1
|
Voluntary reduction of force variability via modulation of low-frequency oscillations. Exp Brain Res 2017; 235:2717-2727. [PMID: 28608243 DOI: 10.1007/s00221-017-5005-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/06/2017] [Indexed: 10/19/2022]
Abstract
Visual feedback can influence the force output by changing the power in frequencies below 1 Hz. However, it remains unknown whether visual guidance can help an individual reduce force variability voluntarily. The purpose of this study, therefore, was to determine whether an individual can voluntarily reduce force variability during constant contractions with visual guidance, and whether this reduction is associated with a decrease in the power of low-frequency oscillations (0-1 Hz) in force and muscle activity. Twenty young adults (27.6 ± 3.4 years) matched a force target of 15% MVC (maximal voluntary contraction) with ankle dorsiflexion. Participants performed six visually unrestricted contractions, from which we selected the trial with the least variability. Following, participants performed six visually guided contractions and were encouraged to reduce their force variability within two guidelines (±1 SD of the least variable unrestricted trial). Participants decreased the SD of force by 45% (P < 0.001) during the guided condition, without changing mean force (P > 0.2). The decrease in force variability was associated with decreased low-frequency oscillations (0-1 Hz) in force (R 2 = 0.59), which was associated with decreased low-frequency oscillations in EMG bursts (R 2 = 0.35). The reduction in low-frequency oscillations in EMG burst was positively associated with power in the interference EMG from 35 to 60 Hz (R 2 = 0.47). In conclusion, voluntary reduction of force variability is associated with decreased low-frequency oscillations in EMG bursts and consequently force output. We provide novel evidence that visual guidance allows healthy young adults to reduce force variability voluntarily likely by adjusting the low-frequency oscillations in the neural drive.
Collapse
|
2
|
Saito A, Ando R, Akima H. Effects of prolonged vibration to vastus intermedius muscle on force steadiness of knee extensor muscles during isometric force-matching task. J Electromyogr Kinesiol 2016; 31:48-54. [PMID: 27668572 DOI: 10.1016/j.jelekin.2016.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/06/2016] [Accepted: 09/16/2016] [Indexed: 11/15/2022] Open
Abstract
Afferent inputs from Ia fibers in muscle spindles are essential for the control of force and prolonged vibration has been applied to muscle-tendon units to manipulate the synaptic input from Ia afferents onto α-motor neurons. The vastus intermedius (VI) reportedly provides the highest contribution to the low-level knee extension torque among the individual synergists of quadriceps femoris (QF). The purpose of the present study was to examine the effect of prolonged vibration to the VI on force steadiness of the QF. Nine healthy men (25.1±4.3years) performed submaximal force-matching task of isometric knee extension for 15s before and after mechanical vibration to the superficial region of VI for 30min. Target forces were 2.5%, 10%, and 30% of maximal voluntary contraction (MVC), and force steadiness was determined by the coefficient of variation (CV) of force. After the prolonged VI vibration, the CV of force at 2.5%MVC was significantly increased, but CVs at 10% and 30%MVCs were not significantly changed. The present study concluded that application of prolonged vibration to the VI increased force fluctuations of the QF during a very low-level force-matching task.
Collapse
Affiliation(s)
- Akira Saito
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, Japan.
