1
|
Shakib N, Khadem Ansari MH, Karimi P, Rasmi Y. Neuroprotective mechanism of low-dose sodium nitrite in oxygen-glucose deprivation model of cerebral ischemic stroke in PC12 cells. EXCLI JOURNAL 2019; 18:229-242. [PMID: 31217786 PMCID: PMC6558507 DOI: 10.17179/excli2018-1947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/26/2019] [Indexed: 01/29/2023]
Abstract
The purpose of this study was to clarify the mechanisms of the protective effects of low-dose sodium nitrite (SN) on oxygen and glucose deprivation (OGD)-induced endoplasmic reticulum (ER) stress in PC12 cells. The PC12 cells were exposed to 4 h of OGD and treated with 100 μmol SN. The expression and activity of ER stress markers, including PKR-like endoplasmic reticulum kinase (PERK), transcription factor 6 (ATF6), CCAAT/enhancer binding protein homologous protein (CHOP), as well as caspase-12 and -3, were detected by immunoblotting assay. Fluorescence staining was used to detect the levels of reactive oxygen species (ROS) and Ca2+ release from the ER. Cell viability was also evaluated by MTT assay. It was found that SN significantly inhibited ROS production and Ca2+ release from the ER in OGD-injured PC12 cells. Moreover, ER stress marker expression and cleaved fragments of caspase-3 and -12 in OGD-injured PC12 cells were decreased after SN treatment. These findings were accompanied by a significant increase in cell viability. It seems that SN exerts a neuroprotective effect at least partially through reduction of ROS-mediated ER stress caused by OGD insult.
Collapse
Affiliation(s)
- Nader Shakib
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Pouran Karimi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
2
|
Üçal M, Kraitsy K, Weidinger A, Paier-Pourani J, Patz S, Fink B, Molcanyi M, Schäfer U. Comprehensive Profiling of Modulation of Nitric Oxide Levels and Mitochondrial Activity in the Injured Brain: An Experimental Study Based on the Fluid Percussion Injury Model in Rats. J Neurotrauma 2017; 34:475-486. [DOI: 10.1089/neu.2016.4411] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Muammer Üçal
- Research Unit Experimental Neurotraumatology, Department of Neurosurgery, Medical University Graz, Graz, Austria
| | - Klaus Kraitsy
- Research Unit Experimental Neurotraumatology, Department of Neurosurgery, Medical University Graz, Graz, Austria
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Clinical and Experimental Traumatology, Vienna, Austria
| | - Jamile Paier-Pourani
- Ludwig Boltzmann Institute for Clinical and Experimental Traumatology, Vienna, Austria
| | - Silke Patz
- Research Unit Experimental Neurotraumatology, Department of Neurosurgery, Medical University Graz, Graz, Austria
| | - Bruno Fink
- NOXYGEN Science Transfer & Diagnostics GmbH, Elzach, Germany
| | - Marek Molcanyi
- Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Ute Schäfer
- Research Unit Experimental Neurotraumatology, Department of Neurosurgery, Medical University Graz, Graz, Austria
| |
Collapse
|
3
|
Kozlov AV, Bahrami S, Redl H, Szabo C. Alterations in nitric oxide homeostasis during traumatic brain injury. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2627-2632. [PMID: 28064018 DOI: 10.1016/j.bbadis.2016.12.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/20/2016] [Accepted: 12/27/2016] [Indexed: 12/17/2022]
Abstract
Changes in nitric oxide (NO) levels have been often associated with various forms of trauma, including secondary damage after traumatic brain injury (TBI). Several studies demonstrate the upregulation of NO synthase (NOS) enzymes, and concomitant increases in brain NO levels, which contribute to the TBI-associated glutamate cytotoxicity, including the pathogenesis of mitochondrial dysfunction. TBI is also associated with elevated NO levels in remote organs, indicating that TBI can induce systemic changes in NO regulation, which can be either beneficial or detrimental. Here we review the possible mechanisms responsible for changes in NO metabolism during TBI. Better understanding of the changes in NO homeostasis in TBI will be necessary to design rational therapeutic approaches for TBI. This article is part of a Special Issue entitled: Immune and Metabolic Alterations in Trauma and Sepsis edited by Dr. Raghavan Raju.
