1
|
Park J, Kim J. Effects of cooling glove on the human body's recovery after exercise and improvement of exercise ability. Technol Health Care 2023; 31:259-269. [PMID: 37066927 DOI: 10.3233/thc-236022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND After high-intensity exercises, the body's core temperature increases, affecting the body's metabolism, increasing thermal stress and muscle fatigue. The most popular technique to maximize post-workout recovery is cryotherapy. However, the cooling effect may vary depending on the body part being cooled since body tissues do not process the same perfusion. OBJECTIVE This study investigates the effects of hand cooling on human body functional recovery and exercise ability improvement by comparing normal rest and rest with hand cooling gloves after high-intensity exercise. METHODS Thirty healthy subjects participated in this study wherein they exercised and used normal rest for one session and hand cooling rest for the next. Blood lactate concentration, heart rate recovery rate, VO2 max measurement, and the degree of recovery of muscle strength, muscular endurance, and muscle fatigue were investigated in both groups to determine the efficacy of hand cooling gloves for postexercise recovery. RESULTS When hands were cooled after exercise, blood lactate concentration and body temperature significantly decreased, and cardiopulmonary function, muscle strength, and muscular endurance significantly recovered. CONCLUSION Using hand cooling gloves after exercise could attenuate core temperature elevation and improve postexercise recovery. It could also effectively improve athletic performance without using large-scale facilities.
Collapse
Affiliation(s)
- Jieun Park
- Nonlinear Dynamics Research Center, Kyungpook National University, Daegu, Korea
| | - Junghun Kim
- Bio-Medical Research institute, Kyungpook National University & Hospital, Daegu, Korea
| |
Collapse
|
2
|
Hou X, Wang X, Griffin L, Liao F, Peters J, Jan YK. Immediate and Delayed Effects of Cupping Therapy on Reducing Neuromuscular Fatigue. Front Bioeng Biotechnol 2021; 9:678153. [PMID: 34277583 PMCID: PMC8280458 DOI: 10.3389/fbioe.2021.678153] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Cupping therapy has been popular in elite athletes in recent years. However, the effect of cupping therapy on reducing muscle fatigue has not been investigated. The purpose of this study was to investigate the immediate and delayed effects of cupping therapy on reducing biceps brachii fatigue during biceps curls. Twelve healthy untrained participants were recruited for this repeated-measures study. Cupping therapy (–300 mmHg pressure for 5 min) and sham control (no negative pressure for 5 min) were applied after biceps fatigue induced by performing repeated biceps curls at 75% of the 10 repetitions of maximum of the non-dominant hand. Surface electromyography (EMG) with spectral analyses [mean frequency (MNF), median frequency (MDF), and spectral moments ratio (SMR)] were used to assess muscle fatigue during the fatigue task. EMG signals during the first 10 repetitions and the last 10 repetitions of biceps curls were used to assess neuromuscular fatigue. There were significant decreases in MNF and MDF and a significant increase in SMR immediately and 24 h after the sham control (no intervention). When comparing the MNF, MDF, and SMR after cupping therapy to the sham control, there was no significant immediate effect on reducing muscle fatigue. However, there was a significant delayed effect on improving recovery following fatigue for the cupping therapy compared to the sham control (MNF changes: sham 0.87 ± 0.02 vs. cupping 0.91 ± 0.02, p < 0.05; MDF changes sham: 0.85 ± 0.03 vs. cupping: 0.91 ± 0.02, p < 0.05; SMR changes: sham 1.89 ± 0.15 vs. cupping 1.58 ± 0.13, p < 0.05). The findings of this study demonstrate that there is a time effect of cupping therapy for reducing muscle fatigue. Cupping therapy is effective on reducing biceps brachii muscle fatigue after 24 h.