| | - Ryosuke Ando
- Graduate School of Education and Human Development, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan; Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, Japan
| | - Hiroshi Akima
- Graduate School of Education and Human Development, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan; Research Center of Health, Physical Fitness & Sports, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| |
Collapse
|
3
|
Charissou C, Vigouroux L, Berton E, Amarantini D. Fatigue- and training-related changes in ‘beta’ intermuscular interactions between agonist muscles. J Electromyogr Kinesiol 2016; 27:52-9. [DOI: 10.1016/j.jelekin.2016.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 01/14/2016] [Accepted: 02/01/2016] [Indexed: 11/29/2022] Open
|
4
|
Saito A, Ando R, Akima H. Effects of prolonged patellar tendon vibration on force steadiness in quadriceps femoris during force-matching task. Exp Brain Res 2015; 234:209-17. [DOI: 10.1007/s00221-015-4447-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/16/2015] [Indexed: 11/25/2022]
|
5
|
Limonta E, Cè E, Gobbo M, Veicsteinas A, Orizio C, Esposito F. Motor unit activation strategy during a sustained isometric contraction of finger flexor muscles in elite climbers. J Sports Sci 2015; 34:133-42. [PMID: 25897660 DOI: 10.1080/02640414.2015.1035738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The aim of the study was to evaluate, by an electromyographic (EMG) and mechanomyographic (MMG) combined approach, whether years of specific climbing activity induced neuromuscular changes towards performances related to a functional prevalence of fast resistant or fast fatigable motor units. For this purpose, after the maximum voluntary contraction (MVC) assessment, 11 elite climbers and 10 controls performed an exhaustive handgrip isometric effort at 80% MVC. Force, EMG and MMG signals were recorded from the finger flexor muscles during contraction. Time and frequency domain analysis of EMG and MMG signals was performed. In climbers: (i) MVC was higher (762 ± 34 vs 512 ± 57 N; effect size: 1.64; confidence interval: 0.65-2.63; P < 0.05); (ii) endurance time at 80% MVC was 43% longer (34.2 ± 3.7 vs 22.3 ± 1.5 s; effect size: 1.21; confidence interval: 0.28-2.14; P < 0.05); (iii) force accuracy and stability were greater during contraction (P < 0.05); (iv) EMG and MMG parameters were higher throughout the entire isometric effort (P < 0.05). Collectively, force, EMG and MMG combined analysis revealed that several years of specific climbing activity addressed the motor control system to adopt muscle activation strategies based on the functional prevalence of fast resistant motor units.
Collapse
Affiliation(s)
- Eloisa Limonta
- a Department of Biomedical Sciences for Health , University of Milan , Milan , Italy
| | - Emiliano Cè
- a Department of Biomedical Sciences for Health , University of Milan , Milan , Italy.,b Center of Sport Medicine , Don Gnocchi Foundation , Milan , Italy
| | - Massimiliano Gobbo
- c Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Arsenio Veicsteinas
- a Department of Biomedical Sciences for Health , University of Milan , Milan , Italy.,b Center of Sport Medicine , Don Gnocchi Foundation , Milan , Italy
| | - Claudio Orizio
- c Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Fabio Esposito
- a Department of Biomedical Sciences for Health , University of Milan , Milan , Italy.,b Center of Sport Medicine , Don Gnocchi Foundation , Milan , Italy
| |
Collapse
|
6
|
Effects of visual feedback absence on force control during isometric contraction. Eur J Appl Physiol 2014; 115:507-19. [PMID: 25366253 DOI: 10.1007/s00421-014-3036-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE The aim of the study was to evaluate the force control in the complete absence of visual feedback and the effect of repeated contractions without visual feedback. METHODS Twelve physically active males (age 23 ± 1 years; stature 1.74 ± 0.07 m; body mass 71 ± 6 kg) performed isometric tasks at 20, 40 and 60% maximal voluntary contraction (MVC) for 20 s. For each intensity, a trial with force visual feedback (FB) was followed by 3 trials without FB (noFB-1, noFB-2, noFB-3). During contraction, force and surface electromyogram (EMG) from the vastus lateralis muscle were recorded. From force signal, the coefficient of variation (CV, force stability index), the distance of force from target (ΔF, force accuracy index) and the time within the target (t-target) were determined. From EMG signal, the root mean square (RMS) and mean frequency (MF) were calculated. RESULTS MVC was 679.14 ± 38.22 N. In noFB-1, CV was similar to FB, ΔF was higher and t-target lower (P < 0.05) than in FB. EMG-RMS in noFB-1 was lower than in FB at 40 and 60%MVC (P < 0.05). A decrease in ΔF between noFB-1 and noFB-3 (P < 0.05) and an increase in t-target from noFB-1 to noFB-3 (P < 0.05) occurred at 20% MVC. A difference in EMG-RMS among noFB conditions was retrieved only at 60% MVC (P < 0.05). CONCLUSIONS These findings suggest that the complete absence of visual feedback decreased force accuracy but did not affect force stability. Moreover, the repetition of noFB trials improved force accuracy at low exercise intensity, suggesting that real-time visual information could be obviated by other feedbacks for force control.
