1
|
Hinks A, Dalton BE, Mashouri P, Flewwelling LD, Pyle WG, Cheng AJ, Power GA. Time course changes in in vivo muscle mechanical function and Ca 2+ regulation of force following experimentally induced gradual ovarian failure in mice. Exp Physiol 2024; 109:711-728. [PMID: 38500268 PMCID: PMC11061627 DOI: 10.1113/ep091735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
The abrupt cessation of ovarian hormone release is associated with declines in muscle contractile function, yet the impact of gradual ovarian failure on muscle contractility across peri-, early- and late-stage menopause remains unclear. In this study, a 4-vinylcyclohexene diepoxide (VCD)-induced ovarian failure mouse model was used to examine time course changes in muscle mechanical function. Plantar flexors of female mice (VCD: n = 10; CON: n = 8) were assessed at 40 (early perimenopause), 80 (late perimenopause), 120 (menopause onset) and 176 (late menopause) days post-initial VCD injection. A torque-frequency relationship was established across a range of frequencies (10-200 Hz). Isotonic dynamic contractions were elicited against relative loads (10-80% maximal isometric torque) to determine the torque-velocity-power relationship. Mice then performed a fatigue task using intermittent 100 Hz isometric contractions until torque dropped by 60%. Recovery of twitch, 10 Hz and 100 Hz torque were tracked for 10 min post-task failure. Additionally, intact muscle fibres from the flexor digitorum brevis underwent a fatigue task (50 repetitions at 70 Hz), and 10 and 100 Hz tetanic [Ca2+] were monitored for 10 min afterward. VCD mice exhibited 16% lower twitch torque than controls across all time points. Apart from twitch torque, 10 Hz torque and 10 Hz tetanic [Ca2+], where VCD showed greater values relative to pre-fatigue during recovery, no significant differences were observed between control and VCD mice during recovery. These results indicate that gradual ovarian failure has minimal detriments to in vivo muscle mechanical function, with minor alterations observed primarily for low-frequency stimulation during recovery from fatigue.
Collapse
Affiliation(s)
- Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| | - Benjamin E. Dalton
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| | - Parastoo Mashouri
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| | - Luke D. Flewwelling
- Muscle Health Research Centre, School of Kinesiology and Health Sciences, Faculty of HealthYork UniversityTorontoCanada
| | - William Glen Pyle
- IMPART Team Canada, Dalhousie MedicineDalhousie UniversitySaint JohnNew BrunswickCanada
| | - Arthur J. Cheng
- Muscle Health Research Centre, School of Kinesiology and Health Sciences, Faculty of HealthYork UniversityTorontoCanada
| | - Geoffrey A. Power
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
2
|
Schifino AG, Cooley MA, Zhong RX, Heo J, Hoffman DB, Warren GL, Greising SM, Call JA. Tibial bone strength is negatively affected by volumetric muscle loss injury to the adjacent muscle in male mice. J Orthop Res 2024; 42:123-133. [PMID: 37337074 PMCID: PMC10728344 DOI: 10.1002/jor.25643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/15/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023]
Abstract
This study's objective was to investigate how contractile strength loss associated with a volumetric muscle loss (VML) injury affects the adjacent tibial bone structural and functional properties in male C57BL/6J mice. Mice were randomized into one of two experimental groups: VML-injured mice that were injured at age 12 weeks and aged to 20 weeks (8 weeks postinjury, VML) and 20-week-old age-matched uninjured mice (Uninjured-20). Tibial bone strength, mid-diaphysis cortical geometry, intrinsic material properties, and metaphyseal trabecular bone structure were assessed by three-point bending and microcomputed tomography (µCT). The plantar flexor muscle group (gastrocnemius, soleus, plantaris) was analyzed for its functional capacities, that is, peak-isometric torque and peak-isokinetic power. VML-injured limbs had 25% less peak-isometric torque and 31% less peak-isokinetic power compared to those of Uninjured-20 mice (p < 0.001). Ultimate load, but not stiffness, was significantly less (10%) in tibias of VML-injured limbs compared to those from Uninjured-20 (p = 0.014). µCT analyses showed cortical bone thickness was 6% less in tibias of VML-injured limbs compared to Uninjured-20 (p = 0.001). Importantly, tibial bone cross-section moment of inertia, the primary determinant of bone ultimate load, was 16% smaller in bones of VML-injured limbs compared to bones from Uninjured-20 (p = 0.046). Metaphyseal trabecular bone structure was also altered up to 23% in tibias of VML-injured limbs (p < 0.010). These changes in tibial bone structure and function after a VML injury occur during a natural maturation phase between the age of 12 and 20 weeks, as evidenced by Uninjured-20 mice having greater tibial bone size and strength compared to uninjured-aged 12-week mice.
Collapse
Affiliation(s)
| | - Marion A. Cooley
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, August University, Augusta, GA USA
| | - Roger X. Zhong
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA USA
| | - Junwon Heo
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA USA
| | | | - Gordon L. Warren
- Department of Physical Therapy, Georgia State University, Atlanta, GA USA
| | | | - Jarrod A. Call
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA USA
| |
Collapse
|
3
|
Schifino AG, Raymond‐Pope CJ, Heo J, McFaline‐Figueroa J, Call JA, Greising SM. Resistance wheel running improves contractile strength, but not metabolic capacity, in a murine model of volumetric muscle loss injury. Exp Physiol 2023; 108:1282-1294. [PMID: 37526646 PMCID: PMC10543535 DOI: 10.1113/ep091284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
The primary objective of this study was to determine if low- or high-resistance voluntary wheel running leads to functional improvements in muscle strength (i.e., isometric and isokinetic torque) and metabolic function (i.e., permeabilized fibre bundle mitochondrial respiration) after a volumetric muscle loss (VML) injury. C57BL/6J mice were randomized into one of four experimental groups at age 12 weeks: uninjured control, VML untreated (VML), low-resistance wheel running (VML-LR) and high-resistance wheel running (VML-HR). All mice, excluding the uninjured, were subject to a unilateral VML injury to the plantar flexor muscles and wheel running began 3 days post-VML. At 8 weeks post-VML, peak isometric torque was greater in uninjured compared to all VML-injured groups, but both VML-LR and VML-HR had greater (∼32%) peak isometric torque compared to VML. All VML-injured groups had less isokinetic torque compared to uninjured, and there was no statistical difference among VML, VML-LR and VML-HR. No differences in cumulative running distance were observed between VML-LR and VML-HR groups. Because adaptations in VML-HR peak isometric torque were attributed to greater gastrocnemius muscle mass, atrophy- and hypertrophy-related protein content and post-translational modifications were explored via immunoblot; however, results were inconclusive. Permeabilized fibre bundle mitochondrial oxygen consumption was 22% greater in uninjured compared to VML, but there was no statistical difference among VML, VML-LR and VML-HR. Furthermore, neither wheel running group demonstrated a change in the relative protein content of the mitochondrial biogenesis transcription factor, peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α). These results indicate that resistance wheel running alone only has modest benefits in the VML-injured muscle. NEW FINDINGS: What is the central question of the study? Does initiation of a resistance wheel running regimen following volumetric muscle loss (VML) improve the functional capacity of skeletal muscle? What is the main finding and its importance? Resistance wheel running led to greater muscle mass and strength in mice with a VML injury but did not result in a full recovery. Neither low- nor high-resistance wheel running was associated with a change in permeabilized muscle fibre respiration despite runners having greater whole-body treadmill endurance capacity, suggesting resilience to metabolic adaptations in VML-injured muscle. Resistance wheel running may be a suitable adjuvant rehabilitation strategy, but alone does not fully mitigate VML pathology.
Collapse
Affiliation(s)
| | | | - Junwon Heo
- Department of Physiology and PharmacologyUniversity of GeorgiaAthensGAUSA
| | | | - Jarrod A. Call
- Department of Physiology and PharmacologyUniversity of GeorgiaAthensGAUSA
- Regenerative Bioscience CenterUniversity of GeorgiaAthensGAUSA
| | | |
Collapse
|
4
|
Hamm SE, Yuan C, McQueen LF, Wallace MA, Zhang H, Arora A, Garafalo AM, McMillan RP, Lawlor MW, Prom MJ, Ott EM, Yan J, Addington AK, Morris CA, Gonzalez JP, Grange RW. Prolonged voluntary wheel running reveals unique adaptations in mdx mice treated with microdystrophin constructs ± the nNOS-binding site. Front Physiol 2023; 14:1166206. [PMID: 37435312 PMCID: PMC10330712 DOI: 10.3389/fphys.2023.1166206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/10/2023] [Indexed: 07/13/2023] Open
Abstract
We tested the effects of prolonged voluntary wheel running on the muscle function of mdx mice treated with one of two different microdystrophin constructs. At 7 weeks of age mdx mice were injected with a single dose of AAV9-CK8-microdystrophin with (gene therapy 1, GT1) or without (gene therapy 2, GT2) the nNOS-binding domain and were assigned to one of four gene therapy treated groups: mdxRGT1 (run, GT1), mdxGT1 (no run, GT1), or mdxRGT2 (run,GT2), mdxGT2 (no run, GT2). There were two mdx untreated groups injected with excipient: mdxR (run, no gene therapy) and mdx (no run, no gene therapy). A third no treatment group, Wildtype (WT) received no injection and did not run. mdxRGT1, mdxRGT2 and mdxR performed voluntary wheel running for 52 weeks; WT and remaining mdx groups were cage active. Robust expression of microdystrophin occurred in diaphragm, quadriceps, and heart muscles of all treated mice. Dystrophic muscle pathology was high in diaphragms of non-treated mdx and mdxR mice and improved in all treated groups. Endurance capacity was rescued by both voluntary wheel running and gene therapy alone, but their combination was most beneficial. All treated groups increased in vivo plantarflexor torque over both mdx and mdxR mice. mdx and mdxR mice displayed ∼3-fold lower diaphragm force and power compared to WT values. Treated groups demonstrated partial improvements in diaphragm force and power, with mdxRGT2 mice experiencing the greatest improvement at ∼60% of WT values. Evaluation of oxidative red quadriceps fibers revealed the greatest improvements in mitochondrial respiration in mdxRGT1 mice, reaching WT levels. Interestingly, mdxGT2 mice displayed diaphragm mitochondrial respiration values similar to WT but mdxRGT2 animals showed relative decreases compared to the no run group. Collectively, these data demonstrate that either microdystrophin construct combined with voluntary wheel running increased in vivo maximal muscle strength, power, and endurance. However, these data also highlighted important differences between the two microdystrophin constructs. GT1, with the nNOS-binding site, improved more markers of exercise-driven adaptations in metabolic enzyme activity of limb muscles, while GT2, without the nNOS-binding site, demonstrated greater protection of diaphragm strength after chronic voluntary endurance exercise but decreased mitochondrial respiration in the context of running.
Collapse
Affiliation(s)
- S. E. Hamm
- Department of Human Nutrition, Foods and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA, United States
| | - C. Yuan
- Department of Human Nutrition, Foods and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA, United States
| | - L. F. McQueen
- Department of Human Nutrition, Foods and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA, United States
| | - M. A. Wallace
- Department of Human Nutrition, Foods and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA, United States
| | - H. Zhang
- Department of Human Nutrition, Foods and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA, United States
| | - A. Arora
- Department of Human Nutrition, Foods and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA, United States
| | - A. M. Garafalo
- Department of Human Nutrition, Foods and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA, United States
| | - R. P. McMillan
- Department of Human Nutrition, Foods and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA, United States
| | - M. W. Lawlor
- Department of Pathology and Neuroscience Research Center, Medical College of Wisconsin and Diverge Translational Science Laboratory, Milwaukee, WI, United States
| | - M. J. Prom
- Department of Pathology and Neuroscience Research Center, Medical College of Wisconsin and Diverge Translational Science Laboratory, Milwaukee, WI, United States
| | - E. M. Ott
- Department of Pathology and Neuroscience Research Center, Medical College of Wisconsin and Diverge Translational Science Laboratory, Milwaukee, WI, United States
| | - J. Yan
- Department of Human Nutrition, Foods and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA, United States
| | - A. K. Addington
- Department of Human Nutrition, Foods and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA, United States
| | - C. A. Morris
- Solid Biosciences, Inc., Cambridge, MA, United States
| | | | - R. W. Grange
- Department of Human Nutrition, Foods and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
5
|
McFaline-Figueroa J, Schifino AG, Nichenko AS, Lord MN, Hunda ET, Winders EA, Noble EE, Greising SM, Call JA. Pharmaceutical Agents for Contractile-Metabolic Dysfunction After Volumetric Muscle Loss. Tissue Eng Part A 2022; 28:795-806. [PMID: 35620911 PMCID: PMC9634984 DOI: 10.1089/ten.tea.2022.0036] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/21/2022] [Indexed: 11/12/2022] Open
Abstract
Volumetric muscle loss (VML) injuries represent a majority of military service member casualties and are common in civilian populations following blunt and/or penetrating traumas. Characterized as a skeletal muscle injury with permanent functional impairments, there is currently no standard for rehabilitation, leading to lifelong disability. Toward developing rehabilitative strategies, previous research demonstrates that the remaining muscle after a VML injury lacks similar levels of plasticity or adaptability as healthy, uninjured skeletal muscle. This may be due, in part, to impaired innervation and vascularization of the remaining muscle, as well as disrupted molecular signaling cascades commonly associated with muscle adaptation. The primary objective of this study was to assess the ability of four pharmacological agents with a strong record of modulating muscle contractile and metabolic function to improve functional deficits in a murine model of VML injury. Male C57BL/6 mice underwent a 15% multimuscle VML injury of the posterior hindlimb and were randomized into drug treatment groups (formoterol [FOR], 5-aminoimidazole-4-carboxamide riboside [AICAR], pioglitazone [PIO], or sildenafil [SIL]) or untreated VML group. At the end of 60 days, the injury model was first validated by comparison to age-matched injury-naive mice. Untreated VML mice had 22% less gastrocnemius muscle mass, 36% less peak-isometric torque, and 27% less maximal mitochondrial oxygen consumption rate compared to uninjured mice (p < 0.01). Experimental drug groups were, then, compared to VML untreated, and there was minimal evidence of efficacy for AICAR, PIO, or SIL in improving contractile and metabolic functional outcomes. However, FOR-treated VML mice had 18% greater peak isometric torque (p < 0.01) and permeabilized muscle fibers had 36% greater State III mitochondrial oxygen consumption rate (p < 0.01) compared to VML untreated mice, suggesting an overall improvement in muscle condition. There was minimal evidence that these benefits came from greater mitochondrial biogenesis and/or mitochondrial complex protein content, but could be due to greater enzyme activity levels for complex I and complex II. These findings suggest that FOR treatment is candidate to pair with a rehabilitative approach to maximize functional improvements in VML-injured muscle. Impact statement Volumetric muscle loss (VML) injuries result in deficiencies in strength and mobility, which have a severe impact on patient quality of life. Despite breakthroughs in tissue engineering, there are currently no treatments available that can restore function to the affected limb. Our data show that treatment of VML injuries with clinically available and FDA-approved formoterol (FOR), a beta-agonist, significantly improves strength and metabolism of VML-injured muscle. FOR is therefore a promising candidate for combined therapeutic approaches (i.e., regenerative rehabilitation) such as pairing FOR with structured rehabilitation or cell-seeded biomaterials as it may provide greater functional improvements than either strategy alone.