Collapse
Affiliation(s)
- Xiao Hou
- Department of Sports Science and Physical Education, Tsinghua University, Beijing, China.,Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Xiaoling Wang
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lisa Griffin
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX, United States
| | - Fuyuan Liao
- Department of Biomedical Engineering, Xi'an Technological University, Xi'an, China
| | - Joseph Peters
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Yih-Kuen Jan
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
3
|
Russell S, Evans AG, Jenkins DG, Kelly VG. Effect of External Counterpulsation on Running Performance and Perceived Recovery. Int J Sports Physiol Perform 2020; 15:920-926. [PMID: 32106075 DOI: 10.1123/ijspp.2019-0605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/01/2019] [Accepted: 10/01/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE To determine the efficacy of 20 minutes of external counterpulsation (ECP) on subsequent 1.2-km shuttle run test (1.2SRT) performance and perceived recovery following fatiguing high-intensity exercise. METHODS After familiarization, 13 recreationally active males (21.4 [1.9] y) participated in 2 experimental trials in a randomized crossover design. At 8:00 AM, participants completed a 1.2SRT, followed by an individualized high-intensity exercise bout and 20 minutes of ECP or supine passive rest (control). At 2:00 PM a second 1.2SRT was completed. Completion time for 1.2SRT (measured in seconds), heart rate, and Borg rating of perceived exertion were compared across conditions. Total quality of recovery and 100-mm visual analogue scale of perceived benefit of recovery were assessed at multiple time points. RESULTS A significantly smaller decline in PM 1.2SRT completion time compared with AM (baseline) was found for ECP compared with control (P = .008; moderate, very likely beneficial effect size of -0.77 [-1.53 to 0.05]). Total quality of recovery was significantly higher for ECP than control (P < .001), and perceived benefit of recovery was higher following ECP (P < .001, very large, most likely beneficial effect size of 2.08 [1.22 to 2.81]). CONCLUSIONS Twenty minutes of ECP was found to be an effective recovery modality for within-day, between-bouts exercise, positively influencing subsequent 1.2SRT performance and enhancing perceptual recovery. ECP may be applied as a viable alternative to optimize and accelerate the recovery process, particularly in the event of congested training or competition demands.
Collapse
|
4
|
Ortiz RO, Sinclair Elder AJ, Elder CL, Dawes JJ. A Systematic Review on the Effectiveness of Active Recovery Interventions on Athletic Performance of Professional-, Collegiate-, and Competitive-Level Adult Athletes. J Strength Cond Res 2019; 33:2275-2287. [DOI: 10.1519/jsc.0000000000002589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
MacRae BA, Annaheim S, Spengler CM, Rossi RM. Skin Temperature Measurement Using Contact Thermometry: A Systematic Review of Setup Variables and Their Effects on Measured Values. Front Physiol 2018. [PMID: 29441024 DOI: 10.3389/fphys.2018.00029, 10.3389/fpls.2018.00029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Skin temperature (Tskin) is commonly measured using Tskin sensors affixed directly to the skin surface, although the influence of setup variables on the measured outcome requires clarification. Objectives: The two distinct objectives of this systematic review were (1) to examine measurements from contact Tskin sensors considering equilibrium temperature and temperature disturbance, sensor attachments, pressure, environmental temperature, and sensor type, and (2) to characterise the contact Tskin sensors used, conditions of use, and subsequent reporting in studies investigating sports, exercise, and other physical activity. Data sources and study selection: For the measurement comparison objective, Ovid Medline and Scopus were used (1960 to July 2016) and studies comparing contact Tskin sensor measurements in vivo or using appropriate physical models were included. For the survey of use, Ovid Medline was used (2011 to July 2016) and studies using contact temperature sensors for the measurement of human Tskinin vivo during sport, exercise, and other physical activity were included. Study appraisal and synthesis methods: For measurement comparisons, assessments of risk of bias were made according to an adapted version of the Cochrane Collaboration's risk of bias tool. Comparisons of temperature measurements were expressed, where possible, as mean difference and 95% limits of agreement (LoA). Meta-analyses were not performed due to the lack of a common reference condition. For the survey of use, extracted information was summarised in text and tabular form. Results: For measurement comparisons, 21 studies were included. Results from these studies indicated minor (<0.5°C) to practically meaningful (>0.5°C) measurement bias within the subgroups of attachment type, applied pressure, environmental conditions, and sensor type. The 95% LoA were often within 1.0°C for in vivo studies and 0.5°C for physical models. For the survey of use, 172 studies were included. Details about Tskin sensor setup were often poorly reported and, from those reporting setup information, it was evident that setups widely varied in terms of type of sensors, attachments, and locations used. Conclusions: Setup variables and conditions of use can influence the measured temperature from contact Tskin sensors and thus key setup variables need to be appropriately considered and consistently reported.