Collapse
|
7
|
Yoshitake Y, Shinohara M. Low-frequency component of rectified EMG is temporally correlated with force and instantaneous rate of force fluctuations during steady contractions. Muscle Nerve 2013; 47:577-84. [DOI: 10.1002/mus.23628] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Yasuhide Yoshitake
- Department of Sports and Life Sciences; National Institute of Fitness and Sports in Kanoya; 1 Shiromizu; Kanoya; Kagoshima; 8912393; Japan
| | | |
Collapse
|
8
|
Hedayatpour N, Falla D. Non-uniform muscle adaptations to eccentric exercise and the implications for training and sport. J Electromyogr Kinesiol 2011; 22:329-33. [PMID: 22192598 DOI: 10.1016/j.jelekin.2011.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/10/2011] [Accepted: 11/14/2011] [Indexed: 01/12/2023] Open
Abstract
Due to the variations in morphological and architectural characteristics of fibers within a skeletal muscle, regions of a muscle may be differently affected by eccentric exercise. Although eccentric exercise may be beneficial for increasing muscle mass and can be beneficial for the treatment of tendinopathies, the non-uniform effect of eccentric exercise results in regional muscle damage and as a consequence, non-uniform changes in muscle activation. This regional muscle weakness can contribute to muscle strength imbalances and may potentially alter the load distribution on joint structures, increasing the risk of injury. In this brief review, the non-uniform effects of eccentric exercise are reviewed and their implications for training and sport are considered.
Collapse
|
9
|
Marmon AR, Gould JR, Enoka RM. Practicing a functional task improves steadiness with hand muscles in older adults. Med Sci Sports Exerc 2011; 43:1531-7. [PMID: 21266932 DOI: 10.1249/mss.0b013e3182100439] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Improvements in steadiness with practice have been associated with enhanced performance on a functional task in old adults. PURPOSE The aims of the study were to examine the specificity of the association between steadiness and a functional task and to assess the influence of practicing a functional task on force steadiness of hand muscles. METHODS Twenty-three older adults (≥70 yr) participated in the study and were assigned to either a practice group (n = 15) or a control group (n = 8). Subjects completed two testing sessions that were 2 wk apart. The practice group completed six additional sessions to practice a functional task (Grooved Pegboard). Tests included maximal voluntary contractions (MVC), force steadiness (precision pinch and index finger abduction) at three target forces (5%, 15%, and 25% MVC), and the Grooved Pegboard test. The associations between strength, steadiness, and the time needed to complete the Grooved Pegboard test were examined. In addition, MVC force, steadiness, and pegboard time were compared between the two testing sessions. RESULTS The time needed to complete the Grooved Pegboard test was associated with index finger abduction steadiness for two of the three target forces (15% and 25% MVC) but was not associated with pinch steadiness. Practice significantly reduced the time needed to complete the Grooved Pegboard test and improved steadiness in both tasks. CONCLUSIONS Force steadiness provides an appropriate index of hand function, especially when measured at low forces.
Collapse
Affiliation(s)
- Adam R Marmon
- Department of Physical Therapy, University of Delaware, Newark, DE 19711, USA.
