1
|
Basu T, Goswami D, Majumdar S. Fabrication of crosslinker free hydrogels with diverse properties: An interplay of multiscale physical forces within polymer matrix. iScience 2024; 27:111227. [PMID: 39563896 PMCID: PMC11574810 DOI: 10.1016/j.isci.2024.111227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/20/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024] Open
Abstract
Physical/chemical crosslinking and surface-modifications of hydrogels have been extensively endorsed to enhance their biomaterial functionalities. The latter approaches involve using toxic crosslinkers or chemical modifications of the biopolymers, limiting the clinical translation of hydrogels beyond short-term promising results. The current study aims to tailor the polymer's structure to obtain customized applications using the same FDA-approved ingredients. PEGs of different molecular weights have been used to tune the van der Waal's forces, NaCl has been used to alter the electrostatic interactions of the charged polymers, and glycerol has been used to tweak the H-bonding. Same crosslinker-free sodium alginate/gelatin hydrogel formulation unfolds multiple properties: controlled-release, self-healing, mesh size, storage modulus, degradation rate. The hydrogels, lacking in one aspect, displayed superior performance in another. This study, including experiments and molecular simulations, illustrates that developing new materials may not always be necessary, as the same polymeric matrix can generate immense variations in different aspects.
Collapse
Affiliation(s)
- Tithi Basu
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad 502285, Telangana, India
| | - Debasish Goswami
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad 502285, Telangana, India
| | - Saptarshi Majumdar
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad 502285, Telangana, India
| |
Collapse
|
2
|
Carriero VC, Di Muzio L, Petralito S, Casadei MA, Paolicelli P. Cryogel Scaffolds for Tissue-Engineering: Advances and Challenges for Effective Bone and Cartilage Regeneration. Gels 2023; 9:979. [PMID: 38131965 PMCID: PMC10742915 DOI: 10.3390/gels9120979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Critical-sized bone defects and articular cartilage injuries resulting from trauma, osteonecrosis, or age-related degeneration can be often non-healed by physiological repairing mechanisms, thus representing a relevant clinical issue due to a high epidemiological incidence rate. Novel tissue-engineering approaches have been proposed as an alternative to common clinical practices. This cutting-edge technology is based on the combination of three fundamental components, generally referred to as the tissue-engineering triad: autologous or allogenic cells, growth-stimulating factors, and a scaffold. Three-dimensional polymer networks are frequently used as scaffolds to allow cell proliferation and tissue regeneration. In particular, cryogels give promising results for this purpose, thanks to their peculiar properties. Cryogels are indeed characterized by an interconnected porous structure and a typical sponge-like behavior, which facilitate cellular infiltration and ingrowth. Their composition and the fabrication procedure can be appropriately tuned to obtain scaffolds that match the requirements of a specific tissue or organ to be regenerated. These features make cryogels interesting and promising scaffolds for the regeneration of different tissues, including those characterized by very complex mechanical and physical properties, such as bones and joints. In this review, state-of-the-art fabrication and employment of cryogels for supporting effective osteogenic or chondrogenic differentiation to allow for the regeneration of functional tissues is reported. Current progress and challenges for the implementation of this technology in clinical practice are also highlighted.
Collapse
Affiliation(s)
| | | | | | | | - Patrizia Paolicelli
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (V.C.C.); (L.D.M.); (S.P.); (M.A.C.)
| |
Collapse
|
3
|
Moriyama K, Inomoto N, Moriuchi H, Nihei M, Sato M, Miyagi Y, Tajiri A, Sato T, Tanaka Y, Johno Y, Goto M, Kamiya N. Characterization of enzyme-crosslinked albumin hydrogel for cell encapsulation. J Biosci Bioeng 2023; 136:471-476. [PMID: 37798227 DOI: 10.1016/j.jbiosc.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023]
Abstract
Albumin is an attractive component for the development of biomaterials applied as biomedical implants, including drug carriers and tissue engineering scaffolds, because of its high biocompatibility and low immunogenicity. Additionally, albumin-based gelators facilitate cross-linking reactions under mild conditions, which maintains the high viability of encapsulated living cells. In this study, we synthesized albumin derivatives to undergo gelation under physiological conditions via the peroxidase-catalyzed formation of cross-links. Albumin was modified with phenolic hydroxyl groups (Alb-Ph-OH) using carbodiimide chemistry, and the effect of degree of substitution on gelation was investigated. Various properties of the Alb-Ph-OH hydrogels, namely the gelation time, swelling ratio, pore size, storage modulus, and enzymatic degradability, were easily controlled by adjusting the degree of substitution and the polymer concentration. Moreover, the viability of cells encapsulated within the Alb-Ph-OH hydrogel was high. These results demonstrate the potential applicability of Alb-Ph-OH hydrogels as cell-encapsulating materials for biomedical applications, including tissue engineering.
Collapse
Affiliation(s)
- Kousuke Moriyama
- Department of Chemical and Biological Engineering, National Institute of Technology, Sasebo Collage, 1-1 Okishin-cho, Sasebo, Nagasaki 857-1193, Japan.
| | - Noe Inomoto
- Department of Chemical and Biological Engineering, National Institute of Technology, Sasebo Collage, 1-1 Okishin-cho, Sasebo, Nagasaki 857-1193, Japan
| | - Hidetoshi Moriuchi
- Department of Chemical and Biological Engineering, National Institute of Technology, Sasebo Collage, 1-1 Okishin-cho, Sasebo, Nagasaki 857-1193, Japan
| | - Masanobu Nihei
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Miku Sato
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Yoshiki Miyagi
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Ayaka Tajiri
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Takeshi Sato
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Yasuhiko Tanaka
- Department of Chemical and Biological Engineering, National Institute of Technology, Sasebo Collage, 1-1 Okishin-cho, Sasebo, Nagasaki 857-1193, Japan
| | - Yuuki Johno
- Department of Chemical and Biological Engineering, National Institute of Technology, Sasebo Collage, 1-1 Okishin-cho, Sasebo, Nagasaki 857-1193, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Yamashita Y, Ohzuno Y, Saito Y, Fujiwara Y, Yoshida M, Takei T. Autoclaving-Triggered Hydrogelation of Chitosan-Gluconic acid Conjugate Aqueous Solution for Wound Healing. Gels 2023; 9:gels9040280. [PMID: 37102892 PMCID: PMC10137746 DOI: 10.3390/gels9040280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Moist wound healing is known to heal wounds faster than dry wound healing. Hydrogel wound dressings are suitable for moist wound healing because of their hyperhydrous structure. Chitosan, a natural polymer, promotes wound healing by stimulating inflammatory cells and releasing bioactive compounds. Therefore, chitosan hydrogel has great potential as a wound dressing. In our previous study, physically crosslinked chitosan hydrogels were successfully prepared solely by freeze-thawing of chitosan-gluconic acid conjugate (CG) aqueous solution without using any toxic additives. Furthermore, the CG hydrogels could be sterilized by autoclaving (steam sterilization). In this study, we showed that autoclaving (121 °C, 20 min) of a CG aqueous solution simultaneously achieved gelation of the solution and sterilization of the hydrogel. Hydrogelation of CG aqueous solution by autoclaving is also physically crosslinking without any toxic additives. Further, we showed that the CG hydrogels retained favorable biological properties of the CG hydrogels prepared by freeze-thawing and subsequent autoclaving. These results indicated that CG hydrogels prepared by autoclaving were promising as wound dressings.
Collapse
|
5
|
Takei T, Danjo S, Sakoguchi S, Tanaka S, Yoshinaga T, Nishimata H, Yoshida M. Autoclavable physically-crosslinked chitosan cryogel as a wound dressing. J Biosci Bioeng 2017; 125:490-495. [PMID: 29167067 DOI: 10.1016/j.jbiosc.2017.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/09/2017] [Accepted: 10/25/2017] [Indexed: 02/01/2023]
Abstract
Moist wounds were known to heal more rapidly than dry wounds. Hydrogel wound dressings were suitable for the moist wound healing because of their hyperhydrous structure. Chitosan was a strong candidate as a base material for hydrogel wound dressings because the polymer had excellent biological properties that promoted wound healing. We previously developed physically-crosslinked chitosan cryogels, which were prepared solely by freeze-thawing of a chitosan-gluconic acid conjugate (CG) aqueous solution, for wound treatment. The CG cryogels were disinfected by immersing in 70% ethanol before applying to wounds in our previous study. In the present study, we examined the influence of autoclave sterilization (121°C, 20 min) on the characteristics of CG cryogel because complete sterilization was one of the fundamental requirements for medical devices. We found that optimum value of gluconic acid content of CG, defined as the number of the incorporated gluconic acid units per 100 glucosamine units of chitosan, was 11 for autoclaving. An increased crosslinking level of CG cryogel on autoclaving enhanced resistance of the gels to enzymatic degradation. Furthermore, the autoclaved CG cryogels retained favorable biological properties of the pre-autoclaved CG cryogels in that they showed the same hemostatic activity and efficacy in repairing full-thickness skin wounds as the pre-autoclaved CG cryogels. These results showed the great potential of autoclavable CG cryogels as a practical wound dressing.
Collapse
Affiliation(s)
- Takayuki Takei
- Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan.
| | - So Danjo
- Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan.
| | - Shogo Sakoguchi
- Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan.
| | - Sadao Tanaka
- Departent of Diagnostic Pathology, Nanpuh Hospital, 14-3 Nagata-cho, Kagoshima 891-8512, Japan.
| | - Takuma Yoshinaga
- Division of Clinical Application, Nanpuh Hospital, 14-3 Nagata-cho, Kagoshima 891-8512, Japan.
| | - Hiroto Nishimata
- Departent of Diagnostic Pathology, Nanpuh Hospital, 14-3 Nagata-cho, Kagoshima 891-8512, Japan.
| | - Masahiro Yoshida
- Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
6
|
Takei T, Fukumoto K, Danjo S, Yoshinaga T, Nishimata H, Yoshida M. In Vitro and in Vivo Characterization of Hydroxyapatite/Chitosan-Gluconic Acid Conjugate Scaffolds. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2017. [DOI: 10.1252/jcej.16we202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Takayuki Takei
- Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University
| | - Kohei Fukumoto
- Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University
| | - So Danjo
- Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University
| | | | | | - Masahiro Yoshida
- Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University
| |
Collapse
|