Collapse
Affiliation(s)
- Jennifer McFaline-Figueroa
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia, USA
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Albino G. Schifino
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia, USA
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Anna S. Nichenko
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia, USA
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Magen N. Lord
- Department of Nutritional Sciences, University of Georgia, Athens, Georgia, USA
| | - Edward T. Hunda
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | | | - Emily E. Noble
- Department of Nutritional Sciences, University of Georgia, Athens, Georgia, USA
| | - Sarah M. Greising
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jarrod A. Call
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia, USA
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
6
|
Su Y, Song Y. The new challenge of “exercise + X″ therapy for Duchenne muscular dystrophy—Individualized identification of exercise tolerance and precise implementation of exercise intervention. Front Physiol 2022; 13:947749. [PMID: 35991169 PMCID: PMC9389311 DOI: 10.3389/fphys.2022.947749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/07/2022] [Indexed: 12/05/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive fatal muscular disease. Gene therapy, cell therapy, and drug therapy are currently the most widely used treatments for DMD. However, many experiments on animals and humans suggested that appropriate exercise could improve the effectiveness of such precision medicine treatment, thereby improving patient’s muscle quality and function. Due to the striated muscle damage of DMD individuals, there are still many debates about whether DMD animals or patients can exercise, how to exercise, when to exercise best, and how to exercise effectively. The purpose of this review is to summarize and investigate the scientific basis and efficacy of exercise as an adjuvant therapy for DMD gene therapy, cell therapy and drug therapy, as well as to present the theoretical framework and optional strategies of “exercise + X″″ combination therapy.
Collapse
Affiliation(s)
- Yuhui Su
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- Institute of Physical Education, Jilin Normal University, Siping, China
| | - Yafeng Song
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
- *Correspondence: Yafeng Song,
| |
Collapse
|
7
|
Effects of Low-Intensity and Long-Term Aerobic Exercise on the Psoas Muscle of mdx Mice: An Experimental Model of Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:ijms23094483. [PMID: 35562874 PMCID: PMC9105402 DOI: 10.3390/ijms23094483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a muscle disease characterized by the absence of the protein dystrophin, which causes a loss of sarcolemma integrity, determining recurrent muscle injuries, decrease in muscle function, and progressive degeneration. Currently, there is a need for therapeutic treatments to improve the quality of life of DMD patients. Here, we investigated the effects of a low-intensity aerobic training (37 sessions) on satellite cells, peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α protein (PGC-1α), and different types of fibers of the psoas muscle from mdx mice (DMD experimental model). Wildtype and mdx mice were randomly divided into sedentary and trained groups (n = 24). Trained animals were subjected to 37 sessions of low-intensity running on a motorized treadmill. Subsequently, the psoas muscle was excised and analyzed by immunofluorescence for dystrophin, satellite cells, myosin heavy chain (MHC), and PGC-1α content. The minimal Feret’s diameters of the fibers were measured, and light microscopy was applied to observe general morphological features of the muscles. The training (37 sessions) improved morphological features in muscles from mdx mice and caused an increase in the number of quiescent/activated satellite cells. It also increased the content of PGC-1α in the mdx group. We concluded that low-intensity aerobic exercise (37 sessions) was able to reverse deleterious changes determined by DMD.
Collapse
|
8
|
Kilroy EA, Ignacz AC, Brann KL, Schaffer CE, Varney D, Alrowaished SS, Silknitter KJ, Miner JN, Almaghasilah A, Spellen TL, Lewis AD, Tilbury K, King BL, Kelley JB, Henry CA. Beneficial impacts of neuromuscular electrical stimulation on muscle structure and function in the zebrafish model of Duchenne muscular dystrophy. eLife 2022; 11:62760. [PMID: 35324428 PMCID: PMC8947762 DOI: 10.7554/elife.62760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/10/2022] [Indexed: 12/20/2022] Open
Abstract
Neuromuscular electrical stimulation (NMES) allows activation of muscle fibers in the absence of voluntary force generation. NMES could have the potential to promote muscle homeostasis in the context of muscle disease, but the impacts of NMES on diseased muscle are not well understood. We used the zebrafish Duchenne muscular dystrophy (dmd) mutant and a longitudinal design to elucidate the consequences of NMES on muscle health. We designed four neuromuscular stimulation paradigms loosely based on weightlifting regimens. Each paradigm differentially affected neuromuscular structure, function, and survival. Only endurance neuromuscular stimulation (eNMES) improved all outcome measures. We found that eNMES improves muscle and neuromuscular junction morphology, swimming, and survival. Heme oxygenase and integrin alpha7 are required for eNMES-mediated improvement. Our data indicate that neuromuscular stimulation can be beneficial, suggesting that the right type of activity may benefit patients with muscle disease.
Collapse
Affiliation(s)
- Elisabeth A Kilroy
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Amanda C Ignacz
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Kaylee L Brann
- School of Biology and Ecology, University of Maine, Orono, United States
| | - Claire E Schaffer
- School of Biology and Ecology, University of Maine, Orono, United States
| | - Devon Varney
- School of Biology and Ecology, University of Maine, Orono, United States
| | | | - Kodey J Silknitter
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Jordan N Miner
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, United States
| | - Ahmed Almaghasilah
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Tashawna L Spellen
- School of Biology and Ecology, University of Maine, Orono, United States
| | - Alexandra D Lewis
- School of Biology and Ecology, University of Maine, Orono, United States
| | - Karissa Tilbury
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States.,Department of Chemical and Biomedical Engineering, University of Maine, Orono, United States
| | - Benjamin L King
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States.,Department of Molecular and Biomedical Sciences, University of Maine, Orono, United States
| | - Joshua B Kelley
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States.,Department of Molecular and Biomedical Sciences, University of Maine, Orono, United States
| | - Clarissa A Henry
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States.,School of Biology and Ecology, University of Maine, Orono, United States
| |
Collapse
|
9
|
Kitaoka Y, Miyazaki M, Kikuchi S. Voluntary exercise prevents abnormal muscle mitochondrial morphology in cancer cachexia mice. Physiol Rep 2021; 9:e15016. [PMID: 34427401 PMCID: PMC8383714 DOI: 10.14814/phy2.15016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
This study aimed to examine the effects of voluntary wheel running on cancer cachexia-induced mitochondrial alterations in mouse skeletal muscle. Mice bearing colon 26 adenocarcinoma (C26) were used as a model of cancer cachexia. C26 mice showed a lower gastrocnemius and plantaris muscle weight, but 4 weeks of voluntary exercise rescued these changes. Further, voluntary exercise attenuated observed declines in the levels of oxidative phosphorylation proteins and activities of citrate synthase and cytochrome c oxidase in the skeletal muscle of C26 mice. Among mitochondrial morphology regulatory proteins, mitofusin 2 (Mfn2) and dynamin-related protein 1 (Drp1) were decreased in the skeletal muscle of C26 mice, but exercise resulted in similar improvements as seen in markers of mitochondrial content. In isolated mitochondria, 4-hydroxynonenal and protein carbonyls were elevated in C26 mice, but exercise blunted the increases in these markers of oxidative stress. In addition, electron microscopy revealed that exercise alleviated the observed increase in the percentage of damaged mitochondria in C26 mice. These results suggest that voluntary exercise effectively counteracts mitochondrial dysfunction to mitigate muscle loss in cachexia.
Collapse
Affiliation(s)
- Yu Kitaoka
- Department of Human SciencesKanagawa UniversityYokohamaJapan
| | - Mitsunori Miyazaki
- Department of Integrative PhysiologyGraduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
- Department of Physical TherapySchool of Rehabilitation SciencesHealth Sciences University of HokkaidoIshikari‐TobetsuJapan
| | - Shin Kikuchi
- Department of Anatomy 1Sapporo Medical University School of MedicineSapporoJapan
| |
Collapse
|
10
|
Accelerating the Mdx Heart Histo-Pathology through Physical Exercise. Life (Basel) 2021; 11:life11070706. [PMID: 34357078 PMCID: PMC8306456 DOI: 10.3390/life11070706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic cardiac muscle inflammation and fibrosis are key features of Duchenne Muscular Dystrophy (DMD). Around 90% of 18-year-old patients already show signs of DMD-related cardiomyopathy, and cardiac failure is rising as the main cause of death among DMD patients. The evaluation of novel therapies for the treatment of dystrophic heart problems depends on the availability of animal models that closely mirror the human pathology. The widely used DMD animal model, the mdx mouse, presents a milder cardiac pathology compared to humans, with a late onset, which precludes large-scale and reliable studies. In this study, we used an exercise protocol to accelerate and worsen the cardiac pathology in mdx mice. The mice were subjected to a 1 h-long running session on a treadmill, at moderate speed, twice a week for 8 weeks. We demonstrate that subjecting young mdx mice (4-week-old) to "endurance" exercise accelerates heart pathology progression, as shown by early fibrosis deposition, increases necrosis and inflammation, and reduces heart function compared to controls. We believe that our exercised mdx model represents an easily reproducible and useful tool to study the molecular and cellular networks involved in dystrophic heart alterations, as well as to evaluate novel therapeutic strategies aimed at ameliorating dystrophic heart pathology.
Collapse
|
11
|
Fernandes WS, Vieira RDP, Ferreira RCA, Ferreira SC, Conceição VGB, Morais FV, Araújo AN, Miranda PED, Destefano P, Ribeiro W. EFFECT OF CREATINE AND SILDENAFIL CITRATE ON THE PHYSICAL PERFORMANCE OF MICE. REV BRAS MED ESPORTE 2021. [DOI: 10.1590/1517-869220212702153173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Introduction: The use of substances to enhance sports performance among professional and amateur athletes is increasing. Such substances may either be included in the group of dietary supplements or fall into pharmacological classes. Every substance used for this purpose is called an ergogenic agent. The number of ergogenic options available increases every day, favoring overuse and use without proper guidance. Among the dietary supplements, we highlight the use of creatine, a substance widespread in sports. Among the pharmacological groups, many drugs are used. Recently the use of sildenafil citrate by professional athletes from various predominantly aerobic sports modalities was reported in the media. Objective: To compare and demonstrate the responses caused by physical training associated with the use of creatine and sildenafil citrate in mice. Methods: A swim training protocol was applied and then an electrophysiograph was used in order to obtain parameters related to contraction intensity, the area under the curve and the percentage drop. Results: The responses obtained demonstrated the ergogenic action of creatine because it altered the parameters used for measurement. The use of sildenafil citrate did not yield satisfactory results to frame the drug as an ergogenic agent. Conclusion: Creatine has an ergogenic effect, reducing the percentage drop after 10 seconds, while sildenafil demonstrated no ergogenic potential and, interestingly, resulted in weaker responses when compared to the exercise groups. Evidence level II; Comparative prospective study .
Collapse
|
12
|
Beneficial Role of Exercise in the Modulation of mdx Muscle Plastic Remodeling and Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10040558. [PMID: 33916762 PMCID: PMC8066278 DOI: 10.3390/antiox10040558] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive progressive lethal disorder caused by the lack of dystrophin, which determines myofibers mechanical instability, oxidative stress, inflammation, and susceptibility to contraction-induced injuries. Unfortunately, at present, there is no efficient therapy for DMD. Beyond several promising gene- and stem cells-based strategies under investigation, physical activity may represent a valid noninvasive therapeutic approach to slow down the progression of the pathology. However, ethical issues, the limited number of studies in humans and the lack of consistency of the investigated training interventions generate loss of consensus regarding their efficacy, leaving exercise prescription still questionable. By an accurate analysis of data about the effects of different protocol of exercise on muscles of mdx mice, the most widely-used pre-clinical model for DMD research, we found that low intensity exercise, especially in the form of low speed treadmill running, likely represents the most suitable exercise modality associated to beneficial effects on mdx muscle. This protocol of training reduces muscle oxidative stress, inflammation, and fibrosis process, and enhances muscle functionality, muscle regeneration, and hypertrophy. These conclusions can guide the design of appropriate studies on human, thereby providing new insights to translational therapeutic application of exercise to DMD patients.
Collapse
|
13
|
Hamm SE, Fathalikhani DD, Bukovec KE, Addington AK, Zhang H, Perry JB, McMillan RP, Lawlor MW, Prom MJ, Vanden Avond MA, Kumar SN, Coleman KE, Dupont JB, Mack DL, Brown DA, Morris CA, Gonzalez JP, Grange RW. Voluntary wheel running complements microdystrophin gene therapy to improve muscle function in mdx mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:144-160. [PMID: 33850950 PMCID: PMC8020351 DOI: 10.1016/j.omtm.2021.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
We tested the hypothesis that voluntary wheel running would complement microdystrophin gene therapy to improve muscle function in young mdx mice, a model of Duchenne muscular dystrophy. mdx mice injected with a single dose of AAV9-CK8-microdystrophin or vehicle at age 7 weeks were assigned to three groups: mdxRGT (run, gene therapy), mdxGT (no run, gene therapy), or mdx (no run, no gene therapy). Wild-type (WT) mice were assigned to WTR (run) and WT (no run) groups. WTR and mdxRGT performed voluntary wheel running for 21 weeks; remaining groups were cage active. Robust expression of microdystrophin occurred in heart and limb muscles of treated mice. mdxRGT versus mdxGT mice showed increased microdystrophin in quadriceps but decreased levels in diaphragm. mdx final treadmill fatigue time was depressed compared to all groups, improved in mdxGT, and highest in mdxRGT. Both weekly running distance (km) and final treadmill fatigue time for mdxRGT and WTR were similar. Remarkably, mdxRGT diaphragm power was only rescued to 60% of WT, suggesting a negative impact of running. However, potential changes in fiber type distribution in mdxRGT diaphragms could indicate an adaptation to trade power for endurance. Post-treatment in vivo maximal plantar flexor torque relative to baseline values was greater for mdxGT and mdxRGT versus all other groups. Mitochondrial respiration rates from red quadriceps fibers were significantly improved in mdxGT animals, but the greatest bioenergetic benefit was observed in the mdxRGT group. Additional assessments revealed partial to full functional restoration in mdxGT and mdxRGT muscles relative to WT. These data demonstrate that voluntary wheel running combined with microdystrophin gene therapy in young mdx mice improved whole-body performance, affected muscle function differentially, mitigated energetic deficits, but also revealed some detrimental effects of exercise. With microdystrophin gene therapy currently in clinical trials, these data may help us understand the potential impact of exercise in treated patients.