| | | | | |
Collapse
|
10
|
Archer AA, Atangcho P, Sabra KG, Shinohara M. Propagation direction of natural mechanical oscillations in the biceps brachii muscle during voluntary contraction. J Electromyogr Kinesiol 2011; 22:51-9. [PMID: 22082965 DOI: 10.1016/j.jelekin.2011.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/09/2011] [Accepted: 09/22/2011] [Indexed: 10/15/2022] Open
Abstract
The aim of the study was to determine the directionality of the coupling of mechanical vibrations across the biceps brachii muscle at different frequencies of interest during voluntary contraction. The vibrations that are naturally generated by skeletal muscles were recorded by a two-dimensional array of skin mounted accelerometers over the biceps brachii muscle (surface mechanomyogram, S-MMG) during voluntary isometric contractions in ten healthy young men. As a measure of the similarity of vibration between a given pair of accelerometers, the spatial coherence of S-MMG at low (f<25Hz) and high (f>25Hz) frequency bands were investigated to determine if the coupling of the natural mechanical vibrations were due to the different physiological muscle activity at low and high frequencies. In both frequency bands, spatial coherence values for sensor pairs aligned longitudinally along the proximal to distal ends of the biceps were significantly higher compared with those for the sensor pairs oriented perpendicular to the muscle fibers. This difference was more evident at the higher frequency band. The findings indicated that coherent mechanical oscillations mainly propagated along the longitudinal direction of the biceps brachii muscle fibers at high frequencies (f>25Hz).
Collapse
Affiliation(s)
- Akibi A Archer
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | | | | | | |
Collapse
|
11
|
Krishnan C, Allen EJ, Williams GN. Effect of knee position on quadriceps muscle force steadiness and activation strategies. Muscle Nerve 2011; 43:563-73. [PMID: 21404288 DOI: 10.1002/mus.21981] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION In this study we investigated the effect of knee position on quadriceps force steadiness and activation strategies. METHODS Quadriceps force steadiness was evaluated in 22 volunteers at two knee positions by testing their ability to regulate submaximal force. Muscle activation strategies were studied in both time and frequency domains using surface electromyography. RESULTS Quadriceps force fluctuations and the associated agonist and antagonist activity were significantly higher at 90° than at 30° of flexion (P < 0.05). The quadriceps median frequency recorded at 30° was significantly higher than at 90° of flexion (P < 0.05). Regression analyses revealed that force steadiness was related to quadriceps activation and median frequency (P < 0.001), but not to hamstring coactivation (P > 0.05). CONCLUSIONS The results indicate that knee position significantly affects quadriceps force steadiness and activation strategies. This finding may have important implications for designing a force control testing protocol and interpreting test results.
Collapse
Affiliation(s)
- Chandramouli Krishnan
- Searle Laboratory, Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois, USA.
| | | | | |
Collapse
|
12
|
Manella C, Backus D. Gait characteristics, range of motion, and spasticity changes in response to massage in a person with incomplete spinal cord injury: case report. Int J Ther Massage Bodywork 2011; 4:28-39. [PMID: 21589693 PMCID: PMC3088529 DOI: 10.3822/ijtmb.v4i1.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Our study set out to measure the effect of a specific routine of massage on gait characteristics, range of motion, and spasticity in a person with incomplete spinal cord injury. METHODS This descriptive, pre-post case study, conducted at the outpatient program of a rehabilitation facility, used neuromuscular techniques in massage for a 42-year-old man with incomplete chronic C5 spinal cord injury. The massage was applied to the iliopsoas, triceps surae, and hamstring muscle groups for 3 consecutive days. MAIN OUTCOME MEASURES Pre- and post-intervention testing included standard goniometric measurement of joint range of motion in the lower extremities, spasticity evaluation using the modified Ashworth scale, and evaluation of gait characteristics using GAITRite Walkway (CIR Systems, Havertown, PA, USA) pressure mapping for ambulation time, cadence, velocity, stride length, base of support, and single- and double-limb support. RESULTS AFTER THE THERAPEUTIC INTERVENTION, THE FOLLOWING GAIT CHANGES WERE DEMONSTRATED: increase in velocity and cadence of gait, decrease in ambulation time, increase in stride length, and improvements in the percentages of the swing and stance phases of the gait cycle. CONCLUSIONS Specific application of massage therapy influenced gait speed, stride length, and swing and stance phase percentages in one person with incomplete spinal cord injury. Further study is warranted to determine the extent to which massage may affect musculoskeletal and neural impairments that limit gait in people with incomplete spinal cord injury, and the method or routine whose application will yield the most benefit.