Collapse
Affiliation(s)
- Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
4
|
Nitric oxide compounds have different effects profiles on human articular chondrocyte metabolism. Arthritis Res Ther 2014; 15:R115. [PMID: 24025112 PMCID: PMC3978712 DOI: 10.1186/ar4295] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 06/09/2013] [Accepted: 09/11/2013] [Indexed: 01/27/2023] Open
Abstract
Introduction The pathogenesis of osteoarthritis (OA) is characterized by the production of high amounts of nitric oxide (NO), as a consequence of up-regulation of chondrocyte-inducible nitric oxide synthase (iNOS) induced by inflammatory cytokines. NO donors represent a powerful tool for studying the role of NO in the cartilage in vitro. There is no consensus about NO effects on articular cartilage in part because the differences between the NO donors available. The aim of this work is to compare the metabolic profile of traditional and new generation NO donors to see which one points out the osteoarthritic process in the best way. Methods Human healthy and OA chondrocytes were isolated from patients undergoing joint replacement surgery, and primary cultured. Cells were stimulated with NO donors (NOC-12 or SNP). NO production was evaluated by the Griess method, and apoptosis was quantified by flow cytometry. Mitochondrial function was evaluated by analysing respiratory chain enzyme complexes, citrate synthase (CS) activities by enzymatic assay, mitochondrial membrane potential (Δψm) by JC-1 using flow cytometry, and ATP levels were measured by luminescence assays. Glucose transport was measured as the uptake of 2-deoxy-[3H]glucose (2-[3H]DG). Statistical analysis was performed using the Mann-Whitney U test. Results NOC-12 liberates approximately ten times more NO2- than SNP, but the level of cell death induced was not as profound as that produced by SNP. Normal articular chondrocytes stimulated with NOC-12 had reduced activity from complexes I, III y IV, and the mitochondrial mass was increased in these cells. Deleterious effects on ΔΨm and ATP levels were more profound with SNP, and this NO donor was able to reduce 2-[3H]DG levels. Both NO donors had opposite effects on lactate release, SNP diminished the levels and NOC-12 lead to lactate accumulation. OA chondrocytes incorporate significantly more 2-[3H]DG than healthy cells. Conclusions These findings suggest that the new generation donors, specifically NOC-12, mimic the OA metabolic process much better than SNP. Previous results using SNP have to be considered prudently since most of the effects observed can be induced by the interactions of secondary products of NO.
Collapse
|
5
|
Kruczek C, Görg B, Keitel V, Bidmon HJ, Schliess F, Häussinger D. Ammonia increases nitric oxide, free Zn(2+), and metallothionein mRNA expression in cultured rat astrocytes. Biol Chem 2012; 392:1155-65. [PMID: 22050230 DOI: 10.1515/bc.2011.199] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ammonia is a major player in the pathogenesis of hepatic encephalopathy (HE) and affects astrocyte function by triggering a self-amplifying cycle between osmotic and oxidative stress. We recently demonstrated that hypoosmotic astrocyte swelling rapidly stimulates nitric oxide (NO) production and increases intracellular free Zn(2+) concentration ([Zn(2+)](i)). Here we report effects of ammonia on [Zn(2+)](i) homeostasis and NO synthesis. In cultured rat astrocytes, NH(4)Cl (5 mm) increased within 6 h both cytosolic and mitochondrial [Zn(2+)]. The [Zn(2+)](i) increase was transient and was mimicked by the nonmetabolizable CH(3)NH(3)Cl, and it was dependent on NO formation, as evidenced by the sensitivity toward the nitric oxide synthase inhibitor N(G)-monomethyl-l-arginine. The NH(4)Cl-induced NO formation was sensitive to the Ca(2+) chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester and increases in both NO and [Zn(2+)](i) were blocked by the N-methyl-d-aspartate receptor antagonist MK-801. The NH(4)Cl-triggered increase in [Zn(2+)](i) was followed by a Zn(2+)-dependent nuclear appearance of the metal response element-binding transcription factor and metallothionein messenger RNA (mRNA) induction. Metallothionein mRNA was also increased in vivo in rat cerebral cortex 6 h after an NH(4)Ac challenge. NH(4)Cl increased peripheral-type benzodiazepine receptor (PBR) protein expression, whereas PBR mRNA levels were decreased in a Zn(2+)-independent manner. The Zn(2+)-dependent upregulation of metallothionein following ammonia intoxication may reflect a cytoprotective response, whereas the increase in PBR expression may augment HE development.