Collapse
Affiliation(s)
- Shelby E Hamm
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA 24060, USA
| | - Daniel D Fathalikhani
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA 24060, USA
| | - Katherine E Bukovec
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA 24060, USA
| | - Adele K Addington
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA 24060, USA
| | - Haiyan Zhang
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA 24060, USA
| | - Justin B Perry
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA 24060, USA
| | - Ryan P McMillan
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA 24060, USA
| | - Michael W Lawlor
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mariah J Prom
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mark A Vanden Avond
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Suresh N Kumar
- Department of Pathology and Laboratory Medicine and Children's Hospital of Wisconsin Research Institute Imaging Core, Milwaukee, WI 53226, USA
| | - Kirsten E Coleman
- Powell Gene Therapy Center Toxicology Core, University of Florida, Gainesville, FL 32610, USA
| | - J B Dupont
- Translational Gene Therapy for Genetic Diseases, INSERM UMR1089, IRS2 Nantes Biotech, Université de Nantes, Nantes 44200, France
| | - David L Mack
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98104, USA.,Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98107, USA
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA 24060, USA
| | | | | | - Robert W Grange
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
14
|
Pedrazzani PS, Araújo TOP, Sigoli E, da Silva IR, da Roza DL, Chesca DL, Rassier DE, Cornachione AS. Twenty-one days of low-intensity eccentric training improve morphological characteristics and function of soleus muscles of mdx mice. Sci Rep 2021; 11:3579. [PMID: 33574358 PMCID: PMC7878734 DOI: 10.1038/s41598-020-79168-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/25/2020] [Indexed: 11/09/2022] Open
Abstract
Duchene muscular dystrophy (DMD) is caused by the absence of the protein dystrophin, which leads to muscle weakness, progressive degeneration, and eventually death due to respiratory failure. Low-intensity eccentric training (LIET) has been used as a rehabilitation method in skeletal muscles after disuse. Recently, LIET has also been used for rehabilitating dystrophic muscles, but its effects are still unclear. The purpose of this study was to investigate the effects of 21 days of LIET in dystrophic soleus muscle. Thirty-six male mdx mice were randomized into six groups (n = 6/each): mdx sedentary group; mdx training group-3 days; mdx training group-21 days; wild-type sedentary group; wild-type training group-3 days and wild-type training group-21 days. After the training sessions, animals were euthanized, and fragments of soleus muscles were removed for immunofluorescence and histological analyses, and measurements of active force and Ca2+ sensitivity of the contractile apparatus. Muscles of the mdx training group-21 days showed an improvement in morphological characteristics and an increase of active force when compared to the sedentary mdx group. The results show that LIET can improve the functionality of dystrophic soleus muscle in mice.
Collapse
Affiliation(s)
- Paulo S Pedrazzani
- Department of Physiological Science, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Tatiana O P Araújo
- Department of Physiological Science, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Emilly Sigoli
- Department of Physiological Science, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Isabella R da Silva
- Department of Physiological Science, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Daiane Leite da Roza
- Department of Neurosciences and Behaviour, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Deise Lucia Chesca
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Canada
| | - Anabelle S Cornachione
- Department of Physiological Science, Federal University of São Carlos (UFSCar), São Carlos, Brazil.
| |
Collapse
|
15
|
Cabelka CA, Baumann CW, Lindsay A, Norton A, Blixt NC, Le G, Warren GL, Mansky KC, Novotny SA, Lowe DA. Tissue selective effects of bazedoxifene on the musculoskeletal system in female mice. J Endocrinol 2021; 248:181-191. [PMID: 33295882 PMCID: PMC7933086 DOI: 10.1530/joe-20-0391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/08/2020] [Indexed: 11/08/2022]
Abstract
The actions of selective estrogen receptor modulators are tissue dependent. The primary objective of the current study was to determine the tissue selective effects of bazedoxifene (BZA) on the musculoskeletal system of ovariectomized (OVX) female mice, focusing on the strengths of muscle-bone pairs in the lower hindlimb. Treatment with BZA after ovariectomy (OVX+BZA) did not prevent body or fat mass gains (P < 0.05). In vivo plantarflexor muscle isometric torque was not affected by treatment with BZA (P = 0.522). Soleus muscle peak isometric, concentric and eccentric tetanic force production were greater in OVX+BZA mice compared to OVX+E2 mice (P ≤ 0.048) with no effect on maximal isometric specific force (P = 0.228). Tibia from OVX+BZA mice had greater cortical cross-sectional area and moment of inertia than OVX mice treated with placebo (P < 0.001), but there was no impact of BZA treatment on cortical bone mineral density, cortical thickness, tibial bone ultimate load or stiffness (P ≥ 0.086). Overall, these results indicate that BZA may be an estrogen receptor agonist in skeletal muscle, as it has previously been shown in bone, providing minor benefits to the musculoskeletal system.
Collapse
Affiliation(s)
- Christine A. Cabelka
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota; MMC 388, 420 Delaware St SE, Minneapolis, MN 55455, USA
- Department of Physical Therapy, The College of St. Scholastica; 940 Woodland Ave, Suite 210, Duluth, MN 55812, USA
| | - Cory W. Baumann
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota; MMC 388, 420 Delaware St SE, Minneapolis, MN 55455, USA
| | - Angus Lindsay
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota; MMC 388, 420 Delaware St SE, Minneapolis, MN 55455, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota; 420 Washington Ave SE, Minneapolis, MN 55455, USA
| | - Andrew Norton
- Department of Developmental and Surgical Sciences, University of Minnesota; School of Dentistry, Room 16-146 Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Nick C. Blixt
- Department of Genetics, Cell Biology and Development, University of Minnesota; 6-160 Jackson Hall, 321 Church St.SE, Minneapolis, MN 55455, USA
| | - Gengyun Le
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota; MMC 388, 420 Delaware St SE, Minneapolis, MN 55455, USA
| | - Gordon L. Warren
- Department of Physical Therapy, Georgia State University; P.O. Box 4019, Atlanta, GA 30302, USA
| | - Kim C. Mansky
- Department of Developmental and Surgical Sciences, University of Minnesota; School of Dentistry, Room 16-146 Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Susan A. Novotny
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota; MMC 388, 420 Delaware St SE, Minneapolis, MN 55455, USA
- Gillette Children’s Specialty Healthcare, 200 University Avenue East, Saint Paul, MN 55101, USA
| | - Dawn A. Lowe
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota; MMC 388, 420 Delaware St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
16
|
Hu X, Pickle NT, Grabowski AM, Silverman AK, Blemker SS. Muscle Eccentric Contractions Increase in Downhill and High-Grade Uphill Walking. Front Bioeng Biotechnol 2020; 8:573666. [PMID: 33178672 PMCID: PMC7591807 DOI: 10.3389/fbioe.2020.573666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/21/2020] [Indexed: 01/26/2023] Open
Abstract
In Duchenne muscular dystrophy (DMD), one of the most severe and frequent genetic diseases in humans, dystrophic muscles are prone to damage caused by mechanical stresses during eccentric contractions. Eccentric contraction during walking on level ground likely contributes to the progression of degeneration in lower limb muscles. However, little is known about how the amount of muscle eccentric contractions is affected by uphill/downhill sloped walking, which is often encountered in patients’ daily lives and poses different biomechanical demands than level walking. By recreating the dynamic musculoskeletal simulations of downhill (−9°, −6°, and −3°), uphill (+3°, +6°, and +9°) and level walking (0°) from a published study of healthy participants, negative muscle mechanical work, as a measure of eccentric contraction, of 35 lower limb muscles was quantified and compared. Our results indicated that downhill walking overall induced more (32% at −9°, 19% at −6°, and 13% at −3°) eccentric contractions in lower limb muscles compared to level walking. In contrast, uphill walking led to eccentric contractions similar to level walking at low grades (+3° and +6°), but 17% more eccentric contraction at high grades (+9°). The changes of muscle eccentric contraction were largely predicted by the changes in both joint negative work and muscle coactivation in sloped walking. As muscle eccentric contractions play a critical role in the disease progression in DMD, this study provides an important baseline for future studies to safely improve rehabilitation strategies and exercise management for patients with DMD and other similar conditions.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Nathaniel T Pickle
- Department of Mechanical Engineering, Colorado School of Mines, Golden, CO, United States
| | - Alena M Grabowski
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States.,Department of Veterans Affairs, VA Eastern Colorado Healthcare System, Denver, CO, United States
| | - Anne K Silverman
- Department of Mechanical Engineering, Colorado School of Mines, Golden, CO, United States
| | - Silvia S Blemker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States.,Department of Orthopedic Surgery, University of Virginia, Charlottesville, VA, United States.,Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
17
|
Muscular Dystrophy and Rehabilitation Interventions with Regenerative Treatment. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2020. [DOI: 10.1007/s40141-019-00255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Nichenko AS, Southern WM, Tehrani KF, Qualls AE, Flemington AB, Mercer GH, Yin A, Mortensen LJ, Yin H, Call JA. Mitochondrial-specific autophagy linked to mitochondrial dysfunction following traumatic freeze injury in mice. Am J Physiol Cell Physiol 2019; 318:C242-C252. [PMID: 31721614 DOI: 10.1152/ajpcell.00123.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The objective of this study was to interrogate the link between mitochondrial dysfunction and mitochondrial-specific autophagy in skeletal muscle. C57BL/6J mice were used to establish a time course of mitochondrial function and autophagy induction after fatigue (n = 12), eccentric contraction-induced injury (n = 20), or traumatic freeze injury (FI, n = 28); only FI resulted in a combination of mitochondrial dysfunction, i.e., decreased mitochondrial respiration, and autophagy induction. Moving forward, we tested the hypothesis that mitochondrial-specific autophagy is important for the timely recovery of mitochondrial function after FI. Following FI, there is a significant increase in several mitochondrial-specific autophagy-related protein contents including dynamin-related protein 1 (Drp1), BCL1 interacting protein (BNIP3), Pink1, and Parkin (~2-fold, P < 0.02). Also, mitochondrial-enriched fractions from FI muscles showed microtubule-associated protein light chain B1 (LC3)II colocalization suggesting autophagosome assembly around the damaged mitochondrial. Unc-51 like autophagy activating kinase (Ulk1) is considered necessary for mitochondrial-specific autophagy and herein we utilized a mouse model with Ulk1 deficiency in adult skeletal muscle (myogenin-Cre). While Ulk1 knockouts had contractile weakness compared with littermate controls (-27%, P < 0.02), the recovery of mitochondrial function was not different, and this may be due in part to a partial rescue of Ulk1 protein content within the regenerating muscle tissue of knockouts from differentiated satellite cells in which Ulk1 was not genetically altered via myogenin-Cre. Lastly, autophagy flux was significantly less in injured versus uninjured muscles (-26%, P < 0.02) despite the increase in autophagy-related protein content. This suggests autophagy flux is not upregulated to match increases in autophagy machinery after injury and represents a potential bottleneck in the clearance of damaged mitochondria by autophagy.
Collapse
Affiliation(s)
- Anna S Nichenko
- Department of Kinesiology, University of Georgia, Athens, Georgia.,Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| | - W Michael Southern
- Department of Kinesiology, University of Georgia, Athens, Georgia.,Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| | | | - Anita E Qualls
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| | | | - Grant H Mercer
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| | - Amelia Yin
- Center for Molecular Medicine, University of Georgia, Athens, Georgia.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| | - Luke J Mortensen
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| | - Hang Yin
- Center for Molecular Medicine, University of Georgia, Athens, Georgia.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| | - Jarrod A Call
- Department of Kinesiology, University of Georgia, Athens, Georgia.,Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| |
Collapse
|
19
|
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a neuromuscular disease caused by a dystrophin protein deficiency. Dystrophin functions to stabilize and protect the muscle fiber during muscle contraction; thus, the absence of functional dystrophin protein leads to muscle injury. DMD patients experience progressive muscle necrosis, loss of function, and ultimately succumb to respiratory failure or cardiomyopathy. Exercise is known to improve muscle health and strength in healthy individuals as well as positively affect other systems. Because of this, exercise has been investigated as a potential therapeutic approach for DMD. METHODS This review aims to provide a concise presentation of the exercise literature with a focus on dystrophin-deficient muscle. Our intent was to identify trends and gaps in knowledge with an appreciation of exercise modality. RESULTS After compiling data from mouse and human studies, it became apparent that endurance exercises such as a swimming and voluntary wheel running have therapeutic potential in limb muscles of mice and respiratory training was beneficial in humans. However, in the comparatively few long-term investigations, the effect of low-intensity training on cardiac and respiratory muscles was contradictory. In addition, the effect of exercise on other systems is largely unknown. CONCLUSIONS To safely prescribe exercise as a therapy to DMD patients, multisystemic investigations are needed including the evaluation of respiratory and cardiac muscle.
Collapse
|
20
|
Abstract
Study of the influence of vibration oscillations of different frequency, amplitude and vibration acceleration on the structural and functional state and mechanisms of muscle tissue remodelling. An experimental study was conducted on sexually mature male rats. The rats of the four experimental groups were subjected to vertical vibration oscillations of 15, 25, 50 and 75 Hz, respectively. It has been established that pathological changes in muscle tissue in the form of different variants of damage and remodelling tend to increase, which correlates with the frequency of vibration, amplitude and vibration acceleration level, as in the 2nd group, where the maximum permissible vibration levels did not exceed the established allowable norms, and in other groups of animals, where the permissible levels of total vibration were exceeded. By increasing vibration acceleration for more than 1.25 m/s2 (0.13 g, frequency more than 25 Hz and amplitude of 2 mm), severe damages are observed in the form of alterative changes of muscle fibres with the disappearance of transverse strain, homogenization of sarcoplasm, fragmentation with dissociation fibres on separate beams, partial and subtotal myocytolysis, and necrosis of separate fibres. Inflammation is rapidly increasing with the increase in the frequency of vibration and the level of vibration acceleration for more than 5.0 m/s2 (0.51 g).
