1
|
Song M, Yan R, Zhang Y, Guo D, Zhou N, Deng X. Design, synthesis, and anticonvulsant effects evaluation of nonimidazole histamine H 3 receptor antagonists/inverse agonists containing triazole moiety. J Enzyme Inhib Med Chem 2021; 35:1310-1321. [PMID: 32529860 PMCID: PMC7717691 DOI: 10.1080/14756366.2020.1774573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Histamine H3 receptors (H3R) antagonists/inverse agonists are becoming a promising therapeutic approach for epilepsy. In this article, novel nonimidazole H3R antagonists/inverse agonists have been designed and synthesised via hybriding the H3R pharmacophore (aliphatic amine with propyloxy chain) with the 1,2,4-triazole moiety as anticonvulsant drugs. The majority of antagonists/inverse agonists prepared here exerted moderate to robust activities in cAMP-response element (CRE) luciferase screening assay. 1-(3-(4-(3-Phenyl-4H-1,2,4-triazol-4-yl)phenoxy)propyl)piperidine (3l) and 1-(3-(4-(3-(4-chlorophenyl)-4H-1,2,4-triazol-4-yl)phenoxy)propyl)piperidine (3m) displayed the highest H3R antagonistic activities, with IC50 values of 7.81 and 5.92 nM, respectively. Meanwhile, the compounds with higher H3R antagonistic activities exhibited protection for mice in maximal electroshock seizure (MES)-induced convulsant model. Moreover, the protection of 3m against the MES induced seizures was fully abrogated when mice were co-treated with RAMH, a CNS-penetrant H3R agonist, which suggested that the potential therapeutic effect of 3m was through H3R. These results indicate that the attempt to find new anticonvulsant among H3R antagonists/inverse agonists is practicable.
Collapse
Affiliation(s)
- Mingxia Song
- Medical College, Jinggangshan University, Ji'an, China
| | - Rui Yan
- Medical College, Jinggangshan University, Ji'an, China
| | - Yanhui Zhang
- Medical College, Jinggangshan University, Ji'an, China
| | - Dongfu Guo
- Medical College, Jinggangshan University, Ji'an, China
| | - Naiming Zhou
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - XianQing Deng
- Medical College, Jinggangshan University, Ji'an, China
| |
Collapse
|
2
|
Kamei C. [Effects of Histamine and Related Compounds on the Central Nervous System]. YAKUGAKU ZASSHI 2021; 141:93-110. [PMID: 33390452 DOI: 10.1248/yakushi.20-00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There has been little information about the role of histamine on the central nervous system (CNS), different from dopamine and serotonin. In the present study, therefore, the effects of histamine and related compounds on the CNS were studied using rats. Intracerebroventricular (i.c.v.) injection of histamine and 2-methylhistamine ameliorated memory deficit after long interrution of learning in active avoidance response. First generation H1-antagonists inhibited active avoidance response, whereas newly develpoed H1-antagonists showed little effect. α-Fluoromethylhistidine, an histidine decarboxylase inhibitor, also inhibited active avoidance response. In radial maze performance, almost the same findings were obtained. I.c.v. injection of histamine and H1-agonists inhibited amygdaloid kindled seizures. First generation H1-antagonists attenuated histamine-induced inhibition of amygdaloid kindled seizures. Both i.c.v. and intraperitoneal injections of H3-antagonist, thioperamide, resulted in a dose-related inhibition of amygdaloid kindled seizures. The effect of thioperamide was inhibited by an H3-agonists and H1-antagonists. Similar to nitrazepam, diphenhydramine and chlorpheniramine caused a shortening of sleep latency. On the other hand, no significant effects were observed with second generation H1-antagonists. These findings suggest that histamine plays an important role in learning and memory via H1-receptors, an inhibition of amygdaloid kindled seizures induced by histamine occurred through not only H1-receptors but also H3-receptors, and that classic H1-antagonists can be useful as a effective hypnotic for difficulty in falling asleep.
Collapse
Affiliation(s)
- Chiaki Kamei
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Yasuda Women's University.,Department of Medicinal Pharmacology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
3
|
Godlevsky LS, Shandra OO, Pervak MP, Shandra AA. Diazepam and electrical stimulation of paleocerebellar cortex inhibits seizures in pentylenetetrazol-kindled rats. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
Sadek B, Saad A, Sadeq A, Jalal F, Stark H. Histamine H3 receptor as a potential target for cognitive symptoms in neuropsychiatric diseases. Behav Brain Res 2016; 312:415-30. [PMID: 27363923 DOI: 10.1016/j.bbr.2016.06.051] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/22/2016] [Accepted: 06/26/2016] [Indexed: 01/27/2023]
Abstract
The potential contributions of the brain histaminergic system in neurodegenerative diseases, and the possiblity of histamine-targeting treatments is attracting considerable interests. The histamine H3 receptor (H3R) is expressed mainly in the central nervous system, and is, consequently, an attractive pharmacological target. Although recently described clinical trials have been disappointing in attention deficit hyperactivity disorder (ADHD) and schizophrenia (SCH), numerous H3R antagonists, including pitolisant, demonstrate potential in the treatment of narcolepsy, excessive daytime sleepiness associated with cognitive impairment, epilepsy, and Alzheimer's disease (AD). This review focuses on the recent preclinical as well as clinical results that support the relevance of H3R antagonists for the treatment of cognitive symptoms in neuropsychiatric diseases, namely AD, epilepsy and SCH. The review summarizes the role of histaminergic neurotransmission with focus on these brain disorders, as well as the effects of numerous H3R antagonists on animal models and humans.
Collapse
Affiliation(s)
- Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| | - Ali Saad
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Adel Sadeq
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain, United Arab Emirates
| | - Fakhreya Jalal
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitaetsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Bhowmik M, Khanam R, Vohora D. Histamine H3 receptor antagonists in relation to epilepsy and neurodegeneration: a systemic consideration of recent progress and perspectives. Br J Pharmacol 2012; 167:1398-414. [PMID: 22758607 PMCID: PMC3514756 DOI: 10.1111/j.1476-5381.2012.02093.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/03/2012] [Accepted: 06/12/2012] [Indexed: 12/22/2022] Open
Abstract
The central histaminergic actions are mediated by H(1) , H(2) , H(3) and H(4) receptors. The histamine H(3) receptor regulates the release of histamine and a number of other neurotransmitters and thereby plays a role in cognitive and homeostatic processes. Elevated histamine levels suppress seizure activities and appear to confer neuroprotection. The H(3) receptors have a number of enigmatic features like constitutive activity, interspecies variation, distinct ligand binding affinities and differential distribution of prototypic splice variants in the CNS. Furthermore, this Gi/Go-protein-coupled receptor modulates several intracellular signalling pathways whose involvement in epilepsy and neurotoxicity are yet to be ascertained and hence represent an attractive target in the search for new anti-epileptogenic drugs. So far, H(3) receptor antagonists/inverse agonists have garnered a great deal of interest in view of their promising therapeutic properties in various CNS disorders including epilepsy and related neurotoxicity. However, a number of experiments have yielded opposing effects. This article reviews recent works that have provided evidence for diverse mechanisms of antiepileptic and neuroprotective effects that were observed in various experimental models both in vitro and in vivo. The likely reasons for the apparent disparities arising from the literature are also discussed with the aim of establishing a more reliable basis for the future use of H(3) receptor antagonists, thus improving their utility in epilepsy and associated neurotoxicity.
Collapse
Affiliation(s)
- M Bhowmik
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, India
| | | | | |
Collapse
|
6
|
Uma Devi P, Manocha A, Khanam R, Vohora D. Beneficial interaction between clobenpropit and pyridoxine in prevention of electroshock-induced seizures in mice: lack of histaminergic mechanisms. Hum Exp Toxicol 2010; 30:84-8. [PMID: 20511290 DOI: 10.1177/0960327110372398] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Clobenpropit, an H( 3) receptor antagonist, has been reported to modulate both the release of neurotransmitters and also the activity of histidine decarboxylase (HDC). Therefore, a decarboxylase-positive modulator, namely pyridoxine, was taken for interaction studies with clobenpropit in the electroshock (ES) model of seizures in mice and subsequent changes in brain histamine levels were estimated. A significant inhibition of ES-induced seizures was seen after the simultaneous use of clobenpropit and pyridoxine. No significant effects were evident on the brain histamine levels following this combination. The combination of clobenpropit with pyridoxine appears to exhibit beneficial pharmacodynamic interaction for the prevention of ES-induced seizures, which might not be mediated by the histaminergic mechanisms.