Collapse
Affiliation(s)
- Braid A MacRae
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland.,Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Simon Annaheim
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
| | - Christina M Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - René M Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
| |
Collapse
|
6
|
MacRae BA, Annaheim S, Spengler CM, Rossi RM. Skin Temperature Measurement Using Contact Thermometry: A Systematic Review of Setup Variables and Their Effects on Measured Values. Front Physiol 2018; 9:29. [PMID: 29441024 PMCID: PMC5797625 DOI: 10.3389/fphys.2018.00029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/09/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Skin temperature (Tskin) is commonly measured using Tskin sensors affixed directly to the skin surface, although the influence of setup variables on the measured outcome requires clarification. Objectives: The two distinct objectives of this systematic review were (1) to examine measurements from contact Tskin sensors considering equilibrium temperature and temperature disturbance, sensor attachments, pressure, environmental temperature, and sensor type, and (2) to characterise the contact Tskin sensors used, conditions of use, and subsequent reporting in studies investigating sports, exercise, and other physical activity. Data sources and study selection: For the measurement comparison objective, Ovid Medline and Scopus were used (1960 to July 2016) and studies comparing contact Tskin sensor measurements in vivo or using appropriate physical models were included. For the survey of use, Ovid Medline was used (2011 to July 2016) and studies using contact temperature sensors for the measurement of human Tskinin vivo during sport, exercise, and other physical activity were included. Study appraisal and synthesis methods: For measurement comparisons, assessments of risk of bias were made according to an adapted version of the Cochrane Collaboration's risk of bias tool. Comparisons of temperature measurements were expressed, where possible, as mean difference and 95% limits of agreement (LoA). Meta-analyses were not performed due to the lack of a common reference condition. For the survey of use, extracted information was summarised in text and tabular form. Results: For measurement comparisons, 21 studies were included. Results from these studies indicated minor (<0.5°C) to practically meaningful (>0.5°C) measurement bias within the subgroups of attachment type, applied pressure, environmental conditions, and sensor type. The 95% LoA were often within 1.0°C for in vivo studies and 0.5°C for physical models. For the survey of use, 172 studies were included. Details about Tskin sensor setup were often poorly reported and, from those reporting setup information, it was evident that setups widely varied in terms of type of sensors, attachments, and locations used. Conclusions: Setup variables and conditions of use can influence the measured temperature from contact Tskin sensors and thus key setup variables need to be appropriately considered and consistently reported.
Collapse
Affiliation(s)
- Braid A. MacRae
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Simon Annaheim
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
| | - Christina M. Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - René M. Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
| |
Collapse
|
7
|
Mota MR, Dantas RAE, Oliveira-Silva I, Sales MM, Sotero RDC, Venâncio PEM, Teixeira Júnior J, Chaves SN, de Lima FD. Effect of self-paced active recovery and passive recovery on blood lactate removal following a 200 m freestyle swimming trial. Open Access J Sports Med 2017; 8:155-160. [PMID: 28721108 PMCID: PMC5499938 DOI: 10.2147/oajsm.s127948] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose The aim of this study was to investigate the effect of self-paced active recovery (AR) and passive recovery (PR) on blood lactate removal following a 200 m freestyle swimming trial. Patients and methods Fourteen young swimmers (with a training frequency of 6–8 sessions per week) performed two maximal 200 m freestyle trials followed by 15 minutes of different recovery methods, on separate days. Recovery was performed with 15 minutes of passive rest or 5 minutes of passive rest and 10 minutes of self-paced AR. Performance variables (trial velocity and time), recovery variables (distance covered and AR velocity), and physiological variables (blood lactate production, blood lactate removal, and removal velocity) were assessed and compared. Results There was no difference between trial times in both conditions (PR: 125.86±7.92 s; AR: 125.71±8.21 s; p=0.752). AR velocity was 69.10±3.02% of 200 m freestyle trial velocity in AR. Blood lactate production was not different between conditions (PR: 8.82±2.47 mmol L−1; AR: 7.85±2.05 mmol L−1; p=0.069). However, blood lactate removal was higher in AR (PR: 1.76±1.70 mmol L−1; AR: 4.30±1.74 mmol L−1; p<0.001). The velocity of blood lactate removal was significantly higher in AR (PR: 0.18±0.17 mmol L−1 min−1; AR: 0.43±0.17 mmol L−1 min−1; p<0.001). Conclusion Self-paced AR shows a higher velocity of blood lactate removal than PR. These data suggest that athletes may be able to choose the best recovery intensity themselves.
Collapse
Affiliation(s)
- Márcio Rabelo Mota
- College of Education and Health Sciences, University Center of Brasília - UniCEUB, Brasília.,College of Physical Education, UniEVANGÉLICA, Anápolis, Goiás
| | - Renata Aparecida Elias Dantas
- College of Education and Health Sciences, University Center of Brasília - UniCEUB, Brasília.,College of Physical Education, UniEVANGÉLICA, Anápolis, Goiás
| | | | - Marcelo Magalhães Sales
- College of Physical Education, UniEVANGÉLICA, Anápolis, Goiás.,College of Physical Education, Universidade Estadual de Goiás -UEG, Quirinópolis, Goiás
| | | | | | | | - Sandro Nobre Chaves
- College of Physical Education, University of Brasília - UnB, Brasília, Brazil
| | | |
Collapse
|
8
|
Bishop SH, Szymanski DJ, Ryan GA, Herron RL, Bishop PA. The Effect of Intermittent Vest Cooling on Thermoregulation and Cardiovascular Strain in Baseball Catchers. J Strength Cond Res 2017; 31:2060-2065. [PMID: 28323792 DOI: 10.1519/jsc.0000000000001680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bishop, SH, Szymanski, DJ, Ryan, GA, Herron, RL, and Bishop, PA. The effect of intermittent vest cooling on thermoregulation and cardiovascular strain in baseball catchers. J Strength Cond Res 31(8): 2060-2065, 2017-Baseball catchers are exposed to multiple physiological challenges while playing outside during the spring and summer months, many of which deal with recovery and thermoregulation. The purpose of this study was to investigate the effect of intermittent cooling on core temperature, cardiovascular strain, exertion, and recovery during a simulated catching performance in the heat. Six trained college-aged baseball catchers performed in a controlled, hot (35° C), and humid (25% relative humidity) environment in a counter-balanced, cross-over design. Ice vest cooling (VC) was used as a cooling modality and was compared with a control of no cooling (NC). Rectal temperature (Tre), heart rate (HR), rating of perceived exertion (RPE), and perceived recovery scale (PRS) were recorded before and after each simulated inning. All activities took place in a heat chamber, and each inning consisted of catchers receiving 12 pitches in their position followed by 6 minutes of recovery. Nine total innings were performed, and 27 total innings were performed with each of the 2 treatments. A significantly smaller mean Tre change was seen in VC when compared with NC (0.58 ± 0.2° C, 0.98 ± 0.2° C, p ≤ 0.01, respectively). Rating of perceived exertion was significantly lower and PRS was significantly improved for VC compared with NC (both p ≤ 0.05). Mean recovery HR during VC was significantly lower than NC in the fifth (VC = 84 ± 8 b·min, NC = 90 ± 9 b·min, p = 0.04), seventh (VC = 84 ± 3 b·min, NC = 92 ± 7 b·min, p = 0.02), and ninth (VC = 85 ± 7 b·min, NC = 93 ± 5 b·min, p = 0.01) innings. Heart rate during catching was significantly lower at the end of the VC trials when compared with NC (108 ± 16 b·min vs. 120 ± 19 b·min, p = 0.02, respectively). Vest cooling decreased heat strain, cardiovascular strain, and RPE while it improved perceived recovery in catchers over a simulated 3-game series performed in hot conditions.