Collapse
|
21
|
Fernandes DC, Cardoso-Nascimento JJA, Garcia BCC, Costa KB, Rocha-Vieira E, Oliveira MX, Machado ASD, Santos AP, Gaiad TP. Low intensity training improves redox status and reduces collagen fibers on dystrophic muscle. J Exerc Rehabil 2019; 15:213-223. [PMID: 31111003 PMCID: PMC6509444 DOI: 10.12965/jer.1938060.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/23/2019] [Indexed: 01/07/2023] Open
Abstract
Exercise therapy on skeletal muscle of muscular dystrophies has no defined parameters. The effect of low-intensity treadmill training on the oxidative stress markers and fibrosis on hindlimb muscles was investigated. Sixteen dystrophic male mdx animals were separated in trained (mdxT/n=8) and untrained (mdxNT/n=8) groups. Wild type animals (WT/n=8) were used as healthy control. The mdxT group runned at a horizontal treadmill (9 m/min, 30 min/day, 3 times/wk, 8 weeks). Gastrocnemius and tibial anterior muscles were collected for analysis of enzymatic/non-enzymatic oxidant activity, oxidative damage concentration, collagen fibers area morphometry. The mdxT group presented a lower collagen fiber area compared to mdxNT for gastrocnemius (P=0.025) and tibial anterior (P=0.000). Oxidative damage activity was higher in the mdxT group for both muscles compared to mdxNT. Catalase presented similar activity for tibial anterior (P=0.527) or gastrocnemius (P=0.323). Superoxide dismutase (P=0.003) and total antioxidant capacity (P=0.024) showed increased activity in the mdxT group at tibial anterior with no difference for gastrocnemius. Low-intensity training is considered therapeutic as it reduces collagen deposition while improving tissue redox status.
Collapse
Affiliation(s)
- Danielle Cristina Fernandes
- Department of Physical Therapy, Post Graduate Program of Rehabilitation and Functional Performance, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Jessica Junia A Cardoso-Nascimento
- Department of Physical Therapy, Post Graduate Program of Rehabilitation and Functional Performance, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Bruna Caroline C Garcia
- Post Graduate Program in Physiological Science, Brazilian Society of Physiology, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Karine Beatriz Costa
- Post Graduate Program in Physiological Science, Brazilian Society of Physiology, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Etel Rocha-Vieira
- Post Graduate Program in Physiological Science, Brazilian Society of Physiology, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Murilo Xavier Oliveira
- Department of Physical Therapy, Post Graduate Program of Rehabilitation and Functional Performance, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Alex Sander D Machado
- Post Graduate Program in Physiological Science, Brazilian Society of Physiology, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Ana Paula Santos
- Department of Physical Therapy, Post Graduate Program of Rehabilitation and Functional Performance, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Thaís Peixoto Gaiad
- Department of Physical Therapy, Post Graduate Program of Rehabilitation and Functional Performance, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| |
Collapse
|
22
|
Batra A, Vohra RS, Chrzanowski SM, Hammers DW, Lott DJ, Vandenborne K, Walter GA, Forbes SC. Effects of PDE5 inhibition on dystrophic muscle following an acute bout of downhill running and endurance training. J Appl Physiol (1985) 2019; 126:1737-1745. [PMID: 30946638 DOI: 10.1152/japplphysiol.00664.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lack of sarcolemma-localized neuronal nitric oxide synthase mu (nNOSμ) contributes to muscle damage and fatigue in dystrophic muscle. In this study, we examined the effects of compensating for lack of nNOSμ with a phosphodiesterase type 5 (PDE5) inhibitor in mdx mice following downhill running and endurance training. Dystrophic mice (mdx) were treated with sildenafil citrate and compared with untreated mdx and wild-type mice after an acute bout of downhill running and during a progressive low-intensity treadmill running program (5 days/wk, 4 wk). Magnetic resonance imaging (MRI) and spectroscopy (MRS) transverse relaxation time constant (T2) of hindlimb and forelimb muscles were measured as a marker of muscle damage after downhill running and throughout training. The MRI blood oxygenation level dependence (BOLD) response and 31phosphorus MRS (31P-MRS) data were acquired after stimulated muscle contractions. After downhill running, the increase in T2 was attenuated (P < 0.05) in treated mdx and wild-type mice compared with untreated mdx. During training, resting T2 values did not change in wild-type and mdx mice from baseline values; however, the running distance completed during training was greater (P < 0.05) in treated mdx (>90% of target distance) and wild-type (100%) than untreated mdx (60%). The post-contractile BOLD response was greater (P < 0.05) in treated mdx that trained than untreated mdx, with no differences in muscle oxidative capacity, as measured by 31P-MRS. Our findings indicate that PDE5 inhibition reduces muscle damage after a single bout of downhill running and improves performance during endurance training in dystrophic mice, possibly because of enhanced microvascular function. NEW & NOTEWORTHY This study examined the combined effects of PDE5 inhibition and exercise in dystrophic muscle using high-resolution magnetic resonance imaging and spectroscopy. Our findings demonstrated that sildenafil citrate reduces muscle damage after a single bout of downhill running, improves endurance-training performance, and enhances microvascular function in dystrophic muscle. Collectively, the results support the combination of exercise and PDE5 inhibition as a therapeutic approach in muscular dystrophies lacking nNOSμ.
Collapse
Affiliation(s)
- Abhinandan Batra
- Department of Physical Therapy, University of Florida , Gainesville, Florida
| | - Ravneet S Vohra
- Department of Physical Therapy, University of Florida , Gainesville, Florida
| | - Steve M Chrzanowski
- Department of Physiology and Therapeutics, University of Florida , Gainesville, Florida
| | - David W Hammers
- Department of Pharmacology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Donovan J Lott
- Department of Physical Therapy, University of Florida , Gainesville, Florida
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida , Gainesville, Florida
| | - Glenn A Walter
- Department of Physiology and Therapeutics, University of Florida , Gainesville, Florida
| | - Sean C Forbes
- Department of Physical Therapy, University of Florida , Gainesville, Florida
| |
Collapse
|
23
|
Lindsay A, Larson AA, Verma M, Ervasti JM, Lowe DA. Isometric resistance training increases strength and alters histopathology of dystrophin-deficient mouse skeletal muscle. J Appl Physiol (1985) 2018; 126:363-375. [PMID: 30571283 DOI: 10.1152/japplphysiol.00948.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutation to the dystrophin gene causes skeletal muscle weakness in patients with Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD). Deliberation continues regarding implications of prescribing exercise for these patients. The purpose of this study was to determine whether isometric resistance exercise (~10 tetanic contractions/session) improves skeletal muscle strength and histopathology in the mdx mouse model of DMD. Three isometric training sessions increased in vivo isometric torque (22%) and contractility rates (54%) of anterior crural muscles of mdx mice. Mice expressing a BMD-causing missense mutated dystrophin on the mdx background showed comparable increases in torque (22%), while wild-type mice showed less change (11%). Increases in muscle function occurred within 1 h and peaked 3 days posttraining; however, the adaptation was lost after 7 days unless retrained. Six isometric training sessions over 4 wk caused increased isometric torque (28%) and contractility rates (22-28%), reduced fibrosis, as well as greater uniformity of fiber cross-sectional areas, fewer embryonic myosin heavy-chain-positive fibers, and more satellite cells in tibialis anterior muscle compared with the contralateral untrained muscle. Ex vivo functional analysis of isolated extensor digitorum longus (EDL) muscle from the trained hindlimb revealed greater absolute isometric force, lower passive stiffness, and a lower susceptibility to eccentric contraction-induced force loss compared with untrained EDL muscle. Overall, these data support the concept that exercise training in the form of isometric tetanic contractions can improve contractile function of dystrophin-deficient muscle, indicating a potential role for enhancing muscle strength in patients with DMD and BMD. NEW & NOTEWORTHY We focused on adaptive responses of dystrophin-deficient mouse skeletal muscle to isometric contraction training and report that in the absence of dystrophin (or in the presence of a mutated dystrophin), strength and muscle histopathology are improved. Results suggest that the strength gains are associated with fiber hypertrophy, reduced fibrosis, increased number of satellite cells, and blunted eccentric contraction-induced force loss in vitro. Importantly, there was no indication that the isometric exercise training was deleterious to dystrophin-deficient muscle.
Collapse
Affiliation(s)
- Angus Lindsay
- Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota , Minneapolis, Minnesota.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota , Minneapolis, Minnesota
| | - Alexie A Larson
- Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| | - Mayank Verma
- Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota.,Medical Scientist Training Program, University of Minnesota Medical School , Minneapolis, Minnesota
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota , Minneapolis, Minnesota
| | - Dawn A Lowe
- Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
24
|
Cabelka CA, Baumann CW, Collins BC, Nash N, Le G, Lindsay A, Spangenburg EE, Lowe DA. Effects of ovarian hormones and estrogen receptor α on physical activity and skeletal muscle fatigue in female mice. Exp Gerontol 2018; 115:155-164. [PMID: 30415069 DOI: 10.1016/j.exger.2018.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/17/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022]
Abstract
Menopause is associated with declines in physical activity and skeletal muscle strength. Physical activity is also reduced in rodents after ovariectomy (OVX) and whole-body estrogen receptor α (ERα) knockout. However, it is unclear if the effects are estradiol (E2) specific. Thus, the overall purpose of this study was to investigate the effects of the ovarian hormones, E2 and progesterone (P4), and skeletal muscle ERα (skmERα) on physical activity and skeletal muscle contractility in female mice. METHODS Study 1: Forty female C57Bl/6J mice were given free access to running wheels for 2 weeks to assess baseline running and randomized into 4 treatment groups: OVX, OVX + E2, OVX + P4, OVX + E2 + P4. All mice underwent OVX, returned to wheels for 2 weeks, received hormone pellet implants and returned to running wheels for 6 weeks, after which soleus muscle contractility testing was completed. Study 2: Thirty-two skeletal muscle specific ERα knock-out (skmERαKO) mice and wildtype (WT) littermates were randomized into 4 groups: skmERαKO-Run, skmERαWT-Run, skmERαKO-Sed, and skmERαWT-Sed. Run mice were given free access to wheels for 20 wk and sedentary (Sed) mice maintained normal cage activities. At the end point, muscle contractility was tested. RESULTS Study 1: OVX + E2 + P4 group ran greater distances than both the OVX and OVX + P4 groups (p ≤ 0.009). After fatiguing contractions, soleus muscles of the OVX + E2 + P4 group maintained greater submaximal force than those of other groups (p = 0.023). Immediately after the fatiguing contractions, OVX + E2 + P4 muscles had greater maximal force production than the OVX + E2 group (p = 0.027). Study 2: There were no differences in running distance between skmERαWT and skmERαKO mice (p = 0.240). Soleus muscles of skmERαKO mice were more fatigable (p < 0.001) and did not recover force as well as skmERαWT mice (p < 0.001). In vivo isometric, concentric and eccentric torque was decreased in skmERαKO mice compared to skmERαWT mice (p ≤ 0.029). CONCLUSIONS Combined treatment of E2 + P4 in OVX mice restored physical activity, predominantly driven by E2, and protected soleus muscles against fatigue. Muscle of skmERαKO mice was weak regardless of physical activity. Although 20 wk of wheel running partially prevented force loss during fatigue in skmERαKO mice, force production during recovery remained low, indicating that estradiol functions through ERα in skeletal muscle.
Collapse
Affiliation(s)
- Christine A Cabelka
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota; MMC 388, 420 Delaware St SE, Minneapolis, MN 55455, USA
| | - Cory W Baumann
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota; MMC 388, 420 Delaware St SE, Minneapolis, MN 55455, USA
| | - Brittany C Collins
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota; MMC 388, 420 Delaware St SE, Minneapolis, MN 55455, USA
| | - Nardina Nash
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota; MMC 388, 420 Delaware St SE, Minneapolis, MN 55455, USA
| | - Gengyun Le
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota; MMC 388, 420 Delaware St SE, Minneapolis, MN 55455, USA
| | - Angus Lindsay
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota; MMC 388, 420 Delaware St SE, Minneapolis, MN 55455, USA; Department of Biochemistry Molecular Biology and Biophysics, University of Minnesota, 420 Washington Ave SE, Minneapolis, MN 55455, USA
| | - Espen E Spangenburg
- East Carolina Diabetes and Obesity Institute, Department of Physiology, Brody School of Medicine, East Carolina University, 115 Heart Drive, ECHI - Mail Stop 743, Greenville, NC 27834, USA
| | - Dawn A Lowe
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota; MMC 388, 420 Delaware St SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
25
|
Voluntary exercise improves muscle function and does not exacerbate muscle and heart pathology in aged Duchenne muscular dystrophy mice. J Mol Cell Cardiol 2018; 125:29-38. [PMID: 30336143 DOI: 10.1016/j.yjmcc.2018.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/21/2018] [Accepted: 10/08/2018] [Indexed: 12/31/2022]
Abstract
Duchenne muscular dystrophy is a severe muscle wasting disease, characterized by a severely reduced lifespan in which cardiomyopathy is one of the leading causes of death. Multiple therapies aiming at dystrophin restoration have been approved. It is anticipated that these therapies will maintain muscle function for longer and extend the ambulatory period, which in turn will increase the cardiac workload which could be detrimental for cardiac function. We investigated the effects of voluntary running exercise in combination with low dystrophin levels on function and pathology of skeletal muscle and heart. We divided 15.5-month old female mdx (no dystrophin), mdx-XistΔhs (varying low dystrophin levels) and wild type mice (BL10-WT and XistΔhs-WT) to either a sedentary or voluntary wheel running regime and assessed muscle function at 17.5 months of age. Thereafter, a cardiac MRI was obtained, and muscle and heart histopathology were assessed. We show that voluntary exercise is beneficial to skeletal muscle and heart function in dystrophic mice while not affecting muscle pathology. Low amounts of dystrophin further improve skeletal muscle and cardiac function. These findings suggest that voluntary exercise may be beneficial for skeletal muscle and heart in DMD patients, especially in conjunction with low amounts of dystrophin.