Collapse
Affiliation(s)
- P Uma Devi
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | | | | | | |
Collapse
|
7
|
Watanabe Y, Kaida Y, Takechi K, Kamei C. Anticonvulsant Effect of (RS)-1-Aminoindan-1,5-dicarboxylic Acid on Pentetrazol-Induced Kindled Seizures in Mice. Biol Pharm Bull 2010; 33:647-52. [DOI: 10.1248/bpb.33.647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yusuke Watanabe
- Department of Medicinal Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Yuko Kaida
- Department of Medicinal Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Kenshi Takechi
- Department of Medicinal Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Chiaki Kamei
- Department of Medicinal Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| |
Collapse
|
8
|
Harada C, Fujii Y, Hirai T, Shinomiya K, Kamei C. Inhibitory effect of iodophenpropit, a selective histamine H3 antagonist, on amygdaloid kindled seizures. Brain Res Bull 2004; 63:143-6. [PMID: 15130703 DOI: 10.1016/j.brainresbull.2004.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Revised: 01/30/2004] [Accepted: 02/02/2004] [Indexed: 10/26/2022]
Abstract
The effect of histamine H(3) antagonist, iodophenpropit on amygdaloid kindled seizures in rats was studied in comparison with those of other H(3) antagonists. Under pentobarbital anesthesia, the rats were fixed to a stereotaxic apparatus and bipolar electrodes were implanted into the amygdala. Electrodes were connected to a miniature receptacle, which was embedded in the skull with dental cement. To cause kindled seizures, electrical stimulation was applied to the amygdala bipolarly every day by a constant current stimulator, and electroencephalogram and convulsive behavior were observed. Drug effects were estimated in rats showing generalized kindled seizures. Intraperitoneal injection of H(3) antagonists, iodophenpropit, thioperamide, AQ0145 and clobenpropit, resulted in a dose-related inhibition of amygdaloid kindled seizures. The effect of iodophenpropit on amygdaloid kindled seizures was more potent than those of thioperamide, AQ0145 and clobenpropit. In conclusion, iodophenpropit may be useful for the treatment of partial epilepsy and/or secondary generalized seizures in humans.
Collapse
Affiliation(s)
- Chie Harada
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | |
Collapse
|
9
|
Feng HJ, Naritoku DK, Randall ME, Faingold CL. Modulation of audiogenically kindled seizures by gamma-aminobutyric acid-related mechanisms in the amygdala. Exp Neurol 2001; 172:477-81. [PMID: 11716572 DOI: 10.1006/exnr.2001.7810] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Repetitive induction of audiogenic seizures (AGSs) ("AGS kindling") results in expansion of the AGS neuronal network from the brainstem to forebrain structures. AGSs in kindled genetically epilepsy-prone rats (GEPR-9s) exhibit a significant increase in the duration of posttonic clonus (PTC). The amygdala (AMG) does not appear to be a required network component before AGS kindling, but this structure is implicated in the seizure network after AGS kindling. gamma-Aminobutyric acid (GABA) is a major neurotransmitter in AMG, and histamine receptor activation is also reported to stimulate GABA release. The present study examined the effect on audiogenically kindled seizures of focal microinjections into the AMG of GEPR-9s. AGS kindling involved induction of 14 AGSs in GEPR-9s. Bilateral microinjection of a GABA(A) agonist, muscimol (0.3 nmol/side), into the AMG significantly reduced the duration of PTC, starting 0.5 h after drug infusion, with recovery by 24 h. Microinjection of histamine (60 nmol/side) suppressed PTC at 0.5 h, with total blockade at 24 h, but the seizure pattern did not revert to that observed before kindling until 120 h. This long duration suggests that mechanisms in addition to modulation of GABA function may be involved in the effect of histamine. The wild running and tonic components of AGS were never affected by microinjection of these agents into the AMG. These findings confirm previous work suggesting that the AMG is not a required nucleus in the AGS neuronal network before kindling. However, the AMG becomes critical in expansion of the seizure network during AGS kindling, and audiogenically kindled seizures are negatively modulated by increased GABA function.
Collapse
Affiliation(s)
- H J Feng
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62794, USA
| | | | | | | |
Collapse
|
10
|
Okuma C, Hirai T, Kamei C. Mechanism of the inhibitory effect of histamine on amygdaloid-kindled seizures in rats. Epilepsia 2001; 42:1494-500. [PMID: 11879358 DOI: 10.1046/j.1528-1157.2001.05601.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE The mechanism of the inhibitory effect of histamine on amygdaloid-kindled seizures was investigated in rats. METHODS Under pentobarbital anesthesia, rats were fixed to a stereotaxic apparatus, and bipolar electrodes were implanted into the right amygdala. A guide cannula made of stainless steel tubing was implanted into the right lateral ventricle. Electrodes were connected to a miniature receptacle, which was embedded in the skull with dental cement. EEG was recorded with an electroencephalograph; stimulation of the amygdala was applied bipolarly every day by a constant-current stimulator and continued until a generalized convulsion was obtained. RESULTS Intracerebroventricular (i.c.v.) injection of histamine at doses of 2-10 microg resulted in a dose-related inhibition of amygdaloid-kindled seizures. I.c.v. injection of calcium chloride at doses of 10-50 microg and A23187 at doses of 2-10 microg also caused dose-dependent inhibition of amygdaloid-kindled seizures. Calcium chloride at a dose of 10 microg, which showed no significant effect on amygdaloid-kindled seizures when used alone, significantly potentiated the effect of histamine. Similar findings were observed with A23187 at a dose of 2 microg. In addition, EGTA and EGTA/AM antagonized the inhibition of kindled seizures induced by histamine. Moreover, the inhibition of kindled seizures induced by histamine was antagonized by KN62. However, calphostin C did not antagonize the inhibitory effect of histamine. CONCLUSIONS These results indicated that histamine-induced inhibition of amygdaloid-kindled seizures may be closely associated with a calcium calmodulin-dependent protein kinase II activation pathway.