Collapse
Affiliation(s)
- Christine Manella
- Multiple Sclerosis/Spinal Cord Injury Programs, Shepherd Center, and
| | - Deborah Backus
- Spinal Cord Injury Research, Crawford Research Institute, Shepherd Center, Atlanta, GA, USA
| |
Collapse
|
13
|
Danna-Dos Santos A, Poston B, Jesunathadas M, Bobich LR, Hamm TM, Santello M. Influence of fatigue on hand muscle coordination and EMG-EMG coherence during three-digit grasping. J Neurophysiol 2010; 104:3576-87. [PMID: 20926609 DOI: 10.1152/jn.00583.2010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fingertip force control requires fine coordination of multiple hand muscles within and across the digits. While the modulation of neural drive to hand muscles as a function of force has been extensively studied, much less is known about the effects of fatigue on the coordination of simultaneously active hand muscles. We asked eight subjects to perform a fatiguing contraction by gripping a manipulandum with thumb, index, and middle fingers while matching an isometric target force (40% maximal voluntary force) for as long as possible. The coordination of 12 hand muscles was quantified as electromyographic (EMG) muscle activation pattern (MAP) vector and EMG-EMG coherence. We hypothesized that muscle fatigue would cause uniform changes in EMG amplitude across all muscles and an increase in EMG-EMG coherence in the higher frequency bands but with an invariant heterogeneous distribution across muscles. Muscle fatigue caused a 12.5% drop in the maximum voluntary contraction force (P < 0.05) at task failure and an increase in the SD of force (P < 0.01). Although EMG amplitude of all muscles increased during the fatiguing contraction (P < 0.001), the MAP vector orientation did not change, indicating that a similar muscle coordination pattern was used throughout the fatiguing contraction. Last, EMG-EMG coherence (0-35 Hz) was significantly greater at the end than at the beginning of the fatiguing contraction (P < 0.01) but was heterogeneously distributed across hand muscles. These findings suggest that similar mechanisms are involved for modulating and sustaining digit forces in nonfatiguing and fatiguing contractions, respectively.
Collapse
Affiliation(s)
- Alessander Danna-Dos Santos
- School of Biological and Health Systems Engineering, 501 East Tyler Mall, Arizona State University, Tempe, AZ 85287-9709, USA
| | | | | | | | | | | |
Collapse
|
14
|
Kouzaki M, Shinohara M. Steadiness in plantar flexor muscles and its relation to postural sway in young and elderly adults. Muscle Nerve 2010; 42:78-87. [PMID: 20544908 DOI: 10.1002/mus.21599] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To investigate the functional significance of force fluctuations during voluntary contraction with a select muscle group, we examined the association between force fluctuations during voluntary contraction with plantar flexor muscles and postural sway during quiet standing in 20 young and 20 elderly adults. Young and elderly subjects maintained a quiet standing position on a force platform. They also performed a force-matching task with unilateral isometric plantar flexion. A positive correlation was found in young and elderly adults between the coefficient of variation (CV) of center of pressure during quiet standing and the CV of force during plantar flexion only at contraction intensities of < or =5% maximum voluntary contraction that corresponded to muscle activity during quiet standing. The electromyogram power in the medial gastrocnemius was greater in the elderly than in young adults by approximately 10 Hz during quiet standing and at low contraction intensities during plantar flexion. Fluctuations in motor output during low-intensity plantar flexion were associated with postural sway during quiet standing in both young and elderly adults.
Collapse
Affiliation(s)
- Motoki Kouzaki
- Laboratory of Neurophysiology, Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | | |
Collapse
|
15
|
Alves N, Chau T. Automatic detection of muscle activity from mechanomyogram signals: a comparison of amplitude and wavelet-based methods. Physiol Meas 2010; 31:461-76. [PMID: 20182001 DOI: 10.1088/0967-3334/31/4/001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Abstract
The purpose of the author's investigation was to examine the effect of knee joint angle on torque control of the quadriceps muscle group. In all, 12 healthy adults produced maximal voluntary contractions and submaximal torque (15, 30, and 45% MVC [maximal voluntary contraction]) at leg flexion angles of 15 degrees , 30 degrees , 60 degrees , and 90 degrees below the horizontal plane. As expected, MVC values changed with respect to joint angle with maximum torque output being greatest at 60 degrees and least at 15 degrees . During the submaximal tasks, participants appropriately scaled their torque output to the required targets. Absolute variability (i.e., standard deviation) of torque output was greatest at 60 degrees and 90 degrees knee flexion. However, relative variability as indexed by coefficient of variation (CV) decreased as joint angle increased, with the greatest CV occurring at 15 degrees . These results are congruent with the hypothesis that joint angle influences the control of torque.
Collapse
Affiliation(s)
- Jacob J Sosnoff
- Motor Control Laboratory, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
17
|
Salonikidis K, Amiridis IG, Oxyzoglou N, de Villareal ESS, Zafeiridis A, Kellis E. Force variability during isometric wrist flexion in highly skilled and sedentary individuals. Eur J Appl Physiol 2009; 107:715-22. [PMID: 19756710 PMCID: PMC2777218 DOI: 10.1007/s00421-009-1184-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2009] [Indexed: 11/28/2022]
Abstract
The association of expertness in specific motor activities with a higher ability to sustain a constant application of force, regardless of muscle length, has been hypothesized. Ten highly skilled (HS group) young tennis and handball athletes and 10 sedentary (S group) individuals performed maximal and submaximal (5, 10, 20, 50, and 75% of the MVC) isometric wrist flexions on an isokinetic dynamometer (Kin-Com, Chattanooga). The wrist joint was fixed at five different angles (230, 210, 180, 150, and 1300). For each position the percentages of the maximal isometric force were calculated and participants were asked to maintain the respective force level for 5 s. Electromyographic (EMG) activation of the Flexor Carpi Ulnaris and Extensor Digitorum muscles was recorded using bipolar surface electrodes. No significant differences were observed in maximal isometric strength between HS and S groups. Participants of HS group showed significantly (P < 0.05) smaller force coefficient of variability (CV) and SD values at all submaximal levels of MVC at all wrist angles. The CV and SD values remained unaltered regardless of wrist angle. No difference in normalized agonist and antagonist EMG activity was observed between the two groups. It is concluded that long-term practice could be associated with decreased isometric force variability independently from muscular length and coactivation of the antagonist muscles.
Collapse
Affiliation(s)
- Konstantinos Salonikidis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | | | |
Collapse
|
18
|
Prodoehl J, Vaillancourt DE. Effects of visual gain on force control at the elbow and ankle. Exp Brain Res 2009; 200:67-79. [PMID: 19680640 DOI: 10.1007/s00221-009-1966-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 07/26/2009] [Indexed: 11/25/2022]
Abstract
Visual feedback is essential when minimizing force fluctuations. Varying degrees of somatotopic organization have been shown in different regions of the brain for the upper and lower extremities, and visual feedback may be processed differently based on the body effector where feedback-based corrections are used. This study compared the effect of changes in visual gain on the control of steady-state force at the elbow and ankle. Ten subjects produced steady-state isometric force to targets at 5 and 40% of their maximum voluntary contraction at seven visual gain levels. Visual gain was used effectively at both joints to reduce variability of the force signal and to improve accuracy, with a greater effect of visual gain at the elbow than the ankle. Visual gain significantly decreased the regularity of force output, and this effect was more pronounced at the elbow than the ankle. There were accompanying changes in the proportion of power in the 0-4, 4-8, and 8-12 Hz frequency bins of the force signal across visual gain at the elbow. Changes in visual gain were accompanied by changes in both agonist and antagonist electromyographic (EMG) activation at the elbow. At the ankle joint, there were only changes in agonist EMG. The results suggest better use of visual information in the control of elbow force than ankle force and this improved control may be related to the changes in the pattern of agonist and antagonist activation.
Collapse
Affiliation(s)
- Janey Prodoehl
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, 1919 West Taylor Street, 650 AHSB, M/C 994, Chicago, IL 60612, USA.
| | | |
Collapse
|
19
|
|