Collapse
Affiliation(s)
- Carolin Kruczek
- University Clinic of Düsseldorf, Clinic for Gastroenterology, Hepatology and Infectiology, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
6
|
Kruczek C, Görg B, Keitel V, Bidmon HJ, Schliess F, Häussinger D. Ammonia increases nitric oxide, free Zn(2+), and metallothionein mRNA expression in cultured rat astrocytes. Biol Chem 2011. [PMID: 22050230 DOI: 10.1515/bc-2011-199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ammonia is a major player in the pathogenesis of hepatic encephalopathy (HE) and affects astrocyte function by triggering a self-amplifying cycle between osmotic and oxidative stress. We recently demonstrated that hypoosmotic astrocyte swelling rapidly stimulates nitric oxide (NO) production and increases intracellular free Zn(2+) concentration ([Zn(2+)](i)). Here we report effects of ammonia on [Zn(2+)](i) homeostasis and NO synthesis. In cultured rat astrocytes, NH(4)Cl (5 mm) increased within 6 h both cytosolic and mitochondrial [Zn(2+)]. The [Zn(2+)](i) increase was transient and was mimicked by the nonmetabolizable CH(3)NH(3)Cl, and it was dependent on NO formation, as evidenced by the sensitivity toward the nitric oxide synthase inhibitor N(G)-monomethyl-l-arginine. The NH(4)Cl-induced NO formation was sensitive to the Ca(2+) chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester and increases in both NO and [Zn(2+)](i) were blocked by the N-methyl-d-aspartate receptor antagonist MK-801. The NH(4)Cl-triggered increase in [Zn(2+)](i) was followed by a Zn(2+)-dependent nuclear appearance of the metal response element-binding transcription factor and metallothionein messenger RNA (mRNA) induction. Metallothionein mRNA was also increased in vivo in rat cerebral cortex 6 h after an NH(4)Ac challenge. NH(4)Cl increased peripheral-type benzodiazepine receptor (PBR) protein expression, whereas PBR mRNA levels were decreased in a Zn(2+)-independent manner. The Zn(2+)-dependent upregulation of metallothionein following ammonia intoxication may reflect a cytoprotective response, whereas the increase in PBR expression may augment HE development.
Collapse
Affiliation(s)
- Carolin Kruczek
- University Clinic of Düsseldorf, Clinic for Gastroenterology, Hepatology and Infectiology, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Abbas K, Breton J, Planson AG, Bouton C, Bignon J, Seguin C, Riquier S, Toledano MB, Drapier JC. Nitric oxide activates an Nrf2/sulfiredoxin antioxidant pathway in macrophages. Free Radic Biol Med 2011; 51:107-14. [PMID: 21466852 DOI: 10.1016/j.freeradbiomed.2011.03.039] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 03/29/2011] [Accepted: 03/29/2011] [Indexed: 12/14/2022]
Abstract
Peroxiredoxins (Prx's) are a family of peroxidases that maintain thiol homeostasis by catalyzing the reduction of organic hydroperoxides, H₂O₂, and peroxynitrite. Under conditions of oxidative stress, eukaryotic Prx's can be inactivated by the substrate-dependent oxidation of the catalytic cysteine to sulfinic acid, which may regulate the intracellular messenger function of H₂O₂. A small redox protein, sulfiredoxin (Srx), conserved only in eukaryotes, has been shown to reduce sulfinylated 2-Cys Prx's, adding to the complexity of the H₂O₂ signaling network. In this study, we addressed the regulation of Srx expression in immunostimulated primary macrophages that produce both reactive oxygen species (ROS) and nitric oxide (NO(•)). We present genetic evidence that NO-mediated Srx up-regulation is mediated by the transcription factor nuclear factor erythroid 2-related factor (Nrf2). We also show that the NO(•)/Srx pathway inhibits generation of ROS. These results reveal a link between innate immunity and H₂O₂ signaling. We propose that an NO(•)/Nrf2/Srx pathway participates in the maintenance of redox homeostasis in cytokine-activated macrophages and other inflammatory settings.
Collapse
Affiliation(s)
- Kahina Abbas
- Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Centre de Recherche de Gif, 91190 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Nitric oxide and neuronal death. Nitric Oxide 2010; 23:153-65. [DOI: 10.1016/j.niox.2010.06.001] [Citation(s) in RCA: 280] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 06/04/2010] [Accepted: 06/07/2010] [Indexed: 12/14/2022]
|
9
|
Kitao T, Takuma K, Kawasaki T, Inoue Y, Ikehara A, Nashida T, Ago Y, Matsuda T. The Na+/Ca2+ exchanger-mediated Ca2+ influx triggers nitric oxide-induced cytotoxicity in cultured astrocytes. Neurochem Int 2010; 57:58-66. [PMID: 20447431 DOI: 10.1016/j.neuint.2010.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 04/13/2010] [Accepted: 04/20/2010] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) is involved in many pathological conditions including neurodegenerative disorders. We have previously found that sodium nitroprusside (SNP), an NO donor, stimulates mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulating kinase (ERK), c-jun N-terminal protein kinase (JNK) and p38 MAPK, leading to caspase-independent apoptosis in cultured astrocytes. In view of the previous observation that NO stimulates the activity of the Na(+)/Ca(2+) exchanger (NCX), this study examines the involvement of NCX in cytotoxicity. The specific NCX inhibitor SEA0400 blocked SNP-induced phosphorylation of ERK, JNK and p38 MAPK, and decrease in cell viability. SNP-induced phosphorylation of ERK, JNK and p38 MAPK was blocked by removal of external Ca(2+), and SNP treatment caused an increase in (45)Ca(2+) influx. This increase in (45)Ca(2+) influx was blocked by SEA0400, but not the Ca(2+) channel blocker nifedipine. In addition, SNP-induced (45)Ca(2+) influx and cytotoxicity were reduced in NCX1-deficient cells which were transfected with NCX1 siRNA. Inhibitors of intracellular Ca(2+)-dependent proteins such as calpain and calmodulin blocked SNP-induced ERK phosphorylation and decrease in cell viability. Furthermore, the guanylate cyclase inhibitor LY83583 and the cGMP-dependent protein kinase inhibitor KT5823 blocked SNP-induced cytotoxicity. These findings suggest that NCX-mediated Ca(2+) influx triggers SNP-induced apoptosis in astrocytes, which may be mediated by a cGMP-dependent pathway.
Collapse
Affiliation(s)
- Tatsuya Kitao
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lin YC, Chou LC, Chen SC, Kuo SC, Huang LJ, Gean PW. Neuroprotective effects of furopyrazole derivative of benzylindazole analogs on C2 ceramide-induced apoptosis in cultured cortical neurons. Bioorg Med Chem Lett 2009; 19:3225-8. [DOI: 10.1016/j.bmcl.2009.04.101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Revised: 04/20/2009] [Accepted: 04/22/2009] [Indexed: 11/29/2022]
|
11
|
Kawasaki T, Kitao T, Nakagawa K, Fujisaki H, Takegawa Y, Koda K, Ago Y, Baba A, Matsuda T. Nitric oxide-induced apoptosis in cultured rat astrocytes: protection by edaravone, a radical scavenger. Glia 2007; 55:1325-33. [PMID: 17626263 DOI: 10.1002/glia.20541] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nitric oxide induces apoptosis-like cell death in cultured astrocytes, but the exact mechanism is not known. This study further characterized the mechanism of nitric oxide-induced cytotoxicity, and examined the effect of edaravone, a radical scavenger, on cytotoxicity. Treatment of cultured rat astrocytes with sodium nitroprusside (SNP), a nitric oxide donor, for 72 h, decreased cell viability by causing apoptosis-like cell death. The injury was accompanied by increases in the production of reactive oxygen species and in the level of nuclear apoptosis-inducing factor, but not in caspase activity. SNP-induced cytotoxicity was blocked by the c-jun N-terminal protein kinase (JNK) inhibitor SP600125 (20 microM), the p38 mitogen-activated protein (MAP) kinase inhibitor SB203580 (20 microM), and the extracellular signal-regulating kinase (ERK) inhibitor U0126 (10 microM), and the nitric oxide donor stimulated the phosphorylation of p38 MAP kinase, JNK, and ERK. Edaravone (10 microM) protected astrocytes against SNP-induced cell injury and it inhibited SNP-induced phosphorylation of p38 MAP kinase, JNK, and ERK, and the production of reactive oxygen species. Edaravone also attenuated SNP-induced increase in nuclear apoptosis-inducing factor levels. These results suggest that MAP kinase pathways play a key role in nitric oxide-induced apoptosis and that edaravone protects against nitric oxide-induced cytotoxicity by inhibiting nitric oxide-induced MAP kinase activation in astrocytes.
Collapse
Affiliation(s)
- Toshiyuki Kawasaki
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Choi JH, Kim DH, Yun IJ, Chang JH, Chun BG, Choi SH. Zaprinast inhibits hydrogen peroxide-induced lysosomal destabilization and cell death in astrocytes. Eur J Pharmacol 2007; 571:106-15. [PMID: 17643412 DOI: 10.1016/j.ejphar.2007.06.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 06/05/2007] [Accepted: 06/07/2007] [Indexed: 12/25/2022]
Abstract
The lysosomal destabilization that precedes mitochondrial apoptotic changes is an important step in cell death, particularly in oxidative cell death. This study describes the novel pharmacological effects of zaprinast, a cGMP-elevating phosphodiesterase inhibitor, on the inhibition of oxidative cell death in astrocyte cultures. H2O2-induced oxidative cytotoxicity was measured grossly by monitoring lactate dehydrogenase (LDH) release, and was found to be associated with lysosomal acridine orange relocation, lysosomal cathepsin D release into cytosol, and reduced mitochondrial potentials. Moreover, zaprinast (100 microM) inhibited all of these cytotoxic phenomena. In addition, H2O2-induced LDH release was not inhibited by 8-pCPT-cGMP, and the inhibition of this release by zaprinast was unaffected by Rp-8-pCPT-cGMP, a protein kinase G inhibitor. Zaprinast was found to inhibit sphingosine-induced lysosomal acridine orange relocation and the induced decrease in mitochondrial potential, but zaprinast had no effect on rotenone-induced mitochondrial collapse, which was not associated with lysosomal destabilization. However, zaprinast did not inhibit the cellular increase of reactive oxygen species induced by H2O2, which suggests that its protective mechanism differs from that of desferrioxamine, which does inhibit such cellular increase of oxygen free radicals. We suggest that the novel protective effect of zaprinast on H2O2-induced oxidative cell death is primarily associated with its inhibition of lysosomal destabilization.
Collapse
Affiliation(s)
- Jae-Hyuck Choi
- Department of Pharmacology, Korea University College of Medicine, 126-1, 5-Ga, Anam-Dong, Sungbuk-Gu, Seoul 136-705, Republic of Korea
| | | | | | | | | | | |
Collapse
|
13
|
Rauen U, Li T, de Groot H. Inhibitory and enhancing effects of NO on H(2)O(2) toxicity: dependence on the concentrations of NO and H(2)O(2). Free Radic Res 2007; 41:402-12. [PMID: 17454122 DOI: 10.1080/10715760601097631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Nitric oxide (NO) has been shown to both enhance hydrogen peroxide (H(2)O(2)) toxicity and protect cells against H(2)O(2) toxicity. In order to resolve this apparent contradiction, we here studied the effects of NO on H(2)O(2) toxicity in cultured liver endothelial cells over a wide range of NO and H(2)O(2) concentrations. NO was generated by spermine NONOate (SpNO, 0.001-1 mM), H(2)O(2) was generated continuously by glucose/glucose oxidase (GOD, 20-300 U/l), or added as a bolus (200 microM). SpNO concentrations between 0.01 and 0.1 mM provided protection against H(2)O(2)-induced cell death. SpNO concentrations >0.1 mM were injurious with low H(2)O(2) concentrations, but protective at high H(2)O(2) concentrations. Protection appeared to be mainly due to inhibition of lipid peroxidation, for which SpNO concentrations as low as 0.01 mM were sufficient. SpNO in high concentration (1 mM) consistently raised H(2)O(2) steady-state levels in line with inhibition of H(2)O(2) degradation. Thus, the overall effect of NO on H(2)O(2) toxicity can be switched within the same cellular model, with protection being predominant at low NO and high H(2)O(2) levels and enhancement being predominant with high NO and low H(2)O(2) levels.
Collapse
Affiliation(s)
- Ursula Rauen
- Institut für Physiologische Chemie, Universitätsklinikum Essen, Hufelandstr. 55, Essen 45122, Germany.
| | | | | |
Collapse
|
14
|
Takuma K. [Mitochondrial dysfunction and apoptosis in neurodegenerative diseases]. Nihon Yakurigaku Zasshi 2006; 127:349-54. [PMID: 16819239 DOI: 10.1254/fpj.127.349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Yoshioka Y, Kitao T, Kishino T, Yamamuro A, Maeda S. Nitric oxide protects macrophages from hydrogen peroxide-induced apoptosis by inducing the formation of catalase. THE JOURNAL OF IMMUNOLOGY 2006; 176:4675-81. [PMID: 16585560 DOI: 10.4049/jimmunol.176.8.4675] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated the cytoprotective effect of NO on H2O2-induced cell death in mouse macrophage-like cell line RAW264. H2O2-treated cells showed apoptotic features, such as activation of caspase-9 and caspase-3, nuclear fragmentation, and DNA fragmentation. These apoptotic features were significantly inhibited by pretreatment for 24 h with NO donors, sodium nitroprusside and 1-hydroxy-2-oxo-3,3-bis-(2-aminoethyl)-1-triazene, at a low nontoxic concentration. The cytoprotective effect of NO was abrogated by the catalase inhibitor 3-amino-1,2,4-triazole but was not affected by a glutathione synthesis inhibitor, L-buthionine-(S,R)-sulfoximine. NO donors increased the level of catalase and its activity in a concentration-dependent manner. Cycloheximide, a protein synthesis inhibitor, inhibited both the NO-induced increase in the catalase level and the cytoprotective effect of NO. These results indicate that NO at a low concentration protects macrophages from H2O2-induced apoptosis by inducing the production of catalase.
Collapse
Affiliation(s)
- Yasuhiro Yoshioka
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan.
| | | | | | | | | |
Collapse
|
16
|
Fukushima T, Koide M, