1
|
The ROMP: A Powerful Approach to Synthesize Novel pH-Sensitive Nanoparticles for Tumor Therapy. Biomolecules 2019; 9:biom9020060. [PMID: 30759891 PMCID: PMC6406258 DOI: 10.3390/biom9020060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/19/2018] [Accepted: 02/11/2019] [Indexed: 01/07/2023] Open
Abstract
Fast clearance, metabolism, and systemic toxicity are major limits for the clinical use of anti-cancer drugs. Histone deacetylase inhibitors (HDACi) present these defects, despite displaying promising anti-tumor properties on tumor cells in vitro and in in vivo models of cancer. The specific delivery of anti-cancer drugs into the tumor should improve their clinical benefit by limiting systemic toxicity and by increasing the anti-tumor effect. This paper deals with the synthesis of the polymeric nanoparticle platform, which was produced by Ring-Opening Metathesis Polymerization (ROMP), able to release anti-cancer drugs in dispersion, such as histone deacetylase inhibitors, into mesothelioma tumors. The core-shell nanoparticles (NPs) have stealth properties due to their poly(ethylene oxide) shell and can be viewed as universal nano-carriers on which any alkyne-modified anti-cancer molecule can be grafted by click chemistry. A cleavage reaction of the chemical bond between NPs and drugs through the contact of NPs with a medium presenting an acidic pH, which is typically a cancer tumor environment or an acidic intracellular compartment, induces a controlled release of the bioactive molecule in its native form. In our in vivo syngeneic model of mesothelioma, a highly selective accumulation of the particles in the tumor was obtained. The release of the drugs led to an 80% reduction of tumor weight for the best compound without toxicity. Our work demonstrates that the use of theranostic nanovectors leads to an optimized delivery of epigenetic inhibitors in tumors, which improves their anti-tumor properties in vivo.
Collapse
|
2
|
Denis I, El Bahhaj F, Collette F, Delatouche R, Gueugnon F, Pouliquen D, Pichavant L, Héroguez V, Grégoire M, Bertrand P, Blanquart C. Vorinostat-polymer conjugate nanoparticles for Acid-responsive delivery and passive tumor targeting. Biomacromolecules 2014; 15:4534-43. [PMID: 25333409 DOI: 10.1021/bm501338r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In vivo histone deacetylase (HDAC) inhibition by vorinostat under clinically acceptable dosing is limited by its poor pharmacokinetics properties. A new type of nontoxic pH-responsive delivery system has been synthesized by ring-opening metathesis polymerization, allowing for the selective distribution of vorinostat in mesothelioma tumors in vivo and subsequent histone reacetylation. The delivery system is synthesized by generic click chemistry, possesses native stealth properties for passive tumor targeting, and does not need additional chemistry for cellular internalization. Although vorinostat alone at 50 mg/kg in mice showed no effect, our new delivery system with 2 mg/kg vorinostat promoted histone reacetylation in tumors without side effects, demonstrating that our strategy improves the activity of this HDAC inihibitor in vivo.
Collapse
Affiliation(s)
- Iza Denis
- Inserm, UMR 892 , Nantes F-44000, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Du R, Zhong T, Zhang WQ, Song P, Song WD, Zhao Y, Wang C, Tang YQ, Zhang X, Zhang Q. Antitumor effect of iRGD-modified liposomes containing conjugated linoleic acid-paclitaxel (CLA-PTX) on B16-F10 melanoma. Int J Nanomedicine 2014; 9:3091-105. [PMID: 25028548 PMCID: PMC4077607 DOI: 10.2147/ijn.s65664] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In the present study, we prepared a novel delivery system of iRGD (CRGDK/RGPD/EC)-modified sterically stabilized liposomes (SSLs) containing conjugated linoleic acid–paclitaxel (CLA-PTX). The anti-tumor effect of iRGD-SSL-CLA-PTX was investigated on B16-F10 melanoma in vitro and in vivo. The in vitro targeting effect of iRGD-modified SSLs was investigated in a real-time confocal microscopic analysis experiment. An endocytosis-inhibition assay was used to evaluate the endocytosis pathways of the iRGD-modified SSLs. In addition, the in vitro cellular uptake and in vitro cytotoxicity of iRGD-SSL-CLA-PTX were evaluated in B16-F10 melanoma cells. In vivo biodistribution and in vivo antitumor effects of iRGD-SSL-CLA-PTX were investigated in B16-F10 tumor-bearing mice. The induction of apoptosis by iRGD-SSL-CLA-PTX was evaluated in tumor-tissue sections. Real-time confocal microscopic analysis results indicated that the iRGD-modified SSLs internalized into B16-F10 cells faster than SSLs. The identified endocytosis pathway of iRGD-modified SSLs indicated that energy- and lipid raft-mediated endocytosis played a key role in the liposomes’ cellular uptake. The results of the cellular uptake experiment indicated that the increased cellular uptake of CLA-PTX in the iRGD-SSL-CLA-PTX-treated group was 1.9-, 2.4-, or 2.1-fold compared with that in the CLA-PTX group after a 2-, 4-, or 6-hour incubation, respectively. In the biodistribution test, the CLA-PTX level in tumor tissues from iRGD-SSL-CLA-PTX-treated mice at 1 hour (1.84±0.17 μg/g) and 4 hours (1.17±0.28 μg/g) was 2.3- and 2.0-fold higher than that of CLA-PTX solution at 1 hour (0.79±0.06 μg/g) and 4 hours (0.58±0.04 μg/g). The value of the area under the curve for the first 24 hours in the tumors of iRGD-SSL-CLA-PTX-treated mice was significantly higher than that in the SSL-CLA-PTX and CLA-PTX solution-treated groups (P<0.01). The in vivo antitumor results indicated that iRGD-SSL-CLA-PTX significantly inhibited the growth of B16-F10 tumors compared with the SSL-CLA-PTX or CLA-PTX solution-treatment groups (P<0.01). The results of tumor-cell apoptosis showed that tumors from the iRGD-SSL-CLA-PTX-treated group exhibited more advanced cell apoptosis compared with the control, CLA-PTX solution-, and SSL-CLA-PTX-treated groups. In conclusion, the antitumor effect of iRGD-SSL-CLA-PTX was confirmed on B16-F10 melanoma in vitro and in vivo.
Collapse
Affiliation(s)
- Ruo Du
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Ting Zhong
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Wei-Qiang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Ping Song
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Wen-Ding Song
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Yang Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Chao Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Yi-Qun Tang
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xuan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing ; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Qiang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing ; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing
| |
Collapse
|