Collapse
Affiliation(s)
- Stacy H Bishop
- 1University of Montevallo, Montevallo, Alabama; 2Louisiana Tech University, Ruston, Louisiana; 3Catawba College, Salisbury, North Carolina; and 4The University of Alabama, Tuscaloosa, Alabama
| | | | | | | | | |
Collapse
|
9
|
Comparison of different cryotherapy recovery methods in elite junior cyclists. ASIA-PACIFIC JOURNAL OF SPORT MEDICINE ARTHROSCOPY REHABILITATION AND TECHNOLOGY 2016; 5:17-23. [PMID: 29264264 PMCID: PMC5730697 DOI: 10.1016/j.asmart.2016.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 05/27/2016] [Accepted: 06/07/2016] [Indexed: 11/28/2022]
Abstract
Background/objective Cold water immersion (CWI) and active recovery treatment (ACT) are commonly used recovery treatments for athletes between exercise bouts, but they are sometimes limited by space and availability of equipment in training and competition venues. Therefore, the purpose of this study was to determine whether cold compression therapy (CCT) would provide the same effect as CWI and ACT as an alternative option in a hot environment. Methods Eight elite male junior cyclists (age, 15.5 ± 1.2 years; height, 167.7 ± 3.3 cm; body mass, 57.3 ± 3.5 kg; peak oxygen uptake, 64.7 ± 4.3 mL/kg/min) completed a maximal cycling test to determine their peak power output (PPO) and oxygen uptake. Then they completed three tests using randomised recovery protocol of CWI, CCT and ACT for 15 minutes. Each test consisted of two 35-minute exercise bouts, with 5 minutes of warm-up, 15 minutes of cycling at 75% PPO and 15 minutes maximal trial. The two exercise bouts were separated by 60 minutes (5 minutes cool-down, 10 minutes preparation for recovery treatment, 15 minutes recovery treatment, and 30 minutes passive recovery). Results There was no significant difference between average power output, blood lactate, rating of perceived exertion, and heart rate for two time-trial bouts for all recovery treatments. A significant decrease in core temperature was noted prior to the start of the second exercise bout for CWI. Conclusion CCT, CWI and ACT are all useful recovery treatments between exercise bouts.
