coarse time scales. Injuries compromising joint afferents might result in altered muscle coordination, potentially leading to persistent internal joint stresses and strains.NEW & NOTEWORTHY Sensory afferents originating from knee joint receptors provide the nervous system with information about the internal state of the joint. In this study, we show that these sensory signals are used to modulate the covariations among the activity of a subset of vasti muscles across strides of locomotion. Sport-related injuries that damage joint receptors may therefore compromise these mechanisms of muscle coordination, potentially leading to persistent internal joint stresses and strains.
Collapse
Affiliation(s)
- Cristiano Alessandro
- Department of Neuroscience, Northwestern University, Chicago, Illinois, United States
- School of Medicine and Surgery/Sport and Exercise Medicine, University of Milano-Bicocca, Milan, Italy
| | - Adarsh Prashara
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States
| | - David P Tentler
- Department of Neuroscience, Northwestern University, Chicago, Illinois, United States
| | - Matthew C Tresch
- Department of Neuroscience, Northwestern University, Chicago, Illinois, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, United States
- Shirley Ryan AbilityLab, Chicago, Illinois, United States
| |
Collapse
|
45
|
Mear E, Gladwell V, Pethick J. Knee extensor force control as a predictor of dynamic balance in healthy adults. Gait Posture 2023; 100:230-235. [PMID: 36638669 DOI: 10.1016/j.gaitpost.2023.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/06/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
BACKGROUND Previous research has demonstrated that force control in various muscles of the lower limb (measured according to the magnitude of force fluctuations) explains significant variance in static balance. Given the dynamic nature of many functional activities and sports, assessment of balance and its determinants under dynamic conditions is of importance. RESEARCH QUESTION Does muscle force control explain significant variance in dynamic balance, as measured using the Y balance test (YBT)? METHODS YBT performance and knee extensor muscle force control were measured in 28 healthy participants. The YBT involved stance on the right leg and attempting maximal reach with the left leg in the anterior, posteromedial, and posterolateral directions. Force control was assessed during isometric knee extension contractions of the right leg at 10%, 20% and 40% maximal voluntary contraction (MVC) and was quantified according to the magnitude (using the coefficient of variation [CV]), and the temporal structure (using sample entropy, SampEn; and detrended fluctuation analysis α), of force fluctuations. RESULTS Significant correlations were observed for YBT anterior reach and muscle force CV (r = -0.44, P = 0.02) and SampEn (r = 0.47, P = 0.012) during contractions at 40% MVC. A subsequent regression model demonstrated that muscle force CV and SampEn at 40% MVC significantly explained 54% of variance in YBT anterior reach. Significant correlations were also observed for YBT posteromedial reach and MVC (r = 0.39, P = 0.043) and muscle force CV during contractions at 40% MVC (r = -0.51, P = 0.006). The regression model demonstrated that MVC and muscle force CV at 40% MVC significantly explained 53.9% of variance in YBT posteromedial reach. SIGNIFICANCE These results are the first to indicate that a moderate amount of variance in dynamic balance can be explained by measures of isometric force control.
Collapse
Affiliation(s)
- Emily Mear
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Essex, UK
| | - Valerie Gladwell
- Institute of Health and Wellbeing, University of Suffolk, Suffolk, UK
| | - Jamie Pethick
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Essex, UK.
| |
Collapse
|
46
|
Jie LJ, Kal E, Ellmers TJ, Rosier J, Meijer K, Boonstra TW. The Effects of Conscious Movement Processing on the Neuromuscular Control of Posture. Neuroscience 2023; 509:63-73. [PMID: 36403689 DOI: 10.1016/j.neuroscience.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022]
Abstract
Maintaining balance is thought to primarily occur sub-consciously. Occasionally, however, individuals will direct conscious attention towards balance, e.g., in response to a threat to balance. Such conscious movement processing (CMP) increases the reliance on attentional resources and may disrupt balance performance. However, the underlying changes in neuromuscular control remain poorly understood. We investigated the effects of CMP (manipulated using verbal instructions) on neural control of posture in twenty-five adults (11 females, mean age = 23.9, range = 18-33). Participants performed 90-s, bipedal stance balance trials in high- and low-CMP conditions, during both stable (solid surface) and unstable (foam) task conditions. Postural sway amplitude, frequency and complexity were used to assess postural control. Surface EMG was recorded bilaterally from lower leg muscles (Soleus, Tibialis Anterior, Gastrocnemius Medialis, Peroneus Longus) and intermuscular coherence (IMC) was assessed for 12 muscle pairs across four frequency bands. We observed significantly increased sway amplitude, and decreased sway frequency and complexity in the high- compared to the low-CMP conditions. All sway variables increased in the unstable compared to the stable conditions. We observed reduced beta band IMC between several muscle pairs during high- compared to low-CMP, but these findings did not remain significant after controlling for multiple comparisons. Finally, IMC significantly increased in the unstable conditions for most muscle combinations and frequency bands. In all, results tentatively suggest that CMP-induced changes in sway outcomes may be facilitated by reduced beta-band IMC, but these findings need to be replicated before they can be interpreted more conclusively.
Collapse
Affiliation(s)
- Li-Juan Jie
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, the Netherlands; Research Centre for Nutrition, Lifestyle and Exercise, Zuyd University of Applied Sciences, the Netherlands.
| | - Elmar Kal
- College of Health, Medicine and Life Sciences, Brunel University London, UK; Centre for Cognitive Neuroscience, Brunel University London, UK
| | - Toby J Ellmers
- Centre for Vestibular Neurology, Imperial College London, UK
| | - Joëlle Rosier
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, the Netherlands
| | - Kenneth Meijer
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, the Netherlands
| | - Tjeerd W Boonstra
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| |
Collapse
|
47
|
Zhang F, Sun M, Qu F, Lewis K, Choi JH, Song Q, Li L. The effect of loss of foot sole sensitivity on H-reflex of triceps surae muscles and functional gait. Front Physiol 2023; 13:1036122. [PMID: 36685170 PMCID: PMC9849679 DOI: 10.3389/fphys.2022.1036122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Objective: To investigate the effects of foot sole insensitivity on the outcomes of the triceps surae muscle H-reflex and functional gait. Material and Methods: People with peripheral neuropathy were recruited and divided into two groups: people with more (n = 13, 73.3 ± 4.3 years old) or less (n = 10, 73.5 ± 5.3) sensitive tactile sensation. Their monofilament testing scores were 9.0 ± 1.5 (range: 7-10) and 2.3 ± 2.4 (range: 0-6) out of 10, respectively. H-reflex of the triceps surae muscles during quiet standing and their relationship with functional gait, 6 min walking distance (6MWD), and timed-up-and-go duration (TUG), were compared between groups. Results: No significant difference was detected for H-reflex parameters between the groups. The less sensitive group showed reduced (p < .05) functional gait capacity compared to the other group, 38.4 ± 52.7 vs. 463.5 ± 47.6 m for 6MWD, and 9.0 ± 1.5 vs. 7.2 ± 1.1s for TUG, respectively. A significant correlation (p < .05), worse functional gait related to greater H/M ratio, was observed in the less sensitive group, not the other group. Conclusion: Although there was no significant H-reflex difference between the groups, more pronounced tactile sensation degeneration affected functional gaits and their relationship with H-reflex.
Collapse
Affiliation(s)
- Fangtong Zhang
- Biomechanics Laboratory, Beijing Sport University, Beijing, China
| | - Mengzi Sun
- Department of Health Sciences and Kinesiology, Georgia Southern University, Statesboro, GA, United States,School of Sports Science and Physical Education, Nanjing Normal University, Nanjing, China
| | - Feng Qu
- Biomechanics Laboratory, Beijing Sport University, Beijing, China
| | - Kelsey Lewis
- Department of Health Sciences and Kinesiology, Georgia Southern University, Statesboro, GA, United States
| | - Jung Hun Choi
- Department of Mechanical Engineering, Georgia Southern University, Statesboro, GA, United States
| | - Qipeng Song
- College of Sports and Health, Shandong Sport University, Jinan, Shandong, China
| | - Li Li
- Department of Health Sciences and Kinesiology, Georgia Southern University, Statesboro, GA, United States,*Correspondence: Li Li,
| |
Collapse
|
48
|
Aeles J, Sarcher A, Hug F. Common synaptic input between motor units from the lateral and medial posterior soleus compartments does not differ from that within each compartment. J Appl Physiol (1985) 2023; 134:105-115. [PMID: 36454677 DOI: 10.1152/japplphysiol.00587.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The human soleus muscle is anatomically divided into four separate anatomical compartments. The functional role of this compartmentalization remains unclear. Here, we tested the hypothesis that the common synaptic input to motor units between the medial and lateral posterior compartments is less than within each compartment. Fourteen male participants performed three different heel-raise tasks that were considered to place a different mechanical demand on the medial and lateral soleus compartments. High-density electromyography (EMG) signals from the medial and lateral soleus compartments and the medial gastrocnemius of the right leg were decomposed into individual motor unit spike trains. The coherence between cumulative spike trains of the motor units was estimated. The coherence analysis was also repeated for motor units that were matched across all three tasks. Furthermore, we calculated the ratio of significant correlations between the spike trains of pairs of motor units. We observed that the coherence between motor units of the two soleus compartments was similar as the coherence between motor units within each compartment, regardless of the task. The correlation analysis performed on pairs of motor units confirmed these results. We conclude that the level of common synaptic input between the motor units innervating the medial and lateral posterior soleus compartment is not different than the common synaptic input between motor units innervating each of these compartments, which contrasts with findings from previous studies on finger muscles. This suggests that there is no independent neural control for the individual posterior soleus compartments.NEW & NOTEWORTHY The human soleus muscle is anatomically subdivided into four compartments. The functional role for this compartmentalization remains unknown. Here, we showed that, contrary to previous findings in finger muscles, the common synaptic input between motor units innervating the medial and lateral posterior soleus compartment was similar as that between motor units within the individual compartments. We suggest that the contradictory findings with other compartmentalized muscles may be explained by differences in muscle-tendon anatomy and function.
Collapse
Affiliation(s)
- Jeroen Aeles
- Movement-Interactions-Performance, MIP, Nantes Université, Nantes, France.,Laboratory of Functional Morphology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Aurélie Sarcher
- Movement-Interactions-Performance, MIP, Nantes Université, Nantes, France
| | - François Hug
- LAMHESS, Université Côte d'Azur, Nice, France.,School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
49
|
Lin YT, Chen YC, Chang GC, Hwang IS. Failure to improve task performance after visuomotor training with error reduction feedback for young adults. Front Physiol 2023; 14:1066325. [PMID: 36969593 PMCID: PMC10030953 DOI: 10.3389/fphys.2023.1066325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/22/2023] [Indexed: 03/29/2023] Open
Abstract
Visual feedback that reinforces accurate movements may motivate skill acquisition by promoting self-confidence. This study investigated neuromuscular adaptations to visuomotor training with visual feedback with virtual error reduction. Twenty-eight young adults (24.6 ± 1.6 years) were assigned to error reduction (ER) (n = 14) and control (n = 14) groups to train on a bi-rhythmic force task. The ER group received visual feedback and the displayed errors were 50% of the real errors in size. The control group was trained with visual feedback with no reduction in errors. Training-related differences in task accuracy, force behaviors, and motor unit discharge were contrasted between the two groups. The tracking error of the control group progressively declined, whereas the tracking error of the ER group was not evidently reduced in the practice sessions. In the post-test, only the control group exhibited significant task improvements with smaller error size (p = .015) and force enhancement at the target frequencies (p = .001). The motor unit discharge of the control group was training-modulated, as indicated by a reduction of the mean inter-spike interval (p = .018) and smaller low-frequency discharge fluctuations (p = .017) with enhanced firing at the target frequencies of the force task (p = .002). In contrast, the ER group showed no training-related modulation of motor unit behaviors. In conclusion, for young adults, ER feedback does not induce neuromuscular adaptations to the trained visuomotor task, which is conceptually attributable to intrinsic error dead-zones.
Collapse
Affiliation(s)
- Yen-Ting Lin
- Department of Ball Sport, National Taiwan University of Sport, Taichung City, Taiwan
| | - Yi-Ching Chen
- Department of Physical Therapy, College of Medical Science and Technology, Chung Shan Medical University, Taichung City, Taiwan
- Physical Therapy Room, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Gwo-Ching Chang
- Department of Information Engineering, I-Shou University, Kaohsiung City, Taiwan
| | - Ing-Shiou Hwang
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- *Correspondence: Ing-Shiou Hwang,
| |
Collapse
|
50
|
García-Aguilar F, Caballero C, Sabido R, Moreno FJ. The use of non-linear tools to analyze the variability of force production as an index of fatigue: A systematic review. Front Physiol 2022; 13:1074652. [PMID: 36589460 PMCID: PMC9795073 DOI: 10.3389/fphys.2022.1074652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Fatigue is a process that results in a decreased ability to produce force, and which could eventually affect performance and increase the risk of injury. Force variability analysis has been proposed to describe the level of fatigue with the purpose of detecting the development of fatigue. Variability is credited to play a functional and adaptive role through which the components of a system self-organize to solve a motor problem. Non-linear tools have been applied to analyze the variability of physiological signals, revealing that the structure of motor fluctuations provides relevant information about the functional role of variability. It has been suggested that the presence of lower complexity in the variability structure could reveal a less functional and adaptative state (e.g., ageing or illness). In the last years, an increased number of studies have applied these techniques to force variability analysis in relation to fatigue. Objective: To provide an overview of the current knowledge on the use of non-linear tools on force variability as a fatigue index. Methods: Following PRISMA guidelines, a systematic search of SPORTDiscus, Scopus, Web of Science and PubMed was carried out. Studies included were: a) original studies that analyzed the effect of fatigue on humans during an action focused on force production; b) published studies with their title and abstract in English; c) studies that applied non-linear tools on a signal directly related to force production. Results: Twenty-five studies were included in this review. The relationship between fatigue and the complexity of force variability, the type of action and relative intensity, the nature of the signal and the non-linear tools used, and the methods of data acquisition and processing were identified. Conclusion: The articles reviewed suggest that fatigue leads to a decrease in complexity mostly in isometric contractions, but this is not as clear in dynamic contractions. This fatigue-induced loss of complexity seems to be a result of changes in the nervous system at the central level, albeit triggered by peripheral mechanisms. It should be noted that non-linear tools are affected by the relative intensity of contraction, non-stationarity, and the acquisition and treatment of the signal.
Collapse
|