Kawada H, Niwano S, Niwano H, Yumoto Y, Wakisaka Y, Yuge M, Kawahara K, Izumi T. Tumor Necrosis Factor-.ALPHA. Downregulates the Voltage Gated Outward K+ Current in Cultured Neonatal Rat Cardiomyocytes A Possible Cause of Electrical Remodeling in Diseased Hearts.
Circ J 2006;
70:605-9. [PMID:
16636498 DOI:
10.1253/circj.70.605]
[Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND
Inflammatory cytokines have been reported to contribute to the progression of cardiac remodeling in various heart diseases and a remarkable prolongation of the monophasic action potential duration and reductions in the expression of Kv4.2 and K+ channel-interacting protein-2 (KChIP-2) in a rat autoimmune myocarditis model have been documented. In this study, the effect of tumor necrosis factor-alpha (TNF-alpha) on cultured cardiomyocytes was evaluated, focusing on the change in the voltage-gated outward K+ current and expression of related molecules.
METHODS AND RESULTS
Cardiomyocytes isolated from 1-day-old Lewis rats were cultured for 72 h and treated with TNF-alpha (50 ng/ml) for an additional 48 h. The myocytes treated with TNF-alpha showed a 22% reduction in the peak K+ current, which consisted of a transient outward K+ current (Ito) and 1.4-fold enhancement of the cell-capacitance in comparison with the control. Among the cardiac ion channel related molecules evaluated in this study, Kv4.2 and KChIP-2 mRNA exhibited remarkable reductions (p < 0.05).
CONCLUSIONS
Treatment with TNF-alpha induced reductions in Ito as well as cellular hypertrophy in neonatal cultured myocytes, which indicates that TNF-alpha might play a role in promoting electrical remodeling of cardiomyocytes under inflammatory conditions.
Collapse