1
|
Byun BH, Kim MH, Han YH, Jeong HJ. KSNM60 in Non-thyroidal Radionuclide Therapy: Leaping into the Future. Nucl Med Mol Imaging 2021; 55:203-209. [PMID: 34721713 DOI: 10.1007/s13139-021-00703-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/02/2021] [Accepted: 05/31/2021] [Indexed: 11/28/2022] Open
Abstract
This year, the Korean Society of Nuclear Medicine (KSNM) is celebrating its 60th anniversary. Treatment, as well as diagnosis, has played a very important role in the development of nuclear medicine. Since I-131 was used for thyroid therapy in 1959, other radionuclide therapy is still being used, and attempts to use new radionuclide are increasing. In this review, we briefly summarize and introduce the therapies such as radioimmunotherapy, transarterial radioembolization, radionuclide therapy for neuroendocrine tumors, peptide receptor radionuclide therapy, control of metastatic bone pain, radiation synovectomy, radionuclide brachytherapy, alpha particle therapy, and boron neutron capture therapy, which has been being attempted so far in the field of nuclear medicine.
Collapse
Affiliation(s)
- Byung Hyun Byun
- Department of Nuclear Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea
| | - Myoung Hyoun Kim
- Department of Nuclear Medicine, Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, Iksan, Jeollabuk-do South Korea
| | - Yeon-Hee Han
- Department of Nuclear Medicine, Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, 20, Geonji-ro, Duckjin-gu, Jeonju-si, Jeollabuk-do 561-803 South Korea
| | - Hwan-Jeong Jeong
- Department of Nuclear Medicine, Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, 20, Geonji-ro, Duckjin-gu, Jeonju-si, Jeollabuk-do 561-803 South Korea
| |
Collapse
|
2
|
Cho SG, Kong EJ, Kang WJ, Paeng JC, Bom HSH, Cho I. KSNM60 in Cardiology: Regrowth After a Long Pause. Nucl Med Mol Imaging 2021; 55:151-161. [PMID: 34422125 PMCID: PMC8322215 DOI: 10.1007/s13139-021-00702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/09/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022] Open
Abstract
The Korean Society of Nuclear Medicine (KSNM) is celebrating its 60th anniversary in honor of the nuclear medicine professionals who have dedicated their efforts towards research, academics, and the more comprehensive clinical applications and uses of nuclear imaging modalities. Nuclear cardiology in Korea was at its prime time in the 1990s, but its growth was interrupted by a long pause. Despite the academic and practical challenges, nuclear cardiology in Korea now meets the second leap, attributed to the growth in molecular imaging tailored for many non-coronary diseases and the genuine values of nuclear myocardial perfusion imaging. In this review, we describe the trends, achievements, challenges, and perspectives of nuclear cardiology throughout the 60-year history of the KSNM.
Collapse
Affiliation(s)
- Sang-Geon Cho
- Department of Nuclear Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Eun Jung Kong
- Department of Nuclear Medicine, Yeungnam University Medical Center, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415 Republic of Korea
| | - Won Jun Kang
- Department of Nuclear Medicine, Yonsei University Severance Hospital, Seoul, Republic of Korea
| | - Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hee-Seung Henry Bom
- 5Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Jeonnam, Republic of Korea
| | - Ihnho Cho
- Department of Nuclear Medicine, Yeungnam University Medical Center, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415 Republic of Korea
| |
Collapse
|
3
|
Klaassen NJM, Arntz MJ, Gil Arranja A, Roosen J, Nijsen JFW. The various therapeutic applications of the medical isotope holmium-166: a narrative review. EJNMMI Radiopharm Chem 2019; 4:19. [PMID: 31659560 PMCID: PMC6682843 DOI: 10.1186/s41181-019-0066-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022] Open
Abstract
Over the years, a broad spectrum of applications of the radionuclide holmium-166 as a medical isotope has been established. The isotope holmium-166 is attractive as it emits high-energy beta radiation which can be used for a therapeutic effect and gamma radiation which can be used for nuclear imaging purposes. Furthermore, holmium-165 can be visualized by MRI because of its paramagnetic properties and by CT because of its high density. Since holmium-165 has a natural abundance of 100%, the only by-product is metastable holmium-166 and no costly chemical purification steps are necessary for production of nuclear reactor derived holmium-166. Several compounds labelled with holmium-166 are now used in patients, such Ho166-labelled microspheres for liver malignancies, Ho166-labelled chitosan for hepatocellular carcinoma (HCC) and [166Ho]Ho DOTMP for bone metastases. The outcomes in patients are very promising, making this isotope more and more interesting for applications in interventional oncology. Both drugs as well as medical devices labelled with radioactive holmium are used for internal radiotherapy. One of the treatment possibilities is direct intratumoural treatment, in which the radioactive compound is injected with a needle directly into the tumour. Numerous other applications have been developed, like patches for treatment of skin cancer and holmium labelled antibodies and peptides. The second major application that is currently clinically applied is selective internal radiation therapy (SIRT, also called radioembolization), a novel treatment option for liver malignancies. This review discusses medical drugs and medical devices based on the therapeutic radionuclide holmium-166.
