1
|
Liu T, Hao Y, Zhang Z, Zhou H, Peng S, Zhang D, Li K, Chen Y, Chen M. Advanced Cardiac Patches for the Treatment of Myocardial Infarction. Circulation 2024; 149:2002-2020. [PMID: 38885303 PMCID: PMC11191561 DOI: 10.1161/circulationaha.123.067097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Myocardial infarction is a cardiovascular disease characterized by a high incidence rate and mortality. It leads to various cardiac pathophysiological changes, including ischemia/reperfusion injury, inflammation, fibrosis, and ventricular remodeling, which ultimately result in heart failure and pose a significant threat to global health. Although clinical reperfusion therapies and conventional pharmacological interventions improve emergency survival rates and short-term prognoses, they are still limited in providing long-lasting improvements in cardiac function or reversing pathological progression. Recently, cardiac patches have gained considerable attention as a promising therapy for myocardial infarction. These patches consist of scaffolds or loaded therapeutic agents that provide mechanical reinforcement, synchronous electrical conduction, and localized delivery within the infarct zone to promote cardiac restoration. This review elucidates the pathophysiological progression from myocardial infarction to heart failure, highlighting therapeutic targets and various cardiac patches. The review considers the primary scaffold materials, including synthetic, natural, and conductive materials, and the prevalent fabrication techniques and optimal properties of the patch, as well as advanced delivery strategies. Last, the current limitations and prospects of cardiac patch research are considered, with the goal of shedding light on innovative products poised for clinical application.
Collapse
Affiliation(s)
- Tailuo Liu
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases (T.L., Y.H., H.Z., S.P., D.Z., Y.C., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, PR China (T.L., K.L., Y.C.)
| | - Ying Hao
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases (T.L., Y.H., H.Z., S.P., D.Z., Y.C., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Zixuan Zhang
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, PR China (Z.Z.)
| | - Hao Zhou
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases (T.L., Y.H., H.Z., S.P., D.Z., Y.C., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Shiqin Peng
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Dingyi Zhang
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Ka Li
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, PR China (T.L., K.L., Y.C.)
| | - Yuwen Chen
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, PR China (T.L., K.L., Y.C.)
| | - Mao Chen
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| |
Collapse
|
2
|
Morita M, Suyama Y, Notsu T, Fukuoka K, Ikuta K, Kanayama H, Umeda R, Teraoka S, Minato H, Ninomiya H, Tsuneto M, Shirayoshi Y, Hisatome I, Yagi S. Effects of Conditioned Medium of Adipose-Derived Stem Cells Exposed to Platelet-Rich Plasma on the Expression of Endothelial Nitric Oxide Synthase and Angiogenesis by Endothelial Cells. Ann Plast Surg 2023; 90:171-179. [PMID: 36688861 PMCID: PMC9869946 DOI: 10.1097/sap.0000000000003368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/26/2022] [Indexed: 01/24/2023]
Abstract
ABSTRACT Platelet-rich plasma (PRP) and adipose-derived stem cells (ADSCs) are known to secrete angiogenic factors that contribute to the treatment of intractable ulcers. The combination of PRP and ADSCs may enhance their angiogenic effects. However, it remains unclear whether treatment of ADSCs with PRP influences angiogenesis. We studied whether the conditioned medium from PRP-treated ADSCs under hypoxic conditions exerts angiogenic effects. Although PRP stimulated the proliferation of ADSCs obtained from rats, it decreased the mRNA levels of vascular endothelial growth factor, hepatocyte growth factor, and TGF-β1, but not of basic fibroblast growth factor, under hypoxia. The conditioned medium of PRP-treated ADSCs inhibited endothelial nitric oxide synthase phosphorylation, decreased NO production, and suppressed tube formation in human umbilical vein endothelial cells. Transplantation of ADSCs alone increased both blood flow and capillary density of the ischemic limb; however, its combination with PRP did not further improve blood flow or capillary density. This suggests that both conditioned medium of ADSCs treated with PRP and combination of PRP with ADSCs transplantation may attenuate the phosphorylation of endothelial nitric oxide synthase and angiogenesis.
Collapse
Affiliation(s)
- Maki Morita
- From the Departments of Plastic and Reconstructive Surgery
| | - Yoshiko Suyama
- From the Departments of Plastic and Reconstructive Surgery
| | | | - Kohei Fukuoka
- From the Departments of Plastic and Reconstructive Surgery
| | - Kento Ikuta
- From the Departments of Plastic and Reconstructive Surgery
| | | | | | | | | | | | | | | | - Ichiro Hisatome
- Genomic Medicine and Regenerative Therapy
- Department of Cardiology, Yonago Medical Center, Yonago, Japan
| | - Shunjiro Yagi
- From the Departments of Plastic and Reconstructive Surgery
| |
Collapse
|
3
|
Horie H, Hisatome I, Kurata Y, Yamamoto Y, Notsu T, Adachi M, Li P, Kuwabara M, Sakaguchi T, Kinugasa Y, Miake J, Koba S, Tsuneto M, Shirayoshi Y, Ninomiya H, Ito S, Kitakaze M, Yamamoto K, Yoshikawa Y, Nishimura M. α1-Adrenergic receptor mediates adipose-derived stem cell sheet-induced protection against chronic heart failure after myocardial infarction in rats. Hypertens Res 2021; 45:283-291. [PMID: 34853408 DOI: 10.1038/s41440-021-00802-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/08/2021] [Accepted: 10/15/2021] [Indexed: 11/09/2022]
Abstract
Cell-based therapy using adipose-derived stem cells (ADSCs) has emerged as a novel therapeutic approach to treat heart failure after myocardial infarction (MI). The purpose of this study was to determine whether inhibition of α1-adrenergic receptors (α1-ARs) in ADSCs attenuates ADSC sheet-induced improvements in cardiac functions and inhibition of remodeling after MI. ADSCs were isolated from fat tissues of Lewis rats. In in vitro studies using cultured ADSCs, we determined the mRNA levels of vascular endothelial growth factor (VEGF)-A and α1-AR under normoxia or hypoxia and the effects of norepinephrine and an α1-blocker, doxazosin, on the mRNA levels of angiogenic factors. Hypoxia increased α1-AR and VEGF mRNA levels in ADSCs. Norepinephrine further increased VEGF mRNA expression under hypoxia; this effect was abolished by doxazosin. Tube formation of human umbilical vein endothelial cells was promoted by conditioned media of ADSCs treated with the α1 stimulant phenylephrine under hypoxia but not by those of ADSCs pretreated with phenylephrine plus doxazosin. In in vivo studies using rats with MI, transplanted ADSC sheets improved cardiac functions, facilitated neovascularization, and suppressed fibrosis after MI. These effects were abolished by doxazosin treatment. Pathway analysis from RNA sequencing data predicted significant upregulation of α1-AR mRNA expression in transplanted ADSC sheets and the involvement of α1-ARs in angiogenesis through VEGF. In conclusion, doxazosin abolished the beneficial effects of ADSC sheets on rat MI hearts as well as the enhancing effect of norepinephrine on VEGF expression in ADSCs, indicating that ADSC sheets promote angiogenesis and prevent cardiac dysfunction and remodeling after MI via their α1-ARs.
Collapse
Affiliation(s)
- Hiromu Horie
- Division of Cardiovascular Surgery, Department of Surgery, Tottori University Faculty of Medicine, Yonago, Japan
| | - Ichiro Hisatome
- Division of Regenerative Medicine and Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, Uchinada, Japan.
| | - Yasutaka Yamamoto
- Division of Regenerative Medicine and Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Tomomi Notsu
- Division of Regenerative Medicine and Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Maaya Adachi
- Division of Regenerative Medicine and Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Peili Li
- Division of Regenerative Medicine and Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Masanari Kuwabara
- Intensive Care Unit and Department of Cardiology, Toranomon Hospital, Tokyo, Japan
| | - Takuki Sakaguchi
- Division of Medical Education, Department of Medical Education, Tottori University Faculty of Medicine, Yonago, Japan
| | - Yoshiharu Kinugasa
- Division of Cardiovascular Medicine, Department of Molecular Medicine and Therapeutics, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Junichiro Miake
- Department of Pharmacology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Satoshi Koba
- Division of Integrative Physiology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Motokazu Tsuneto
- Division of Regenerative Medicine and Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Yasuaki Shirayoshi
- Division of Regenerative Medicine and Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Haruaki Ninomiya
- Department of Biological Regulation, Tottori University Faculty of Medicine, Yonago, Japan
| | - Shin Ito
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, Suita, Japan
| | | | - Kazuhiro Yamamoto
- Division of Cardiovascular Medicine, Department of Molecular Medicine and Therapeutics, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yasushi Yoshikawa
- Division of Cardiovascular Surgery, Department of Surgery, Tottori University Faculty of Medicine, Yonago, Japan
| | - Motonobu Nishimura
- Division of Cardiovascular Surgery, Department of Surgery, Tottori University Faculty of Medicine, Yonago, Japan
| |
Collapse
|
4
|
Watanabe M, Horie H, Kurata Y, Inoue Y, Notsu T, Wakimizu T, Adachi M, Yamamoto K, Morikawa K, Kuwabara M, Sakaguchi T, Morisaki T, Miake J, Nishimura M, Tsuneto M, Shirayoshi Y, Ito S, Kitakaze M, Ninomiya H, Yamamoto K, Hisatome I. Esm1 and Stc1 as Angiogenic Factors Responsible for Protective Actions of Adipose-Derived Stem Cell Sheets on Chronic Heart Failure After Rat Myocardial Infarction. Circ J 2021; 85:657-666. [PMID: 33716265 DOI: 10.1253/circj.cj-20-0877] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Although adipose-derived stem cell (ADSC) sheets improve the cardiac function after myocardial infarction (MI), underlying mechanisms remain to be elucidated. The aim of this study was to determine the fate of transplanted ADSC sheets and candidate angiogenic factors released from ADSCs for their cardiac protective actions. METHODS AND RESULTS MI was induced by ligation of the left anterior descending coronary artery. Sheets of transgenic (Tg)-ADSCs expressing green fluorescence protein (GFP) and luciferase or wild-type (WT)-ADSCs were transplanted 1 week after MI. Both WT- and Tg-ADSC sheets improved cardiac functions evaluated by echocardiography at 3 and 5 weeks after MI. Histological examination at 5 weeks after MI demonstrated that either sheet suppressed fibrosis and increased vasculogenesis. Luciferase signals from Tg-ADSC sheets were detected at 1 and 2 weeks, but not at 4 weeks, after transplantation. RNA sequencing of PKH (yellow-orange fluorescent dye with long aliphatic tails)-labeled Tg-ADSCs identified mRNAs of 4 molecules related to angiogenesis, including those of Esm1 and Stc1 that increased under hypoxia. Administration of Esm1 or Stc1 promoted tube formation by human umbilical vein endothelial cells. CONCLUSIONS ADSC sheets improved cardiac contractile functions after MI by suppressing cardiac fibrosis and enhancing neovascularization. Transplanted ADSCs existed for >2 weeks on MI hearts and produced the angiogenic factors Esm1 and Stc1, which may improve cardiac functions after MI.
Collapse
Affiliation(s)
- Mai Watanabe
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Hiromu Horie
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | | | - Yumiko Inoue
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Tomomi Notsu
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Takayuki Wakimizu
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Maya Adachi
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Kenshiro Yamamoto
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Kumi Morikawa
- Biomaterials Research Group, Department of Life Science and Biotechnology, Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology
| | - Masanari Kuwabara
- Intensive Care Unit and Department of Cardiology, Toranomon Hospital
| | - Takuki Sakaguchi
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Tottori University Faculty of Medicine
| | - Takayuki Morisaki
- Division of Molecular Pathology/Department of Internal Medicine IMSUT Hospital, The Institute of Medical Science, The University of Tokyo
| | - Junichiro Miake
- Department of Pharmacology, Tottori University Faculty of Medicine
| | - Motonobu Nishimura
- Division of Cardiovascular Surgery, Department of Surgery, Tottori University Faculty of Medicine
| | - Motokazu Tsuneto
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Yasuaki Shirayoshi
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Shin Ito
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center
| | | | - Haruaki Ninomiya
- Department of Biological Regulation, Tottori University Faculty of Medicine
| | - Kazuhiro Yamamoto
- Division of Cardiovascular Medicine, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine
| | - Ichiro Hisatome
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| |
Collapse
|
5
|
Neurohumoral, cardiac and inflammatory markers in the evaluation of heart failure severity and progression. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2021; 18:47-66. [PMID: 33613659 PMCID: PMC7868913 DOI: 10.11909/j.issn.1671-5411.2021.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Heart failure is common in adult population, accounting for substantial morbidity and mortality worldwide. The main risk factors for heart failure are coronary artery disease, hypertension, obesity, diabetes mellitus, chronic pulmonary diseases, family history of cardiovascular diseases, cardiotoxic therapy. The main factor associated with poor outcome of these patients is constant progression of heart failure. In the current review we present evidence on the role of established and candidate neurohumoral biomarkers for heart failure progression management and diagnostics. A growing number of biomarkers have been proposed as potentially useful in heart failure patients, but not one of them still resembles the characteristics of the “ideal biomarker.” A single marker will hardly perform well for screening, diagnostic, prognostic, and therapeutic management purposes. Moreover, the pathophysiological and clinical significance of biomarkers may depend on the presentation, stage, and severity of the disease. The authors cover main classification of heart failure phenotypes, based on the measurement of left ventricular ejection fraction, including heart failure with preserved ejection fraction, heart failure with reduced ejection fraction, and the recently proposed category heart failure with mid-range ejection fraction. One could envisage specific sets of biomarker with different performances in heart failure progression with different left ventricular ejection fraction especially as concerns prediction of the future course of the disease and of left ventricular adverse/reverse remodeling. This article is intended to provide an overview of basic and additional mechanisms of heart failure progression will contribute to a more comprehensive knowledge of the disease pathogenesis.
Collapse
|
6
|
AphaMax ®, an Aphanizomenon Flos-Aquae Aqueous Extract, Exerts Intestinal Protective Effects in Experimental Colitis in Rats. Nutrients 2020; 12:nu12123635. [PMID: 33256017 PMCID: PMC7760929 DOI: 10.3390/nu12123635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/13/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Aphanizomenon flos-aquae (AFA) is a unicellular cyanobacterium considered to be a "superfood" for its complete nutritional profile and beneficial properties. We investigated possible beneficial effects of an AFA extract, commercialized as AphaMax®, containing concentrated amount of phycocyanins and phytochrome, in 2,4 dinitrobenzensulfonic acid(DNBS)-induced colitis in rats. METHODS Effects of preventive oral treatment of AphaMax® (20, 50 or 100 mg/kg/day) in colitic rats were assessed and then macroscopic and microscopic analyses were performed to evaluate the inflammation degree. Myeloperoxidase (MPO) activity and NF-κB, pro-inflammatory citockines, cycloxygenase-2 (COX-2), and inducible NOS (iNOS) levels of expression were determined, as Reactive Oxygen Species (ROS) and nitrite levels. RESULTS AphaMax® treatment attenuated the severity of colitis ameliorating clinical signs. AphaMax® reduced the histological colonic damage and decreased MPO activity, NF-κB activation, as well as iNOS and COX-2 expression. AphaMax® treatment improved the altered immune response associated with colonic inflammation reducing IL-1β, IL-6 expression. Lastly, AphaMax® reduced oxidative stress, decreasing ROS and nitrite levels. CONCLUSIONS Preventive treatment with AphaMax® attenuates the severity of the inflammation in DNBS colitis rats involving decrease of the NF-kB activation, reduction of iNOS and COX-2 expression, and inhibition of oxidative stress. Due its anti-inflammatory and antioxidant proprieties AphaMax® could be a good candidate as a complementary drug in inflammatory bowel disease (IBD) treatment.
Collapse
|
7
|
Zhang J, Su Q, Loudon WG, Lee KL, Luo J, Dethlefs BA, Li SC. Breathing Signature as Vitality Score Index Created by Exercises of Qigong: Implications of Artificial Intelligence Tools Used in Traditional Chinese Medicine. J Funct Morphol Kinesiol 2019; 4:71. [PMID: 31853512 PMCID: PMC6919646 DOI: 10.3390/jfmk4040071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
Rising concerns about the short- and long-term detrimental consequences of administration of conventional pharmacopeia are fueling the search for alternative, complementary, personalized, and comprehensive approaches to human healthcare. Qigong, a form of Traditional Chinese Medicine, represents a viable alternative approach. Here, we started with the practical, philosophical, and psychological background of Ki (in Japanese) or Qi (in Chinese) and their relationship to Qigong theory and clinical application. Noting the drawbacks of the current state of Qigong clinic, herein we propose that to manage the unique aspects of the Eastern 'non-linearity' and 'holistic' approach, it needs to be integrated with the Western "linearity" "one-direction" approach. This is done through developing the concepts of "Qigong breathing signatures," which can define our life breathing patterns associated with diseases using machine learning technology. We predict that this can be achieved by establishing an artificial intelligence (AI)-Medicine training camp of databases, which will integrate Qigong-like breathing patterns with different pathologies unique to individuals. Such an integrated connection will allow the AI-Medicine algorithm to identify breathing patterns and guide medical intervention. This unique view of potentially connecting Eastern Medicine and Western Technology can further add a novel insight to our current understanding of both Western and Eastern medicine, thereby establishing a vitality score index (VSI) that can predict the outcomes of lifestyle behaviors and medical conditions.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Physical Training and Physical Therapy, Shenzhen University, 3688 Nanhai Avenue, Nanshan District, Shenzhen 518060, China
| | - Qingning Su
- Center of Bioengineering, School of Medicine, Shenzhen University, 3688 Nanhai Avenue, Nanshan District, Shenzhen 518060, China
| | - William G. Loudon
- Neuroscience Institute, Children’s Hospital of Orange County, Gamma Knife Center of Southern California, Department of Neurosurgery, University of California-Irvine School of Medicine, Orange, CA 92612, USA
| | - Katherine L. Lee
- School of Social Ecology, University of California-Irvine, 5300 Social and Behavioral Sciences Gateway, Irvine, CA 92697-7050, USA
| | - Jane Luo
- AB Sciex, Inc., Danaher Corporation, 250 South Kraemer Boulevard, Brea, CA 92821-6232, USA
| | - Brent A. Dethlefs
- CHOC Children’s Research Institute, Children’s Hospital of Orange County (CHOC), 1201 W. La Veta Ave., Orange, CA 92868-3874, USA
| | - Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory (NSCL), CHOC Children’s Research Institute (CCRI), Children’s Hospital of Orange County (CHOC), 1201 W. La Veta Ave., Orange, CA 92868-3874, USA
- Department of Neurology, University of California-Irvine (UCI) School of Medicine, 200 S Manchester Ave Ste 206, Orange, CA 92868, USA
| |
Collapse
|