Collapse
|
26
|
Ruehle MA, Stevens HY, Beedle AM, Guldberg RE, Call JA. Aggregate mesenchymal stem cell delivery ameliorates the regenerative niche for muscle repair. J Tissue Eng Regen Med 2018; 12:1867-1876. [PMID: 29774991 DOI: 10.1002/term.2707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 04/18/2018] [Accepted: 05/08/2018] [Indexed: 01/02/2023]
Abstract
Duchenne muscular dystrophy is a severe muscle wasting disease due to the absence of the dystrophin protein from the muscle cell membrane, which renders the muscle susceptible to continuous damage. In Duchenne muscular dystrophy patients, muscle weakness, together with cycles of degeneration/regeneration and replacement with noncontractile tissue, limit mobility and lifespan. Because the loss of dystrophin results in loss of polarity and a reduction in the number of self-renewing satellite cells, it is postulated that these patients could achieve an improved quality of life if delivered cells could restore satellite cell function. In this study, we used both an established myotoxic injury model in wild-type (WT) mice and mdx mice alone (spontaneous muscle damage). Single (SC) and aggregated (AGG) mesenchymal stem cells (MSCs) were injected into the gastrocnemius muscles 4 hr after injury (WT mice). The recovery of peak isometric torque was longitudinally assessed over 5 weeks, with earlier takedowns for histological assessment of healing (fibre cross-section area and central nucleation) and MSC retention. AGG-treated WT mice had significantly greater torque recovery at Day 14 than SC or saline-treated mice and a greater CSA at Day 10, compared with SC/saline. AGG-treated mdx mice had a greater peak isometric torque compared with SC/saline. In vitro immunomodulatory factor secretion of AGG-MSCs was higher than SC-MSCs for all tested growth factors with the largest difference observed in hepatocyte growth factor. Future studies are necessary to pair immunomodulatory factor secretion with functional attributes, to better predict the potential therapeutic value of MSC treatment modalities.
Collapse
Affiliation(s)
- Marissa A Ruehle
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hazel Y Stevens
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Aaron M Beedle
- Department of Pharmaceutical Sciences, SUNY Binghamton University, Binghamton, NY, USA
| | - Robert E Guldberg
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jarrod A Call
- Department of Kinesiology, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
27
|
Early rehabilitation for volumetric muscle loss injury augments endogenous regenerative aspects of muscle strength and oxidative capacity. BMC Musculoskelet Disord 2018; 19:173. [PMID: 29843673 PMCID: PMC5975473 DOI: 10.1186/s12891-018-2095-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/16/2018] [Indexed: 02/08/2023] Open
Abstract
Background Volumetric muscle loss (VML) injuries occur due to orthopaedic trauma or the surgical removal of skeletal muscle and result in debilitating long-term functional deficits. Current treatment strategies do not promote significant restoration of function; additionally appropriate evidenced-based practice physical therapy paradigms have yet to be established. The objective of this study was to develop and evaluate early rehabilitation paradigms of passive range of motion and electrical stimulation in isolation or combination to understand the genetic and functional response in the tissue remaining after a multi-muscle VML injury. Methods Adult male mice underwent an ~ 20% multi-muscle VML injury to the posterior compartment (gastrocnemius, soleus, and plantaris muscle) unilaterally and were randomized to rehabilitation paradigm twice per week beginning 2 days post-injury or no treatment. Results The most salient findings of this work are: 1) that the remaining muscle tissue after VML injury was adaptable in terms of improved muscle strength and mitigation of stiffness; but 2) not adaptable to improvements in metabolic capacity. Furthermore, biochemical (i.e., collagen content) and gene (i.e., gene arrays) assays suggest that functional adaptations may reflect changes in the biomechanical properties of the remaining tissue due to the cellular deposition of non-contractile tissue in the void left by the VML injury and/or differentiation of gene expression with early rehabilitation. Conclusions Collectively this work provides evidence of genetic and functional plasticity in the remaining skeletal muscle with early rehabilitation approaches, which may facilitate future evidenced-based practice of early rehabilitation at the clinical level. Electronic supplementary material The online version of this article (10.1186/s12891-018-2095-6) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Perandini LA, Chimin P, Lutkemeyer DDS, Câmara NOS. Chronic inflammation in skeletal muscle impairs satellite cells function during regeneration: can physical exercise restore the satellite cell niche? FEBS J 2018; 285:1973-1984. [PMID: 29473995 DOI: 10.1111/febs.14417] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/27/2018] [Accepted: 02/19/2018] [Indexed: 12/23/2022]
Abstract
Chronic inflammation impairs skeletal muscle regeneration. Although many cells are involved in chronic inflammation, macrophages seem to play an important role in impaired muscle regeneration since these cells are associated with skeletal muscle stem cell (namely, satellite cells) activation and fibro-adipogenic progenitor cell (FAP) survival. Specifically, an imbalance of M1 and M2 macrophages seems to lead to impaired satellite cell activation, and these are the main cells that function during skeletal muscle regeneration, after muscle damage. Additionally, this imbalance leads to the accumulation of FAPs in skeletal muscle, with aberrant production of pro-fibrotic factors (e.g., extracellular matrix components), impairing the niche for proper satellite cell activation and differentiation. Treatments aiming to block the inflammatory pro-fibrotic response are partially effective due to their side effects. Therefore, strategies reverting chronic inflammation into a pro-regenerative pattern are required. In this review, we first describe skeletal muscle resident macrophage ontogeny and homeostasis, and explain how macrophages are replenished after muscle injury. We next discuss the potential role of chronic physical activity and exercise in restoring the M1 and M2 macrophage balance and consequently, the satellite cell niche to improve skeletal muscle regeneration after injury.
Collapse
Affiliation(s)
- Luiz Augusto Perandini
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Patricia Chimin
- Department of Physical Education, Physical Education and Sports Center, Londrina State University, Brazil
| | - Diego da Silva Lutkemeyer
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil.,Laboratory of Clinical and Experimental Immunology, Division of Nephrology, Department of Medicine, Federal University of Sao Paulo, Brazil
| |
Collapse
|
29
|
Collins BC, Mader TL, Cabelka CA, Iñigo MR, Spangenburg EE, Lowe DA. Deletion of estrogen receptor α in skeletal muscle results in impaired contractility in female mice. J Appl Physiol (1985) 2018; 124:980-992. [PMID: 29345963 DOI: 10.1152/japplphysiol.00864.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Estradiol deficiency in females can result in skeletal muscle strength loss, and treatment with estradiol mitigates the loss. There are three primary estrogen receptors (ERs), and estradiol elicits effects through these receptors in various tissues. Ubiquitous ERα-knockout mice exhibit numerous biological disorders, but little is known regarding the specific role of ERα in skeletal muscle contractile function. The purpose of this study was to determine the impact of skeletal muscle-specific ERα deletion on contractile function, hypothesizing that ERα is a main receptor through which estradiol affects muscle strength in females. Deletion of ERα specifically in skeletal muscle (skmERαKO) did not affect body mass compared with wild-type littermates (skmERαWT) until 26 wk of age, at which time body mass of skmERαKO mice began to increase disproportionally. Overall, skmERαKO mice had low strength demonstrated in multiple muscles and by several contractile parameters. Isolated extensor digitorum longus muscles from skmERαKO mice produced 16% less eccentric and 16-26% less submaximal and maximal isometric force, and isolated soleus muscles were more fatigable, with impaired force recovery relative to skmERαWT mice. In vivo maximal torque productions by plantarflexors and dorsiflexors were 16% and 12% lower in skmERαKO than skmERαWT mice, and skmERαKO muscles had low phosphorylation of myosin regulatory light chain. Plantarflexors also generated 21-32% less power, submaximal isometric and peak concentric torques. Data support the hypothesis that ablation of ERα in skeletal muscle results in muscle weakness, suggesting that the beneficial effects of estradiol on muscle strength are receptor mediated through ERα. NEW & NOTEWORTHY We comprehensively measured in vitro and in vivo skeletal muscle contractility in female estrogen receptor α (ERα) skeletal muscle-specific knockout mice and report that force generation is impaired across multiple parameters. These results support the hypothesis that a primary mechanism through which estradiol elicits its effects on strength is mediated by ERα. Evidence is presented that estradiol signaling through ERα appears to modulate force at the molecular level via posttranslational modifications of myosin regulatory light chain.
Collapse
Affiliation(s)
- Brittany C Collins
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota , Minneapolis, Minnesota
| | - Tara L Mader
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota , Minneapolis, Minnesota
| | - Christine A Cabelka
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota , Minneapolis, Minnesota
| | - Melissa R Iñigo
- East Carolina Diabetes and Obesity Institute, Department of Physiology, Brody School of Medicine, East Carolina University , Greenville, North Carolina
| | - Espen E Spangenburg
- East Carolina Diabetes and Obesity Institute, Department of Physiology, Brody School of Medicine, East Carolina University , Greenville, North Carolina
| | - Dawn A Lowe
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
30
|
Abstract
Duchenne muscular dystrophy is a lethal genetic disease of muscle wasting for which there is no cure. In healthy muscle, structure and function improve dramatically with exercise. In patients with dystrophy, little is known about the effects of exercise. As contemporary therapies rapidly progress and patients become more active, there is a need to understand the effects of exercise.
Collapse
|
31
|
Kjøbsted R, Hingst JR, Fentz J, Foretz M, Sanz MN, Pehmøller C, Shum M, Marette A, Mounier R, Treebak JT, Wojtaszewski JFP, Viollet B, Lantier L. AMPK in skeletal muscle function and metabolism. FASEB J 2018; 32:1741-1777. [PMID: 29242278 PMCID: PMC5945561 DOI: 10.1096/fj.201700442r] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skeletal muscle possesses a remarkable ability to adapt to various physiologic conditions. AMPK is a sensor of intracellular energy status that maintains energy stores by fine-tuning anabolic and catabolic pathways. AMPK’s role as an energy sensor is particularly critical in tissues displaying highly changeable energy turnover. Due to the drastic changes in energy demand that occur between the resting and exercising state, skeletal muscle is one such tissue. Here, we review the complex regulation of AMPK in skeletal muscle and its consequences on metabolism (e.g., substrate uptake, oxidation, and storage as well as mitochondrial function of skeletal muscle fibers). We focus on the role of AMPK in skeletal muscle during exercise and in exercise recovery. We also address adaptations to exercise training, including skeletal muscle plasticity, highlighting novel concepts and future perspectives that need to be investigated. Furthermore, we discuss the possible role of AMPK as a therapeutic target as well as different AMPK activators and their potential for future drug development.—Kjøbsted, R., Hingst, J. R., Fentz, J., Foretz, M., Sanz, M.-N., Pehmøller, C., Shum, M., Marette, A., Mounier, R., Treebak, J. T., Wojtaszewski, J. F. P., Viollet, B., Lantier, L. AMPK in skeletal muscle function and metabolism.
Collapse
Affiliation(s)
- Rasmus Kjøbsted
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Janne R Hingst
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Fentz
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Marc Foretz
- INSERM, Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria-Nieves Sanz
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland, and.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Christian Pehmøller
- Internal Medicine Research Unit, Pfizer Global Research and Development, Cambridge, Massachusetts, USA
| | - Michael Shum
- Axe Cardiologie, Quebec Heart and Lung Research Institute, Laval University, Québec, Canada.,Institute for Nutrition and Functional Foods, Laval University, Québec, Canada
| | - André Marette
- Axe Cardiologie, Quebec Heart and Lung Research Institute, Laval University, Québec, Canada.,Institute for Nutrition and Functional Foods, Laval University, Québec, Canada
| | - Remi Mounier
- Institute NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM Unité 1217, CNRS UMR, Villeurbanne, France
| | - Jonas T Treebak
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Benoit Viollet
- INSERM, Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.,Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
32
|
Gaiad TP, Oliveira MX, Lobo AR, Libório LR, Pinto PAF, Fernandes DC, Santos AP, Ambrósio CE, Machado ASD. Low-intensity training provokes adaptive extracellular matrix turnover of a muscular dystrophy model. J Exerc Rehabil 2017; 13:693-703. [PMID: 29326902 PMCID: PMC5747205 DOI: 10.12965/jer.1735094.547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/05/2017] [Indexed: 11/22/2022] Open
Abstract
Recommendations of therapeutic exercise in Duchenne muscular dystrophy are still controversial. The hypothesis that a low-intensity training (LIT) protocol leads to muscle adaptations on mdx mice model was tested. Dystrophic male mice with 8 weeks old were separated in exercised (mdxE, n= 8) and sedentary (mdxC, n= 8) groups. Wild-type mice were used as control (WT, n= 8) group. Exercised group underwent a LIT protocol (9 m/min, 30 min, 3 days/wk, 60 days) on a horizontal treadmill. At day 60 all animals were analyzed regarding parameters of markers of muscle lesion and extracellular matrix turnover of muscle tissue by collagens fibers on tibial anterior muscle. Histomorphometry attested that centrally located nuclei fibers and the coefficient of variance of minimal Feret’s diameter was similar in mdxE and mdxC groups (P= 1.000) and both groups presented higher mean values than WT group (P< 0.001). Fraction area of collagen fibers of mdxE group was lower than mdxC group (P= 0,027) and similar to WT group (P= 0,751). Intramuscular area of Col3 of the mdxE group was higher than mdxC and WT groups (P<0.001). Intramuscular area of Col1 on the mdxE group was similar to the mdxC group (P= 1.000) and both groups were higher than WT group (P< 0.001). LIT protocol had not influenced muscle injuries resulting from the dystrophin-deficiency membrane fragility. Although, LIT had provoked adaptations on extracellular matrix bringing higher elastic feature to dystrophic muscle tissue.
Collapse
Affiliation(s)
- Thaís P Gaiad
- Department of Physical Therapy, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Murilo X Oliveira
- Department of Physical Therapy, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Adalfredo R Lobo
- Institute of Agriculture Scinces, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Unaí, Brazil
| | - Lívia R Libório
- Department of Physical Therapy, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Priscilla A F Pinto
- Department of Physical Therapy, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Danielle C Fernandes
- Department of Physical Therapy, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Ana Paula Santos
- Department of Physical Therapy, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | | | - Alex Sander D Machado
- Faculty of Medicine FAMED, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| |
Collapse
|
33
|
Schill KE, Altenberger AR, Lowe J, Periasamy M, Villamena FA, Rafael-Fortney JIA, Devor ST. Muscle damage, metabolism, and oxidative stress in mdx mice: Impact of aerobic running. Muscle Nerve 2017; 54:110-7. [PMID: 26659868 DOI: 10.1002/mus.25015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 01/10/2023]
Abstract
INTRODUCTION We tested how a treadmill exercise program influences oxygen consumption, oxidative stress, and exercise capacity in the mdx mouse, a model of Duchenne muscular dystrophy. METHODS At age 4 weeks mdx mice were subjected to 4 weeks of twice-weekly treadmill exercise. Sedentary mdx and wild-type mice served as controls. Oxygen consumption, time to exhaustion, oxidative stress, and myofiber damage were assessed. RESULTS At age 4 weeks, there was a significant difference in exercise capacity between mdx and wild-type mice. After exercise, mdx mice had lower basal oxygen consumption and exercise capacity, but similar maximal oxygen consumption. Skeletal muscle from these mice displayed increased oxidative stress. Collagen deposition was higher in exercised versus sedentary mice. CONCLUSIONS Exercised mdx mice exhibit increased oxidative stress, as well as deficits in exercise capacity, baseline oxygen consumption, and increased myofiber fibrosis. Muscle Nerve 54: 110-117, 2016.
Collapse
Affiliation(s)
- Kevin E Schill
- Department of Human Sciences, Kinesiology Program, The Ohio State University, Columbus, Ohio, USA
| | - Alex R Altenberger
- Department of Human Sciences, Kinesiology Program, The Ohio State University, Columbus, Ohio, USA
| | - Jeovanna Lowe
- Department of Molecular & Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Muthu Periasamy
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Frederick A Villamena
- Deparment of Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - JIll A Rafael-Fortney
- Department of Molecular & Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Steven T Devor
- Department of Human Sciences, Kinesiology Program, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
34
|
Ward LM, Kinnett K, Bonewald L. Proceedings of a Parent Project Muscular Dystrophy Bone Health Workshop: Morbidity due to osteoporosis in DMD: The Path Forward May 12-13, 2016, Bethesda, Maryland, USA. Neuromuscul Disord 2017; 28:64-76. [PMID: 28756052 DOI: 10.1016/j.nmd.2017.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/04/2017] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Leanne M Ward
- Division of Endocrinology and Metabolism, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada.
| | - Kathi Kinnett
- Parent Project Muscular Dystrophy, Middletown, OH, USA
| | - Lynda Bonewald
- Indiana Center for Musculoskeletal Health, Departments of Anatomy and Cell Biology and Orthopaedic Surgery, Indiana University, Indianapolis, IN, USA
| | | |
Collapse
|
35
|
Call JA, Wilson RJ, Laker RC, Zhang M, Kundu M, Yan Z. Ulk1-mediated autophagy plays an essential role in mitochondrial remodeling and functional regeneration of skeletal muscle. Am J Physiol Cell Physiol 2017; 312:C724-C732. [PMID: 28356270 DOI: 10.1152/ajpcell.00348.2016] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 01/22/2023]
Abstract
Autophagy is a conserved cellular process for degrading aggregate proteins and dysfunctional organelle. It is still debatable if autophagy and mitophagy (a specific process of autophagy of mitochondria) play important roles in myogenic differentiation and functional regeneration of skeletal muscle. We tested the hypothesis that autophagy is critical for functional regeneration of skeletal muscle. We first observed time-dependent increases (3- to 6-fold) of autophagy-related proteins (Atgs), including Ulk1, Beclin1, and LC3, along with reduced p62 expression during C2C12 differentiation, suggesting increased autophagy capacity and flux during myogenic differentiation. We then used cardiotoxin (Ctx) or ischemia-reperfusion (I/R) to induce muscle injury and regeneration and observed increases in Atgs between days 2 and 7 in adult skeletal muscle followed by increased autophagy flux after day 7 Since Ulk1 has been shown to be essential for mitophagy, we asked if Ulk1 is critical for functional regeneration in skeletal muscle. We subjected skeletal muscle-specific Ulk1 knockout mice (MKO) to Ctx or I/R. MKO mice had significantly impaired recovery of muscle strength and mitochondrial protein content post-Ctx or I/R. Imaging analysis showed that MKO mice have significantly attenuated recovery of mitochondrial network at 7 and 14 days post-Ctx. These findings suggest that increased autophagy protein and flux occur during muscle regeneration and Ulk1-mediated mitophagy is critical for recovery for the mitochondrial network and hence functional regeneration.
Collapse
Affiliation(s)
- Jarrod A Call
- Department of Medicine, University of Virginia, Charlottesville, Virginia.,Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia; and
| | - Rebecca J Wilson
- Department of Medicine, University of Virginia, Charlottesville, Virginia.,Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia; and
| | - Rhianna C Laker
- Department of Medicine, University of Virginia, Charlottesville, Virginia.,Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia; and
| | - Mei Zhang
- Department of Medicine, University of Virginia, Charlottesville, Virginia.,Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia; and
| | - Mondira Kundu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Zhen Yan
- Department of Medicine, University of Virginia, Charlottesville, Virginia; .,Department of Pharmacology, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia.,Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia; and
| |
Collapse
|
36
|
Morici G, Frinchi M, Pitruzzella A, Di Liberto V, Barone R, Pace A, Di Felice V, Belluardo N, Cappello F, Mudò G, Bonsignore MR. Mild Aerobic Exercise Training Hardly Affects the Diaphragm of mdx Mice. J Cell Physiol 2017; 232:2044-2052. [PMID: 27576008 DOI: 10.1002/jcp.25573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/29/2016] [Indexed: 12/22/2022]
Abstract
In the mdx mice model of Duchenne Muscular Dystrophy (DMD), mild endurance exercise training positively affected limb skeletal muscles, whereas few and controversial data exist on the effects of training on the diaphragm. The diaphragm was examined in mdx (C57BL/10ScSn-Dmdmdx) and wild-type (WT, C57BL/10ScSc) mice under sedentary conditions (mdx-SD, WT-SD) and during mild exercise training (mdx-EX, WT-EX). At baseline, and after 30 and 45 days (training: 5 d/wk for 6 weeks), diaphragm muscle morphology and Cx39 protein were assessed. In addition, tissue levels of the chaperonins Hsp60 and Hsp70 and the p65 subunit of nuclear factor-kB (NF-kB) were measured in diaphragm, gastrocnemius, and quadriceps in each experimental group at all time points. Although morphological analysis showed unchanged total area of necrosis/regeneration in the diaphragm after training, there was a trend for larger areas of regeneration than necrosis in the diaphragm of mdx-EX compared to mdx-SD mice. However, the levels of Cx39, a protein associated with active regeneration in damaged muscle, were similar in the diaphragm of mdx-EX and mdx-SD mice. Hsp60 significantly decreased at 45 days in the diaphragm, but not in limb muscles, in both trained and sedentary mdx compared to WT mice. In limb muscles, but not in the diaphragm, Hsp70 and NF-kB p65 levels were increased in mdx mice irrespective of training at 30 and 45 days. Therefore, the diaphragm of mdx mice showed little inflammatory and stress responses over time, and appeared hardly affected by mild endurance training. J. Cell. Physiol. 232: 2044-2052, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Giuseppe Morici
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche (BioNeC), University of Palermo, Palermo, Italy.,Istituto di Biomedicina e Immunologia Molecolare (IBIM), Consiglio Nazionale Delle Ricerche (CNR), Palermo, Italy
| | - Monica Frinchi
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche (BioNeC), University of Palermo, Palermo, Italy
| | - Alessandro Pitruzzella
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche (BioNeC), University of Palermo, Palermo, Italy.,Istituto Euro-Mediterraneo di Scienza e Tecnologia, Palermo, Italy
| | - Valentina Di Liberto
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche (BioNeC), University of Palermo, Palermo, Italy
| | - Rosario Barone
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche (BioNeC), University of Palermo, Palermo, Italy.,Istituto Euro-Mediterraneo di Scienza e Tecnologia, Palermo, Italy
| | - Andrea Pace
- Istituto Euro-Mediterraneo di Scienza e Tecnologia, Palermo, Italy.,Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari (STEMBIO)-University of Palermo, Palermo, Italy
| | - Valentina Di Felice
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche (BioNeC), University of Palermo, Palermo, Italy.,Istituto Euro-Mediterraneo di Scienza e Tecnologia, Palermo, Italy
| | - Natale Belluardo
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche (BioNeC), University of Palermo, Palermo, Italy
| | - Francesco Cappello
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche (BioNeC), University of Palermo, Palermo, Italy.,Istituto Euro-Mediterraneo di Scienza e Tecnologia, Palermo, Italy
| | - Giuseppa Mudò
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche (BioNeC), University of Palermo, Palermo, Italy
| | - Maria R Bonsignore
- Istituto di Biomedicina e Immunologia Molecolare (IBIM), Consiglio Nazionale Delle Ricerche (CNR), Palermo, Italy.,Dipartimento Biomedico di Medicina Interna e Specialistica (DiBiMIS), University of Palermo, Palermo, Italy
| |
Collapse
|
37
|
Hyzewicz J, Tanihata J, Kuraoka M, Nitahara-Kasahara Y, Beylier T, Ruegg UT, Vater A, Takeda S. Low-Intensity Training and the C5a Complement Antagonist NOX-D21 Rescue the mdx Phenotype through Modulation of Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1147-1161. [PMID: 28315675 DOI: 10.1016/j.ajpath.2016.12.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/19/2016] [Accepted: 12/27/2016] [Indexed: 12/17/2022]
Abstract
Inflammatory events occurring in dystrophic muscles contribute to the progression of Duchenne muscular dystrophy (DMD). Low-intensity training (LIT) attenuates the phenotype of mdx mice, an animal model for DMD. Therefore, we postulated that LIT could have anti-inflammatory properties. We assessed levels of inflammatory cytokines and infiltrated immune cells in gastrocnemius muscle of mdx mice after LIT. We detected high levels of complement component C5a, chemokine ligand (CCL) 2, CD68+ monocytes/macrophages, and proinflammatory M1 macrophages in muscles of mdx mice. LIT decreased CCL2 levels, increased CD68+ cell numbers, and shifted the macrophage population to the regenerative M2 type. We investigated whether inhibition of C5a or CCL2 with L-aptamers could mimic the effects of LIT. Although no effect of CCL2 inhibition was detected, treatment with the C5a inhibitor, NOX-D21, rescued the phenotype of nonexercised mdx mice, but not of exercised ones. In both cases, the level of CD68+ cells increased and macrophage populations leaned toward the inflammatory M1 type. In muscles of nonexercised treated mice, the level of IL-1 receptor antagonist increased, damage decreased, and fibers were switched toward the glycolytic fast type; in muscles of exercised mice, fibers were switched to the oxidative slow type. These results reveal the effects of LIT on the inflammatory status of mdx mice and suggest that NOX-D21 could be an anti-inflammatory drug for DMD.
Collapse
Affiliation(s)
- Janek Hyzewicz
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Tokyo, Japan
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Tokyo, Japan
| | - Mutsuki Kuraoka
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Tokyo, Japan
| | - Yuko Nitahara-Kasahara
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Tokyo, Japan
| | - Teiva Beylier
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Tokyo, Japan
| | - Urs T Ruegg
- Laboratory of Pharmacology, University of Geneva, Geneva, Switzerland
| | - Axel Vater
- Drug Discovery and Preclinical Development, NOXXON Pharma, Berlin, Germany
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Tokyo, Japan.
| |
Collapse
|
38
|
Southern WM, Nichenko AS, Shill DD, Spencer CC, Jenkins NT, McCully KK, Call JA. Skeletal muscle metabolic adaptations to endurance exercise training are attainable in mice with simvastatin treatment. PLoS One 2017; 12:e0172551. [PMID: 28207880 PMCID: PMC5313210 DOI: 10.1371/journal.pone.0172551] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/06/2017] [Indexed: 01/02/2023] Open
Abstract
We tested the hypothesis that a 6-week regimen of simvastatin would attenuate skeletal muscle adaptation to low-intensity exercise. Male C57BL/6J wildtype mice were subjected to 6-weeks of voluntary wheel running or normal cage activities with or without simvastatin treatment (20 mg/kg/d, n = 7-8 per group). Adaptations in in vivo fatigue resistance were determined by a treadmill running test, and by ankle plantarflexor contractile assessment. The tibialis anterior, gastrocnemius, and plantaris muscles were evaluated for exercised-induced mitochondrial adaptations (i.e., biogenesis, function, autophagy). There was no difference in weekly wheel running distance between control and simvastatin-treated mice (P = 0.51). Trained mice had greater treadmill running distance (296%, P<0.001), and ankle plantarflexor contractile fatigue resistance (9%, P<0.05) compared to sedentary mice, independent of simvastatin treatment. At the cellular level, trained mice had greater mitochondrial biogenesis (e.g., ~2-fold greater PGC1α expression, P<0.05) and mitochondrial content (e.g., 25% greater citrate synthase activity, P<0.05), independent of simvastatin treatment. Mitochondrial autophagy-related protein contents were greater in trained mice (e.g., 40% greater Bnip3, P<0.05), independent of simvastatin treatment. However, Drp1, a marker of mitochondrial fission, was less in simvastatin treated mice, independent of exercise training, and there was a significant interaction between training and statin treatment (P<0.022) for LC3-II protein content, a marker of autophagy flux. These data indicate that whole body and skeletal muscle adaptations to endurance exercise training are attainable with simvastatin treatment, but simvastatin may have side effects on muscle mitochondrial maintenance via autophagy, which could have long-term implications on muscle health.
Collapse
Affiliation(s)
- William M. Southern
- Department of Kinesiology, University of Georgia, Athens, Georgia, United States of America
| | - Anna S. Nichenko
- Department of Kinesiology, University of Georgia, Athens, Georgia, United States of America
| | - Daniel D. Shill
- Department of Kinesiology, University of Georgia, Athens, Georgia, United States of America
| | - Corey C. Spencer
- Department of Kinesiology, University of Georgia, Athens, Georgia, United States of America
| | - Nathan T. Jenkins
- Department of Kinesiology, University of Georgia, Athens, Georgia, United States of America
| | - Kevin K. McCully
- Department of Kinesiology, University of Georgia, Athens, Georgia, United States of America
| | - Jarrod A. Call
- Department of Kinesiology, University of Georgia, Athens, Georgia, United States of America
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
39
|
Lai S, Panarese A, Lawrence R, Boninger ML, Micera S, Ambrosio F. A Murine Model of Robotic Training to Evaluate Skeletal Muscle Recovery after Injury. Med Sci Sports Exerc 2016; 49:840-847. [PMID: 27875498 DOI: 10.1249/mss.0000000000001160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE In vivo studies have suggested that motor exercise can improve muscle regeneration after injury. Nevertheless, preclinical investigations still lack reliable tools to monitor motor performance over time and to deliver optimal training protocols to maximize force recovery. Here, we evaluated the utility of a murine robotic platform (i) to detect early impairment and longitudinal recovery after acute skeletal muscle injury and (ii) to administer varying intensity training protocols to enhance forelimb motor performance. METHODS A custom-designed robotic platform was used to train mice to perform a forelimb retraction task. After an acute injury to bilateral biceps brachii muscles, animals performed a daily training protocol in the platform at high (HL) or low (LL) loading levels over the course of 3 wk. Control animals were not trained (NT). Motor performance was assessed by quantifying force, time, submovement count, and number of movement attempts to accomplish the task. Myofiber number and cross-sectional area at the injury site were quantified histologically. RESULTS Two days after injury, significant differences in the time, submovement count, number of movement attempts, and exerted force were observed in all mice, as compared with baseline values. Interestingly, the recovery time of muscle force production differed significantly between intervention groups, with HL group showing a significantly accelerated recovery. Three weeks after injury, all groups showed motor performance comparable with baseline values. Accordingly, there were no differences in the number of myofibers or average cross-sectional area among groups after 3 wk. CONCLUSION Our findings demonstrate the utility of our custom-designed robotic device for the quantitative assessment of skeletal muscle function in preclinical murine studies. Moreover, we demonstrate that this device may be used to apply varying levels of resistance longitudinally as a means manipulate physiological muscle responses.