Collapse
Affiliation(s)
- Nienke J M Klaassen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Radboud Institute for Health Sciences, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands
| | - Mark J Arntz
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Radboud Institute for Health Sciences, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands
| | - Alexandra Gil Arranja
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Radboud Institute for Health Sciences, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands.,Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Faculty of Science, Utrecht University, 3508, TB, Utrecht, The Netherlands.,Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629, JB, Delft, The Netherlands
| | - Joey Roosen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Radboud Institute for Health Sciences, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands
| | - J Frank W Nijsen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Radboud Institute for Health Sciences, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Park JS, Oh JH, Kim DY, Park YK, Park SJ, Kim SJ. Effects of intraluminal irradiation with Holmium-166 for TIPS stenosis: experimental study in a swine model. Korean J Radiol 2007; 8:127-35. [PMID: 17420630 PMCID: PMC2626774 DOI: 10.3348/kjr.2007.8.2.127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE We wanted to evaluate the effectiveness of intraluminal irradiation with Holmium-166 ((166)Ho) for reducing the pseudointimal hyperplasia (PIH) in the transjugular intrahepatic portosystemic shunt (TIPS) tract in a swine model. MATERIALS AND METHODS TIPS was performed in 12 domestic pigs, after the creation of portal hypertension by intraportal injection of a mixture of N-butyl-2-cyanoacrylate (NBCA) and lipiodol. Five pigs first underwent intraluminal irradiation (30 Gy) in the parenchymal tract with using a (166)Ho solution-filled balloon catheter, and this was followed by the placement of a nitinol stent in the TIPS tract. For the seven control pigs, the balloon was filled with saline and contrast media mixture. Two weeks later, follow-up portography and histological analysis were performed. RESULTS TIPS was successfully performed in all twelve pigs with achieving artificially induced portal hypertension. Portography performed two weeks after TIPS showed the patent tracts in the TIPS tracts that were irradiated with (166)Ho (5/5, 100%), whereas either completely (5/6, 83.3%) or partially (1/6, 16.7%) occluded TIPS were seen in the seven pigs of the nonirradiated control group, except in one pig that experienced periprocedural death due to bleeding. Histological analysis showed a statistically significant difference for the maximal PIH (irradiated: 32.8%, nonirradiated: 76.0%, p < 0.001) between the two groups. CONCLUSION Intraluminal irradiation with 30 Gy of (166)Ho for TIPS significantly improved the TIPS patency in a swine model of portal hypertension during a 2-week period of follow-up.
Collapse
Affiliation(s)
- Ji Seon Park
- Department of Diagnostic Radiology, Kyung Hee University Medical Center, Seoul 130-702, Korea
| | - Joo Hyeong Oh
- Department of Diagnostic Radiology, Kyung Hee University Medical Center, Seoul 130-702, Korea
| | - Deog Yoon Kim
- Department of Nuclear Medicine, Kyung Hee University Medical Center, Seoul 130-702, Korea
| | - Yong Koo Park
- Department of Pathology, Kyung Hee University Medical Center, Seoul 130-702, Korea
| | - Sang Joon Park
- Department of Diagnostic Radiology, Kang Dong Sacred Heart Hospital, Hallym University, Seoul 134-010, Korea
| | - Soo Joong Kim
- Department of Cardiology, Kyung Hee University Medical Center, Seoul 130-702, Korea
| |
Collapse
|
5
|
Preclinical restenosis models and drug-eluting stents: still important, still much to learn. J Am Coll Cardiol 2004; 44:1373-85. [PMID: 15464316 DOI: 10.1016/j.jacc.2004.04.060] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 03/28/2004] [Accepted: 04/06/2004] [Indexed: 11/30/2022]
Abstract
Percutaneous coronary intervention continues to revolutionize the treatment of coronary atherosclerosis. Restenosis remains a significant problem but may at last be yielding to technologic advances. The examination of neointimal hyperplasia in injured animal artery models has helped in our understanding of angioplasty and stenting mechanisms, and as drug-eluting stent (DES) technologies have arrived, they too have been advanced through the study of animal models. These models are useful for predicting adverse clinical outcomes in patients with DESs because suboptimal animal model studies typically lead to problematic human trials. Similarly, stent thrombosis in animal models suggests stent thrombogenicity in human patients. Equivocal animal model results at six or nine months occasionally have been mirrored by excellent clinical outcomes in patients. The causes of such disparities are unclear but may result from differing methods, including less injury severity than originally described in the models. Ongoing research into animal models will reconcile apparent differences with clinical trials and advance our understanding of how to apply animal models to clinical stenting in the era of DESs.
Collapse
|
6
|
Kim W, Jeong MH, Kim SH, Park WS, Park OY, Kim JH, Bom HS, Jeong HJ, Ahn YK, Cho JG, Park JC, Kang JC. A novel method of brachytherapy using local delivery of 99mTc-HMPAO for coronary stent restenosis. Korean J Intern Med 2004; 19:179-88. [PMID: 15481610 PMCID: PMC4531558 DOI: 10.3904/kjim.2004.19.3.179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Restenosis after percutaneous coronary intervention (PCI) is a matter that still remains to be resolved. Herein, the inhibitory effect of locally delivered 99mTc-HMPAO (hexamethyl propylene amine oxime) on neointimal hyperplasia after coronary stenting was examined in a pocine model, and its safety and efficacy observed in patients with coronary stent restenosis. METHODS After a stent overdilation injury, local radioisotope delivery using 99mTc-HMPAO was applied to one coronary artery (Group I) and control therapy to another (Group II) in each of 10 pigs. Follow-up coronary angiogram (CAG) and histopathologic assessment were performed 4 weeks after stenting. Eleven patients (10 males and one female, 62.4 +/- 5.7 years of age) underwent local administration of 30 mCi/ 2 mL 99mTc-HMPAO shortly after PCI, via a Dispatch Catheter, followed by a whole body scan to evaluate the distribution of the 99mTc-HMPAO, as well as a thallium-201 (TI-201) myocardial scan to evaluate myocardial perfusion. The major adverse cardiac events (MACE) were assessed during a one-year clinical follow-up. RESULTS On histopathological analysis, the neointimal areas were 1.2 +/- 0.6 and 2.7 +/- 0.4 mm2 (p=0.002), and the histopathological areas of stenosis were 27.16.3 and 53.4 +/- 5.2% in Groups I and II (p=0.001), respectively. In the clinical study, there was no in-hospital MACE. On a quantitative coronary angiographic analysis, the minimal luminal diameter was increased from 0.4 +/- 0.3 to 2.9 +/- 0.2 mm, and diameter stenosis decreased from 84.2 +/- 9.5 to 16.3 +/- 11.0% following PCI. Follow-up CAG was performed in 9 cases (81.8%) and restenosis occurred in 2 (22.2%). On a follow-up CAG, the minimal luminal diameter, diameter stenosis rate, lumen loss and loss index were 2.0 +/- 0.8 mm, 27.7 +/- 2.9%, 0.7 +/- 0.7 mm and 0.2 +/- 0.3, respectively. During the one-year clinical follow-up there were no cases of death or acute MI, but two cases of target vessel revascularization (18.2%). CONCLUSION Local delivery of 99mTc-HMPAO, a novel radiotherapy, can be used safely and effectively for coronary stent restenosis.
Collapse
Affiliation(s)
| | - Myung Ho Jeong
- The Chonnam National University Research Institute of Medical Sciences, Gwangju, Korea
- Correspondence to: Myung Ho Jeong, MD, PhD, FACC, FESC, FSCAI, Chief of Cardiovascular Medicine, Director of Cardiac Catheterization Laboratory, Chonnam National University Hospital, 8 Hak Dong, Dong Ku, Gwang Ju, 501-757, Korea Tel: 82-62-220-6243, Fax: 82-62-228-7174, E-mail:
| | | | | | | | | | - Hee-Seung Bom
- The Heart Center, Department of Nuclear Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Hwan Jung Jeong
- Department of Nuclear Medicine, Wongwang University Hospital, Iksan, Korea
| | | | - Jeong Gwan Cho
- The Chonnam National University Research Institute of Medical Sciences, Gwangju, Korea
| | - Jong Chun Park
- The Chonnam National University Research Institute of Medical Sciences, Gwangju, Korea
| | - Jung Chaee Kang
- The Chonnam National University Research Institute of Medical Sciences, Gwangju, Korea
| |
Collapse
|
7
|
|