1
|
Bechard ME, Farahani P, Greene D, Pham A, Orry A, Rasche ME. Purification, kinetic characterization, and site-directed mutagenesis of Methanothermobacter thermautotrophicus RFAP Synthase Produced in Escherichia coli. AIMS Microbiol 2019; 5:186-204. [PMID: 31663056 PMCID: PMC6787355 DOI: 10.3934/microbiol.2019.3.186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/15/2019] [Indexed: 11/18/2022] Open
Abstract
Methane-producing archaea are among a select group of microorganisms that utilize tetrahydromethanopterin (H4MPT) as a one-carbon carrier instead of tetrahydrofolate. In H4MPT biosynthesis, β-ribofuranosylaminobenzene 5'-phosphate (RFAP) synthase catalyzes the production of RFAP, CO2, and pyrophosphate from p-aminobenzoic acid (pABA) and phosphoribosyl-pyrophosphate (PRPP). In this work, to gain insight into amino acid residues required for substrate binding, RFAP synthase from Methanothermobacter thermautotrophicus was produced in Escherichia coli, and site-directed mutagenesis was used to alter arginine 26 (R26) and aspartic acid 19 (D19), located in a conserved sequence of amino acids resembling the pABA binding site of dihydropteroate synthase. Replacement of R26 with lysine increased the KM for pABA by an order of magnitude relative to wild-type enzyme without substantially altering the KM for PRPP. Although replacement of D19 with alanine produced inactive enzyme, asparagine substitution allowed retention of some activity, and the K M for pABA increased about threefold relative to wild-type enzyme. A molecular model developed by threading RFAP synthase onto the crystal structure of homoserine kinase places R26 in the proposed active site. In the static model, D19 is located close to the active site, yet appears too far away to influence ligand binding directly. This may be indicative of the protein conformational change predicted previously in the Bi-Ter kinetic mechanism and/or formation of the active site at the interface of two subunits. Due to the vital role of RFAP synthase in H4MPT biosynthesis, insights into the mode of substrate binding and mechanism could be beneficial for developing RFAP synthase inhibitors designed to reduce the production of methane as a greenhouse gas.
Collapse
Affiliation(s)
- Matthew E Bechard
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Payam Farahani
- Chemistry and Biochemistry Department, California State University at Fullerton, 800 North State College Blvd., Fullerton, CA 92834
| | - Dina Greene
- Northern California Regional Laboratories, The Permanente Medical Group, Berkeley, CA 94710
| | - Anna Pham
- Chemistry and Biochemistry Department, California State University at Fullerton, 800 North State College Blvd., Fullerton, CA 92834
| | - Andrew Orry
- Molsoft L.L.C., 11199 Sorrento Valley Road, S209, San Diego, CA 92121
| | - Madeline E Rasche
- Chemistry and Biochemistry Department, California State University at Fullerton, 800 North State College Blvd., Fullerton, CA 92834
| |
Collapse
|
2
|
Phosphoribosyl Diphosphate (PRPP): Biosynthesis, Enzymology, Utilization, and Metabolic Significance. Microbiol Mol Biol Rev 2016; 81:81/1/e00040-16. [PMID: 28031352 DOI: 10.1128/mmbr.00040-16] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Phosphoribosyl diphosphate (PRPP) is an important intermediate in cellular metabolism. PRPP is synthesized by PRPP synthase, as follows: ribose 5-phosphate + ATP → PRPP + AMP. PRPP is ubiquitously found in living organisms and is used in substitution reactions with the formation of glycosidic bonds. PRPP is utilized in the biosynthesis of purine and pyrimidine nucleotides, the amino acids histidine and tryptophan, the cofactors NAD and tetrahydromethanopterin, arabinosyl monophosphodecaprenol, and certain aminoglycoside antibiotics. The participation of PRPP in each of these metabolic pathways is reviewed. Central to the metabolism of PRPP is PRPP synthase, which has been studied from all kingdoms of life by classical mechanistic procedures. The results of these analyses are unified with recent progress in molecular enzymology and the elucidation of the three-dimensional structures of PRPP synthases from eubacteria, archaea, and humans. The structures and mechanisms of catalysis of the five diphosphoryltransferases are compared, as are those of selected enzymes of diphosphoryl transfer, phosphoryl transfer, and nucleotidyl transfer reactions. PRPP is used as a substrate by a large number phosphoribosyltransferases. The protein structures and reaction mechanisms of these phosphoribosyltransferases vary and demonstrate the versatility of PRPP as an intermediate in cellular physiology. PRPP synthases appear to have originated from a phosphoribosyltransferase during evolution, as demonstrated by phylogenetic analysis. PRPP, furthermore, is an effector molecule of purine and pyrimidine nucleotide biosynthesis, either by binding to PurR or PyrR regulatory proteins or as an allosteric activator of carbamoylphosphate synthetase. Genetic analyses have disclosed a number of mutants altered in the PRPP synthase-specifying genes in humans as well as bacterial species.
Collapse
|
3
|
Bobik TA, Morales EJ, Shin A, Cascio D, Sawaya MR, Arbing M, Yeates TO, Rasche ME. Structure of the methanofuran/methanopterin-biosynthetic enzyme MJ1099 from Methanocaldococcus jannaschii. Acta Crystallogr F Struct Biol Commun 2014; 70:1472-9. [PMID: 25372812 PMCID: PMC4231847 DOI: 10.1107/s2053230x1402130x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/25/2014] [Indexed: 11/10/2022] Open
Abstract
Prior studies have indicated that MJ1099 from Methanocaldococcus jannaschii has roles in the biosynthesis of tetrahydromethanopterin and methanofuran, two key cofactors of one-carbon (C1) metabolism in diverse organisms including the methanogenic archaea. Here, the structure of MJ1099 has been solved to 1.7 Å resolution using anomalous scattering methods. The results indicate that MJ1099 is a member of the TIM-barrel superfamily and that it is a homohexamer. Bioinformatic analyses identified a potential active site that is highly conserved among MJ1099 homologs and the key amino acids involved were identified. The results presented here should guide further studies of MJ1099 including mechanistic studies and possibly the development of inhibitors that target the methanogenic archaea in the digestive tracts of humans and that are a source of the greenhouse gas methane.
Collapse
Affiliation(s)
- Thomas A. Bobik
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Erick J. Morales
- Department of Chemistry and Biochemistry, California State University, Fullerton, CA 92834, USA
| | - Annie Shin
- Department of Energy Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Duilio Cascio
- Department of Energy Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael R. Sawaya
- Department of Energy Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Mark Arbing
- Department of Energy Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Todd O. Yeates
- Department of Energy Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Madeline E. Rasche
- Department of Chemistry and Biochemistry, California State University, Fullerton, CA 92834, USA
| |
Collapse
|
4
|
Sousa FL, Martin WF. Biochemical fossils of the ancient transition from geoenergetics to bioenergetics in prokaryotic one carbon compound metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:964-81. [PMID: 24513196 DOI: 10.1016/j.bbabio.2014.02.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/27/2022]
Abstract
The deep dichotomy of archaea and bacteria is evident in many basic traits including ribosomal protein composition, membrane lipid synthesis, cell wall constituents, and flagellar composition. Here we explore that deep dichotomy further by examining the distribution of genes for the synthesis of the central carriers of one carbon units, tetrahydrofolate (H4F) and tetrahydromethanopterin (H4MPT), in bacteria and archaea. The enzymes underlying those distinct biosynthetic routes are broadly unrelated across the bacterial-archaeal divide, indicating that the corresponding pathways arose independently. That deep divergence in one carbon metabolism is mirrored in the structurally unrelated enzymes and different organic cofactors that methanogens (archaea) and acetogens (bacteria) use to perform methyl synthesis in their H4F- and H4MPT-dependent versions, respectively, of the acetyl-CoA pathway. By contrast, acetyl synthesis in the acetyl-CoA pathway - from a methyl group, CO2 and reduced ferredoxin - is simpler, uniform and conserved across acetogens and methanogens, and involves only transition metals as catalysts. The data suggest that the acetyl-CoA pathway, while being the most ancient of known CO2 assimilation pathways, reflects two phases in early evolution: an ancient phase in a geochemically confined and non-free-living universal common ancestor, in which acetyl thioester synthesis proceeded spontaneously with the help of geochemically supplied methyl groups, and a later phase that reflects the primordial divergence of the bacterial and archaeal stem groups, which independently invented genetically-encoded means to synthesize methyl groups via enzymatic reactions. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Filipa L Sousa
- Institute for Molecular Evolution,University of Düsseldorf, 40225 Düsseldorf, Germany
| | - William F Martin
- Institute for Molecular Evolution,University of Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
5
|