Collapse
Affiliation(s)
- Stefano Lai
- 1Scuola Superiore Sant'Anna, Translational Neural Engineering Area, The BioRobotics Institute, Pisa, ITALY; 2Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA; 3McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA; 4Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA; 5Department of Rehabilitation Science and Technology, University of Pittsburgh, Pittsburgh, PA; and 6Ecole Polytechnique Federale de Lausanne (EPFL), Bertarelli Foundation Chair in Translational NeuroEngineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, Lausanne, SWITZERLAND
| | | | | | | | | | | |
Collapse
|
40
|
Hulmi JJ, Hentilä J, DeRuisseau KC, Oliveira BM, Papaioannou KG, Autio R, Kujala UM, Ritvos O, Kainulainen H, Korkmaz A, Atalay M. Effects of muscular dystrophy, exercise and blocking activin receptor IIB ligands on the unfolded protein response and oxidative stress. Free Radic Biol Med 2016; 99:308-322. [PMID: 27554968 DOI: 10.1016/j.freeradbiomed.2016.08.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 12/17/2022]
Abstract
Protein homeostasis in cells, proteostasis, is maintained through several integrated processes and pathways and its dysregulation may mediate pathology in many diseases including Duchenne muscular dystrophy (DMD). Oxidative stress, heat shock proteins, endoplasmic reticulum (ER) stress and its response, i.e. unfolded protein response (UPR), play key roles in proteostasis but their involvement in the pathology of DMD are largely unknown. Moreover, exercise and activin receptor IIB blocking are two strategies that may be beneficial to DMD muscle, but studies to examine their effects on these proteostasis pathways are lacking. Therefore, these pathways were examined in the muscle of mdx mice, a model of DMD, under basal conditions and in response to seven weeks of voluntary exercise and/or activin receptor IIB ligand blocking using soluble activin receptor-Fc (sAcvR2B-Fc) administration. In conjunction with reduced muscle strength, mdx muscle displayed greater levels of UPR/ER-pathway indicators including greater protein levels of IRE1α, PERK and Atf6b mRNA. Downstream to IRE1α and PERK, spliced Xbp1 mRNA and phosphorylation of eIF2α, were also increased. Most of the cytoplasmic and ER chaperones and mitochondrial UPR markers were unchanged in mdx muscle. Oxidized glutathione was greater in mdx and was associated with increases in lysine acetylated proteome and phosphorylated sirtuin 1. Exercise increased oxidative stress when performed independently or combined with sAcvR2B-Fc administration. Although neither exercise nor sAcvR2B-Fc administration imparted a clear effect on ER stress/UPR pathways or heat shock proteins, sAcvR2B-Fc administration increased protein expression levels of GRP78/BiP, a triggering factor for ER stress/UPR activation and TxNIP, a redox-regulator of ER stress-induced inflammation. In conclusion, the ER stress and UPR are increased in mdx muscle. However, these processes are not distinctly improved by voluntary exercise or blocking activin receptor IIB ligands and thus do not appear to be optimal therapeutic choices for improving proteostasis in DMD.
Collapse
MESH Headings
- Activating Transcription Factor 6/genetics
- Activating Transcription Factor 6/metabolism
- Activin Receptors, Type II/antagonists & inhibitors
- Activin Receptors, Type II/genetics
- Activin Receptors, Type II/metabolism
- Animals
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Disease Models, Animal
- Endoplasmic Reticulum Chaperone BiP
- Endoplasmic Reticulum Stress/drug effects
- Endoribonucleases/genetics
- Endoribonucleases/metabolism
- Eukaryotic Initiation Factor-2/genetics
- Eukaryotic Initiation Factor-2/metabolism
- Gene Expression Regulation
- Heat-Shock Proteins/genetics
- Heat-Shock Proteins/metabolism
- Humans
- Immunoglobulin Fc Fragments/pharmacology
- Mice
- Mice, Inbred mdx
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Phosphorylation/drug effects
- Physical Conditioning, Animal
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proteostasis/drug effects
- Proteostasis/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
- Thioredoxins/genetics
- Thioredoxins/metabolism
- Unfolded Protein Response/drug effects
- X-Box Binding Protein 1/genetics
- X-Box Binding Protein 1/metabolism
- eIF-2 Kinase/genetics
- eIF-2 Kinase/metabolism
Collapse
Affiliation(s)
- Juha J Hulmi
- University of Jyväskylä, Department of Biology of Physical Activity, Neuromuscular Research Center, P.O. Box 35, FI-40014, Finland; Department of Physiology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, FI-00290 Helsinki, Finland.
| | - Jaakko Hentilä
- University of Jyväskylä, Department of Biology of Physical Activity, Neuromuscular Research Center, P.O. Box 35, FI-40014, Finland
| | - Keith C DeRuisseau
- Syracuse University, Department of Exercise Science, 820 Comstock Ave., 201 WB, Syracuse, NY, USA; Institute of Biomedicine, Physiology, University of Eastern Finland, Yliopistonranta 1 E, 70210 Kuopio, Finland
| | - Bernardo M Oliveira
- University of Jyväskylä, Department of Biology of Physical Activity, Neuromuscular Research Center, P.O. Box 35, FI-40014, Finland
| | - Konstantinos G Papaioannou
- University of Jyväskylä, Department of Biology of Physical Activity, Neuromuscular Research Center, P.O. Box 35, FI-40014, Finland
| | - Reija Autio
- School of Health Sciences, University of Tampere, Medisiinarinkatu 3, FI-33014, Finland
| | - Urho M Kujala
- Department of Health Sciences, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, FI-40014, Finland
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, FI-00290 Helsinki, Finland
| | - Heikki Kainulainen
- University of Jyväskylä, Department of Biology of Physical Activity, Neuromuscular Research Center, P.O. Box 35, FI-40014, Finland
| | - Ayhan Korkmaz
- Institute of Biomedicine, Physiology, University of Eastern Finland, Yliopistonranta 1 E, 70210 Kuopio, Finland
| | - Mustafa Atalay
- Institute of Biomedicine, Physiology, University of Eastern Finland, Yliopistonranta 1 E, 70210 Kuopio, Finland
| |
Collapse
|
41
|
Adabbo M, Paolillo FR, Bossini PS, Rodrigues NC, Bagnato VS, Parizotto NA. Effects of Low-Level Laser Therapy Applied Before Treadmill Training on Recovery of Injured Skeletal Muscle in Wistar Rats. Photomed Laser Surg 2016; 34:187-93. [PMID: 27058781 DOI: 10.1089/pho.2015.4031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE The aim of this study was to analyze the effects of low-level laser therapy (LLLT) when associated with treadmill training on the recovery of skeletal muscle, during two periods of rest after muscle injury in rats. BACKGROUND DATA Because of photostimulation, LLLT has been presented as an alternative for accelerating the tissue healing process. MATERIALS AND METHODS Forty rats were divided into two groups (A and B) containing four subgroups each: GC (Control Group)-cryolesion untreated; EG (Exercise Group)-cryolesion treated with physical exercise; LG (Laser Group)-cryolesion treated with laser; ELG (Exercise and Laser Group)-cryolesion treated with laser and physical exercise. The right tibialis anterior (TA) of the middle belly was injured by a cooling iron bar (cryoinjury). Group A remained at rest for 3 days, whereas Group B remained at rest for 7 days. The laser parameters utilized were 780 nm with 15 mW average optical power and spot size of 0.04 cm(2) applied during 10 sec, leading to 0.152 J and 3.8 J/cm(2). Treadmill training with and without laser application was performed during 5 days, with each session lasting for 12 min at a velocity of 17 m/min. Subsequently, the TA muscle was removed for a histological and morphometric analysis. RESULTS The damaged area was significantly smaller for the ELG at both periods of rest, 3 and 7 days, respectively (4.4 ± 0.42% and 3.5 ± 0.14%, p < 0.05), when compared with the LG (18.6 ± 0.64% and 7.5 ± 0.13%), the EG (21 ± 0.26% and 8.7 ± 0.32%), and the CG (23.9 ± 0.37% and 21.4 ± 0.38%). In addition, the number of blood vessels were significantly higher for the ELG at both periods of rest, 3 and 7 days, respectively (71.2 ± 13.51 and 104.5 ± 11.78, p < 0.05), when compared with the LG (60.6 ± 11.25 and 93.5 ± 16.87), the EG (51.6 ± 7.3 and 93.8 ± 15.1) and the CG (34.4 ± 2.54 and 65.7 ± 14.1). CONCLUSIONS The LLLT applied before the physical exercise on the treadmill stimulated the angiogenesis and accelerated the process of muscle recovery.
Collapse
Affiliation(s)
- Mayna Adabbo
- 1 Biotechnology Program, Federal University of São Carlos (UFSCar) , São Carlos, SP, Brazil
| | - Fernanda Rossi Paolillo
- 2 Optics Group from São Carlos Institute of Physics (IFSC), University of São Paulo (USP) , São Carlos, SP, Brazil
| | - Paulo Sérgio Bossini
- 3 Electrothermophototherapy Laboratory, Department of Physical Therapy, Federal University of São Carlos (UFSCar) , São Carlos, SP, Brazil
| | - Natalia Camargo Rodrigues
- 4 Department of Biomechanics, Medicine and Rehabilitation of Locomotor System, University of São Paulo (USP) , School of Medicine, Ribeirão Preto, SP, Brazil
| | - Vanderlei Salvador Bagnato
- 2 Optics Group from São Carlos Institute of Physics (IFSC), University of São Paulo (USP) , São Carlos, SP, Brazil
| | - Nivaldo Antonio Parizotto
- 3 Electrothermophototherapy Laboratory, Department of Physical Therapy, Federal University of São Carlos (UFSCar) , São Carlos, SP, Brazil
| |
Collapse
|
42
|
Morici G, Rappa F, Cappello F, Pace E, Pace A, Mudò G, Crescimanno G, Belluardo N, Bonsignore MR. Lack of Dystrophin Affects Bronchial Epithelium inmdxMice. J Cell Physiol 2016; 231:2218-23. [DOI: 10.1002/jcp.25339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 02/09/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Giuseppe Morici
- Dipartimento di Biomedicina e Neuroscienze Cliniche (BioNeC); University of Palermo; Palermo Sicilia Italy
- Istituto di Biomedicina e Immunologia Molecolare (IBIM); Consiglio Nazionale delle Ricerche (CNR); Palermo Sicilia Italy
| | - Francesca Rappa
- Dipartimento di Biomedicina e Neuroscienze Cliniche (BioNeC); University of Palermo; Palermo Sicilia Italy
- Dipartimento di Scienze Giuridiche della Società e dello Sport; University of Palermo; Palermo Sicilia Italy
- Istituto Euro-Mediterraneo di Scienza e Tecnologia; Palermo Sicilia Italy
| | - Francesco Cappello
- Dipartimento di Biomedicina e Neuroscienze Cliniche (BioNeC); University of Palermo; Palermo Sicilia Italy
- Istituto Euro-Mediterraneo di Scienza e Tecnologia; Palermo Sicilia Italy
| | - Elisabetta Pace
- Istituto di Biomedicina e Immunologia Molecolare (IBIM); Consiglio Nazionale delle Ricerche (CNR); Palermo Sicilia Italy
| | - Andrea Pace
- Istituto Euro-Mediterraneo di Scienza e Tecnologia; Palermo Sicilia Italy
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF); University of Palermo; Palermo Sicilia Italy
| | - Giuseppa Mudò
- Dipartimento di Biomedicina e Neuroscienze Cliniche (BioNeC); University of Palermo; Palermo Sicilia Italy
| | - Grazia Crescimanno
- Istituto di Biomedicina e Immunologia Molecolare (IBIM); Consiglio Nazionale delle Ricerche (CNR); Palermo Sicilia Italy
| | - Natale Belluardo
- Dipartimento di Biomedicina e Neuroscienze Cliniche (BioNeC); University of Palermo; Palermo Sicilia Italy
| | - Maria R. Bonsignore
- Istituto di Biomedicina e Immunologia Molecolare (IBIM); Consiglio Nazionale delle Ricerche (CNR); Palermo Sicilia Italy
- Dipartimento Biomedico di Medicina Interna e Specialistica (DiBiMIS); University of Palermo; Palermo Sicilia Italy
| |
Collapse
|
43
|
Barbin ICC, Pereira JA, Bersan Rovere M, de Oliveira Moreira D, Marques MJ, Santo Neto H. Diaphragm degeneration and cardiac structure in mdx mouse: potential clinical implications for Duchenne muscular dystrophy. J Anat 2016; 228:784-91. [PMID: 26822140 DOI: 10.1111/joa.12443] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 02/03/2023] Open
Abstract
We examined the effects of exercise on diaphragm degeneration and cardiomyopathy in dystrophin-deficient mdx mice. Mdx mice (11 months of age) were exercised (swimming) for 2 months to worsen diaphragm degeneration. Control mdx mice were kept sedentary. Morphological evaluation demonstrated increased fibrosis in the diaphragm of exercised mdx mice (33.3 ± 6.0% area of fibrosis) compared with control mdx mice (20.9 ± 1.7% area of fibrosis). Increased (26%) activity of MMP-2, a marker of fibrosis, was detected in the diaphragms from exercised mdx mice. Morphological evaluation of the heart demonstrated a 45% increase in fibrosis in the right ventricle (8.3 ± 0.6% in sedentary vs. 12.0 ± 0.6% of fibrosis in exercised) and in the left ventricle (35% increase) in the exercised mdx mice. The density of inflammatory cells-degenerating cardiomyocytes increased 95% in the right ventricle (2.3 ± 0.6 in sedentary vs. 4.5 ± 0.8 in exercised) and 71% in the left ventricle (1.4 ± 0.6 sedentary vs. 2.4 ± 0.5 exercised). The levels of both active MMP-2 and the pro-fibrotic factor transforming growth factor beta were elevated in the hearts of exercised compared with sedentary mdx mice. The wall thickness to lumen diameter ratio of the pulmonary trunk was significantly increased in the exercised mdx mice (0.11 ± 0.04 in sedentary vs. 0.28 ± 0.12 in exercised), as was the thickness of the right ventricle wall, which suggests the occurrence of pulmonary hypertension in those animals. It is suggested that diaphragm degeneration is a main contributor to right ventricle dystrophic pathology. These findings may be relevant for future interventional studies for Duchenne muscular dystrophy-associated cardiomyopathy.