Collapse
Affiliation(s)
- C Okuma
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | | |
Collapse
|
11
|
Passani MB, Cangioli I, Baldi E, Bucherelli C, Mannaioni PF, Blandina P. Histamine H3 receptor-mediated impairment of contextual fear conditioning and in-vivo inhibition of cholinergic transmission in the rat basolateral amygdala. Eur J Neurosci 2001; 14:1522-32. [PMID: 11722614 DOI: 10.1046/j.0953-816x.2001.01780.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the effects of agents acting at histamine receptors on both, spontaneous release of ACh from the basolateral amygdala (BLA) of freely moving rats, and fear conditioning. Extensive evidence suggests that the effects of histamine on cognition might be explained by the modulation of cholinergic systems. Using the microdialysis technique in freely moving rats, we demonstrated that perfusion of the BLA with histaminergic compounds modulates the spontaneous release of ACh. The addition of 100 mm KCl to the perfusion medium strongly stimulated ACh release, whereas, 0.5 microm tetrodotoxin (TTX) inhibited spontaneous ACh release by more than 50%. Histaminergic H3 antagonists (ciproxifan, clobenpropit and thioperamide), directly administered to the BLA, decreased ACh spontaneous release, an effect fully antagonized by the simultaneous perfusion of the BLA with cimetidine, an H2 antagonist. Local administration of cimetidine alone increased ACh spontaneous release slightly, but significantly. Conversely, the administration of H1 antagonists failed to alter ACh spontaneous release. Rats receiving intra-BLA, bilateral injections of the H3 antagonists at doses similar to those inhibiting ACh spontaneous release, immediately after contextual fear conditioning, showed memory consolidation impairment of contextual fear conditioning. Post-training, bilateral injections of 50 microg scopolamine also had an adverse effect on memory retention. These observations provide the first evidence that histamine receptors are involved in the modulation of cholinergic tone in the amygdala and in the consolidation of fear conditioning.
Collapse
Affiliation(s)
- M B Passani
- Dipartimento di Farmacologia Preclinica e Clinica, V.le G. Pieraccini 6, Universitá di Firenze, 50139 Firenze, Italy.
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
The role of central histamine in amygdaloid kindled seizures in rats was studied. Histamine content in the amygdala was significantly decreased after development of amygdaloid kindling. Intracerebroventricular (i.c.v.) injection of histamine resulted in inhibition of amygdaloid kindled seizures. The H1-agonists 2-methylhistamine and 2-thiazolylethylamine also inhibited amygdaloid kindled seizures. In addition, intraperitoneal (i.p.) injection of histidine and metoprine inhibited amygdaloid kindled seizures at doses that caused increases in histamine contents of the brain. H1-antagonists (diphenhydramine and chlorpheniramine) attenuated histamine- or histidine-induced inhibition of amygdaloid kindled seizures. Both i.c.v. and i.p. injections of H3-antagonists (thioperamide, AQ0145 and clobenpropit) resulted in a dose-related inhibition of amygdaloid kindled seizures. The effects of thioperamide and AQ0145 were inhibited by an H3-agonist (R)-alpha-methylhistamine and H1-antagonists. On the other hand, H2-antagonists showed no antagonistic effect. GABAmimetic drugs, diazepam, sodium valproate and muscimol potentiated the effect of clobenpropit. Bicuculline caused significant antagonism of the inhibition of amygdaloid kindled seizures induced by clobenpropit. These findings suggested that a histaminergic mechanism plays an important role in suppressing amygdaloid kindled seizures through histamine H1-receptors. In addition, an inhibition of amygdaloid kindled seizures induced by histamine is closely related with the action of GABA.
Collapse
Affiliation(s)
- C Kamei
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | | |
Collapse
|