Discovery and characterization of the first archaeal dihydromethanopterin reductase, an iron-sulfur flavoprotein from Methanosarcina mazei. J Bacteriol 2013; 196:203-9. [PMID: 23995635 DOI: 10.1128/jb.00457-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The microbial production of methane by methanogenic archaea is dependent on the synthesis of the pterin-containing cofactor tetrahydromethanopterin (H4MPT). The enzyme catalyzing the last step of H4MPT biosynthesis (dihydromethanopterin reductase) has not previously been identified in methane-producing microorganisms. Previous complementation studies with the methylotrophic bacterium Methylobacterium extorquens have indicated that an uncharacterized archaeal-flavoprotein-like flavoprotein (AfpA) from Methylobacillus flagellatus or Burkholderia xenovorans can replace the activity of a phylogenetically unrelated bacterial dihydromethanopterin reductase (DmrA). We propose that MM1854, a homolog of AfpA from Methanosarcina mazei, catalyzes the last step of H4MPT biosynthesis in methane-producing microorganisms. To test this hypothesis, a six-histidine (His6)-tagged version of MM1854 was produced. Bioinformatic analysis revealed the presence of one flavin mononucleotide (FMN)-binding site and two iron-sulfur cluster sites, consistent with an oxidoreductase enzyme. Purified His6-MM1854 occurred as a homodimer of 29-kDa subunits, and the UV-visible spectrum of the purified protein showed absorbance peaks at 380 and 460 nm, characteristic of oxidized FMN. NAD(P)H was incapable of directly reducing the flavin cofactor, but dithionite eliminated the FMN peaks, indicating successful electron transfer to MM1854. An electron transfer system of NADPH, spinach NADPH-ferredoxin oxidoreductase, and ferredoxin could also reduce the FMN peaks. A newly developed assay indicated that dithiothreitol-reduced MM1854 could transfer electrons to dihydromethanopterin. This assay was also effective with a heat-stable DmrX analog from Methanocaldococcus jannaschii (MJ0208). These results provide the first biochemical evidence that MM1854 and MJ0208 function as archaeal dihydromethanopterin reductases (DmrX) and that ferredoxin may serve as an electron donor.
Collapse
|
6
|
Rasche ME, Havemann SA, Rosenzvaig M. Characterization of two methanopterin biosynthesis mutants of Methylobacterium extorquens AM1 by use of a tetrahydromethanopterin bioassay. J Bacteriol 2004; 186:1565-70. [PMID: 14973120 PMCID: PMC344399 DOI: 10.1128/jb.186.5.1565-1570.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Accepted: 11/12/2003] [Indexed: 11/20/2022] Open
Abstract
An enzymatic assay was developed to measure tetrahydromethanopterin (H(4)MPT) levels in wild-type and mutant cells of Methylobacterium extorquens AM1. H(4)MPT was detectable in wild-type cells but not in strains with a mutation of either the orf4 or the dmrA gene, suggesting a role for these two genes in H(4)MPT biosynthesis. The protein encoded by orf4 catalyzed the reaction of ribofuranosylaminobenzene 5'-phosphate synthase, the first committed step of H(4)MPT biosynthesis. These results provide the first biochemical evidence for H(4)MPT biosynthesis genes in bacteria.
Collapse
Affiliation(s)
- Madeline E Rasche
- Microbiology and Cell Science Department, University of Florida, Gainesville, Florida 32611-0700, USA.
| | | | | |
Collapse
|
7
|
Rasche ME. Outcomes of a research-driven laboratory and literature course designed to enhance undergraduate contributions to original research. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 32:101-107. [PMID: 21706702 DOI: 10.1002/bmb.2004.494032020313] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This work describes outcomes of a research-driven advanced microbiology laboratory and literature research course intended to enhance undergraduate preparation for and contributions to original research. The laboratory section was designed to teach fundamental biochemistry and molecular biology techniques in the context of an original research project. Site-directed mutants of a gene of interest were constructed, and the effects of mutations on the resulting enzymes were analyzed. Students were also introduced to the literature surrounding their project, electronic literature databases, and preparation of computer-generated slides for oral presentations. Student progress was evaluated through a laboratory report written as scientific manuscript, an oral presentation, a 10-page written review, and an essay examination. In the semester following the laboratory course, four of the 14 undergraduates joined the host laboratory to continue their projects as individual undergraduate researchers. Quantifiable outcomes of the course and subsequent undergraduate research included i) production of eight new site-directed mutants and preliminary characterization of the corresponding enzymes, ii) training of four individual undergraduate researchers prior to joining the laboratory, iii) publication of a manuscript with results from two undergraduate researchers, and iv) presentation of two posters with undergraduate co-authors at a national meeting. This research-driven approach may be applicable to enhance undergraduate contributions to other original research projects that have defined goals achievable within the timeframe of a single semester.
Collapse
Affiliation(s)
- Madeline E Rasche
- Microbiology and Cell Science Department, University of Florida, Gainesville, Florida 32611-0700.
| |
Collapse
|