Collapse
Affiliation(s)
- Isabel Cristina Chagas Barbin
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Juliano Alves Pereira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Matheus Bersan Rovere
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Drielen de Oliveira Moreira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Maria Julia Marques
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Humberto Santo Neto
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
44
|
Hyzewicz J, Ruegg UT, Takeda S. Comparison of Experimental Protocols of Physical Exercise for mdx Mice and Duchenne Muscular Dystrophy Patients. J Neuromuscul Dis 2015; 2:325-342. [PMID: 27858750 PMCID: PMC5240598 DOI: 10.3233/jnd-150106] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Duchenne Muscular Dystrophy (DMD) is caused by mutations in the gene coding for dystrophin and leads to muscle degeneration, wheelchair dependence and death by cardiac or respiratory failure. Physical exercise has been proposed as a palliative therapy for DMD to maintain muscle strength and prevent contractures for as long as possible. However, its practice remains controversial because the benefits of training may be counteracted by muscle overuse and damage. The effects of physical exercise have been investigated in muscles of dystrophin-deficient mdx mice and in patients with DMD. However, a lack of uniformity among protocols limits comparability between studies and translatability of results from animals to humans. In the present review, we summarize and discuss published protocols used to investigate the effects of physical exercise on mdx mice and DMD patients, with the objectives of improving comparability between studies and identifying future research directions.
Collapse
Affiliation(s)
- Janek Hyzewicz
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
45
|
Hyzewicz J, Tanihata J, Kuraoka M, Ito N, Miyagoe-Suzuki Y, Takeda S. Low intensity training of mdx mice reduces carbonylation and increases expression levels of proteins involved in energy metabolism and muscle contraction. Free Radic Biol Med 2015; 82:122-36. [PMID: 25660994 DOI: 10.1016/j.freeradbiomed.2015.01.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 01/01/2023]
Abstract
High intensity training induces muscle damage in dystrophin-deficient mdx mice, an animal model for Duchenne muscular dystrophy. However, low intensity training (LIT) rescues the mdx phenotype and even reduces the level of protein carbonylation, a marker of oxidative damage. Until now, beneficial effects of LIT were mainly assessed at the physiological level. We investigated the effects of LIT at the molecular level on 8-week-old wild-type and mdx muscle using 2D Western blot and protein-protein interaction analysis. We found that the fast isoforms of troponin T and myosin binding protein C as well as glycogen phosphorylase were overcarbonylated and downregulated in mdx muscle. Some of the mitochondrial enzymes of the citric acid cycle were overcarbonylated, whereas some proteins of the respiratory chain were downregulated. Of functional importance, ATP synthase was only partially assembled, as revealed by Blue Native PAGE analysis. LIT decreased the carbonylation level and increased the expression of fast isoforms of troponin T and of myosin binding protein C, and glycogen phosphorylase. In addition, it increased the expression of aconitate hydratase and NADH dehydrogenase, and fully restored the ATP synthase complex. Our study demonstrates that the benefits of LIT are associated with lowered oxidative damage as revealed by carbonylation and higher expression of proteins involved in energy metabolism and muscle contraction. Potentially, these results will help to design therapies for DMD based on exercise mimicking drugs.
Collapse
Affiliation(s)
- Janek Hyzewicz
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Mutsuki Kuraoka
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Naoki Ito
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Yuko Miyagoe-Suzuki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan.
| |
Collapse
|
46
|
Al-Rewashdy H, Ljubicic V, Lin W, Renaud JM, Jasmin BJ. Utrophin A is essential in mediating the functional adaptations of mdx mouse muscle following chronic AMPK activation. Hum Mol Genet 2014; 24:1243-55. [PMID: 25324540 DOI: 10.1093/hmg/ddu535] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by the absence of dystrophin along muscle fibers. An attractive therapeutic avenue for DMD consists in the upregulation of utrophin A, a protein with high sequence identity and functional redundancy with dystrophin. Recent work has shown that pharmacological interventions that induce a muscle fiber shift toward a slower, more oxidative phenotype with increased expression of utrophin A confer morphological and functional improvements in mdx mice. Whether such improvements result from the increased expression of utrophin A per se or are linked to other beneficial adaptations associated with the slow, oxidative phenotype remain to be established. To address this central issue, we capitalized on the use of double knockout (dKO) mice, which are mdx mice also deficient in utrophin. We first compared expression of signaling molecules and markers of the slow, oxidative phenotype in muscles of mdx versus dKO mice and found that both strains exhibit similar phenotypes. Chronic activation of 5' adenosine monophosphate-activated protein kinase with 5-amino-4-imidazolecarboxamide riboside (AICAR) resulted in expression of a slower, more oxidative phenotype in both mdx and dKO mice. In mdx mice, this fiber type shift was accompanied by clear functional improvements that included reductions in central nucleation, IgM sarcoplasmic penetration and sarcolemmal damage resulting from eccentric contractions, as well as in increased grip strength. These important morphological and functional adaptations were not seen in AICAR-treated dKO mice. Our findings show the central role of utrophin A in mediating the functional benefits associated with expression of a slower, more oxidative phenotype in dystrophic animals.
Collapse
Affiliation(s)
- Hasanen Al-Rewashdy
- Department of Cellular and Molecular Medicine, and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Vladimir Ljubicic
- Department of Cellular and Molecular Medicine, and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Wei Lin
- Department of Cellular and Molecular Medicine, and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
47
|
Gordon BS, Lowe DA, Kostek MC. Exercise increases utrophin protein expression in the mdx mouse model of Duchenne muscular dystrophy. Muscle Nerve 2014; 49:915-8. [PMID: 24375286 DOI: 10.1002/mus.24151] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2013] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a lethal genetic disease caused by mutations in the dystrophin gene resulting in chronic muscle damage, muscle wasting, and premature death. Utrophin is a dystrophin protein homologue that increases dystrophic muscle function and reduces pathology. Currently, no treatments that increase utrophin protein expression exist. However, exercise increases utrophin mRNA expression in healthy humans. Therefore, the purpose was to determine whether exercise increases utrophin protein expression in dystrophic muscle. METHODS Utrophin protein was measured in the quadriceps and soleus muscles of mdx mice after 12 weeks of voluntary wheel running exercise or sedentary controls. Muscle pathology was measured in the quadriceps. RESULTS Exercise increased utrophin protein expression 334 ± 63% in the quadriceps relative to sedentary controls. Exercise increased central nuclei 4 ± 1% but not other measures of pathology. CONCLUSIONS Exercise may be an intervention that increases utrophin expression in patients with DMD.
Collapse
Affiliation(s)
- Bradley S Gordon
- University of South Carolina, Department of Exercise Science, Columbia, South Carolina, USA
| | | | | |
Collapse
|
48
|
Camerino GM, Cannone M, Giustino A, Massari AM, Capogrosso RF, Cozzoli A, De Luca A. Gene expression in mdx mouse muscle in relation to age and exercise: aberrant mechanical-metabolic coupling and implications for pre-clinical studies in Duchenne muscular dystrophy. Hum Mol Genet 2014; 23:5720-32. [PMID: 24916377 DOI: 10.1093/hmg/ddu287] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Weakness and fatigability are typical features of Duchenne muscular dystrophy patients and are aggravated in dystrophic mdx mice by chronic treadmill exercise. Mechanical activity modulates gene expression and muscle plasticity. Here, we investigated the outcome of 4 (T4, 8 weeks of age) and 12 (T12, 16 weeks of age) weeks of either exercise or cage-based activity on a large set of genes in the gastrocnemius muscle of mdx and wild-type (WT) mice using quantitative real-time PCR. Basal expression of the exercise-sensitive genes peroxisome-proliferator receptor γ coactivator 1α (Pgc-1α) and Sirtuin1 (Sirt1) was higher in mdx versus WT mice at both ages. Exercise increased Pgc-1α expression in WT mice; Pgc-1α was downregulated by T12 exercise in mdx muscles, along with Sirt1, Pparγ and the autophagy marker Bnip3. Sixteen weeks old mdx mice showed a basal overexpression of the slow Mhc1 isoform and Serca2; T12 exercise fully contrasted this basal adaptation as well as the high expression of follistatin and myogenin. Conversely, T12 exercise was ineffective in WT mice. Damage-related genes such as gp91-phox (NADPH-oxidase2), Tgfβ, Tnfα and c-Src tyrosine kinase were overexpressed in mdx muscles and not affected by exercise. Likewise, the anti-inflammatory adiponectin was lower in T12-exercised mdx muscles. Chronic exercise with minor adaptive effects in WT muscles leads to maladaptation in mdx muscles with a disequilibrium between protective and damaging signals. Increased understanding of the pathways involved in the altered mechanical-metabolic coupling may help guide appropriate physical therapies while better addressing pharmacological interventions in translational research.
Collapse
Affiliation(s)
- Giulia Maria Camerino
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari 'A. Moro', Via Orabona 4, 70125 Bari, Italy and
| | - Maria Cannone
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari 'A. Moro', Via Orabona 4, 70125 Bari, Italy and
| | - Arcangela Giustino
- Department of Biomedical Sciences and Human Oncology, University of Bari 'A. Moro', Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Ada Maria Massari
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari 'A. Moro', Via Orabona 4, 70125 Bari, Italy and
| | - Roberta Francesca Capogrosso
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari 'A. Moro', Via Orabona 4, 70125 Bari, Italy and
| | - Anna Cozzoli
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari 'A. Moro', Via Orabona 4, 70125 Bari, Italy and
| | - Annamaria De Luca
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari 'A. Moro', Via Orabona 4, 70125 Bari, Italy and
| |
Collapse
|
49
|
Ljubicic V, Burt M, Lunde JA, Jasmin BJ. Resveratrol induces expression of the slow, oxidative phenotype in mdx mouse muscle together with enhanced activity of the SIRT1-PGC-1α axis. Am J Physiol Cell Physiol 2014; 307:C66-82. [PMID: 24760981 DOI: 10.1152/ajpcell.00357.2013] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Slower, more oxidative muscle fibers are more resistant to the dystrophic pathology in Duchenne muscular dystrophy (DMD) patients as well as in the preclinical mdx mouse model of DMD. Therefore, one therapeutic strategy for DMD focuses on promoting expression of the slow, oxidative myogenic program. In the current study, we explored the therapeutic potential of stimulating the slow, oxidative phenotype in mdx mice by feeding 6-wk-old animals with the natural phenol resveratrol (RSV; ~100 mg·kg(-1)·day(-1)) for 6 wk. Sirtuin 1 (SIRT1) activity and protein levels increased significantly, as well as peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) activity, in the absence of alterations in AMPK signaling. These adaptations occurred concomitant with evidence of a fast, glycolytic, to slower, more oxidative fiber type conversion, including mitochondrial biogenesis and increased expression of slower myosin heavy chain isoforms. These positive findings raised the question of whether increased exposure to RSV would result in greater therapeutic benefits. We discovered that an elevated RSV dose of ~500 mg·kg(-1)·day(-1) across a duration of 12 wk was clearly less effective at muscle remodeling in mdx mice. This treatment protocol failed to influence SIRT1 or AMPK signaling and did not result in a shift towards a slower, more oxidative phenotype. Taken together, this study demonstrates that RSV can stimulate SIRT1 and PGC-1α activation, which in turn may promote expression of the slow, oxidative myogenic program in mdx mouse muscle. The data also highlight the importance of selecting an appropriate dosage regimen of RSV to maximize its potential therapeutic effectiveness for future application in DMD patients.
Collapse
Affiliation(s)
- Vladimir Ljubicic
- Department of Cellular and Molecular Medicine, Faculty of Medicine, and Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Matthew Burt
- Department of Cellular and Molecular Medicine, Faculty of Medicine, and Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - John A Lunde
- Department of Cellular and Molecular Medicine, Faculty of Medicine, and Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, and Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
50
|
McKeehen JN, Novotny SA, Baltgalvis KA, Call JA, Nuckley DJ, Lowe DA. Adaptations of mouse skeletal muscle to low-intensity vibration training. Med Sci Sports Exerc 2014; 45:1051-9. [PMID: 23274599 DOI: 10.1249/mss.0b013e3182811947] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE We tested the hypothesis that low-intensity vibration training in mice improves contractile function of hindlimb skeletal muscles and promotes exercise-related cellular adaptations. METHODS We subjected C57BL/6J mice to 6 wk, 5 d·wk, 15 min·d of sham or low-intensity vibration (45 Hz, 1.0g) while housed in traditional cages (Sham-Active, n = 8; Vibrated-Active, n = 10) or in small cages to restrict physical activity (Sham-Restricted, n = 8; Vibrated-Restricted, n = 8). Contractile function and resistance to fatigue were tested in vivo (anterior and posterior crural muscles) and ex vivo on the soleus muscle. Tibialis anterior and soleus muscles were evaluated histologically for alterations in oxidative metabolism, capillarity, and fiber types. Epididymal fat pad and hindlimb muscle masses were measured. Two-way ANOVAs were used to determine the effects of vibration and physical inactivity. RESULTS Vibration training resulted in a 10% increase in maximal isometric torque (P = 0.038) and 16% faster maximal rate of relaxation (P = 0.030) of the anterior crural muscles. Posterior crural muscles were unaffected by vibration, except greater rates of contraction in Vibrated-Restricted mice compared with Vibrated-Active and Sham-Restricted mice (P = 0.022). Soleus muscle maximal isometric tetanic force tended to be greater (P = 0.057), and maximal relaxation was 20% faster (P = 0.005) in vibrated compared with sham mice. The restriction of physical activity induced muscle weakness but was not required for vibration to be effective in improving strength or relaxation. Vibration training did not affect muscle fatigability or any indicator of cellular adaptation investigated (P ≥ 0.431). Fat pad but not hindlimb muscle masses were affected by vibration training. CONCLUSION Vibration training in mice improved muscle contractility, specifically strength and relaxation rates, with no indication of adverse effects to muscle function or cellular adaptations.
Collapse
Affiliation(s)
- James N McKeehen
- Rehabilitation Science and Program in Physical Therapy, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|