Collapse
|
10
|
Bishop SH, Herron RL, Ryan GA, Katica CP, Bishop PA. The Effect of Intermittent Arm and Shoulder Cooling on Baseball Pitching Velocity. J Strength Cond Res 2016; 30:1027-32. [PMID: 24077378 DOI: 10.1519/jsc.0000000000000256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Stacy H Bishop
- 1Department of Health and Human Performance, Texas A&M University-Commerce, Commerce, Texas; and 2Department of Kinesiology, University of Alabama, Tuscaloosa, Alabama
| | | | | | | | | |
Collapse
|
11
|
De Pauw K, Roelands B, Marusic U, Tellez HF, Knaepen K, Meeusen R. Brain mapping after prolonged cycling and during recovery in the heat. J Appl Physiol (1985) 2013; 115:1324-31. [PMID: 23990240 PMCID: PMC3841834 DOI: 10.1152/japplphysiol.00633.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/23/2013] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to determine the effect of prolonged intensive cycling and postexercise recovery in the heat on brain sources of altered brain oscillations. After a max test and familiarization trial, nine trained male subjects (23 ± 3 yr; maximal oxygen uptake = 62.1 ± 5.3 ml·min(-1)·kg(-1)) performed three experimental trials in the heat (30°C; relative humidity 43.7 ± 5.6%). Each trial consisted of two exercise tasks separated by 1 h. The first was a 60-min constant-load trial, followed by a 30-min simulated time trial (TT1). The second comprised a 12-min simulated time trial (TT2). After TT1, active recovery (AR), passive rest (PR), or cold water immersion (CWI) was applied for 15 min. Electroencephalography was measured at baseline and during postexercise recovery. Standardized low-resolution brain electromagnetic tomography was applied to accurately pinpoint and localize altered electrical neuronal activity. After CWI, PR and AR subjects completed TT2 in 761 ± 42, 791 ± 76, and 794 ± 62 s, respectively. A prolonged intensive cycling performance in the heat decreased β activity across the whole brain. Postexercise AR and PR elicited no significant electrocortical differences, whereas CWI induced significantly increased β3 activity in Brodmann areas (BA) 13 (posterior margin of insular cortex) and BA 40 (supramarginal gyrus). Self-paced prolonged exercise in the heat seems to decrease β activity, hence representing decreased arousal. Postexercise CWI increased β3 activity at BA 13 and 40, brain areas involved in somatosensory information processing.
Collapse
Affiliation(s)
- Kevin De Pauw
- Department of Human Physiology, Faculty of Physical Education and Physical Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
12
|
Cè E, Limonta E, Maggioni MA, Rampichini S, Veicsteinas A, Esposito F. Stretching and deep and superficial massage do not influence blood lactate levels after heavy-intensity cycle exercise. J Sports Sci 2012; 31:856-66. [PMID: 23256711 DOI: 10.1080/02640414.2012.753158] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The study aimed to assess the role of deep and superficial massage and passive stretching recovery on blood lactate concentration ([La(-)]) kinetics after a fatiguing exercise compared to active and passive recovery. Nine participants (age 23 ± 1 years; stature 1.76 ± 0.02 m; body mass 74 ± 4 kg) performed on five occasions an 8-min fatiguing exercise at 90% of maximum oxygen uptake, followed by five different 10-min interventions in random order: passive and active recovery, deep and superficial massage and stretching. Interventions were followed by 1 hour of recovery. Throughout each session, maximum voluntary contraction (MVC) of the knee extensor muscles, [La(-)], cardiorespiratory and metabolic variables were determined. Electromyographic signal (EMG) from the quadriceps muscles was also recorded. At the end of the fatiguing exercise, [La(-)], MVC, EMG amplitude, and metabolic and cardiorespiratory parameters were similar among conditions. During intervention administration, [La(-)] was lower and metabolic and cardiorespiratory parameters were higher in active recovery compared to the other modalities (P < 0.05). Stretching and deep and superficial massage did not alter [La(-)] kinetics compared to passive recovery. These findings indicate that the pressure exerted during massage administration and stretching manoeuvres did not play a significant role on post-exercise blood La(-) levels.
Collapse
Affiliation(s)
- Emiliano Cè
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
13
|
Yanagisawa O, Otsuka S, Fukubayashi T. Effect of cooling during inter-exercise periods on subsequent intramuscular water movement and muscle performance. Scand J Med Sci Sports 2012; 24:11-7. [DOI: 10.1111/j.1600-0838.2012.01477.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2012] [Indexed: 11/28/2022]
Affiliation(s)
- O. Yanagisawa
- Faculty of Sport Sciences; Waseda University; Tokorozawa Japan
| | - S. Otsuka
- Graduate School of Sport Sciences; Waseda University; Tokorozawa Japan
| | - T. Fukubayashi
- Faculty of Sport Sciences; Waseda University; Tokorozawa Japan
| |
Collapse
|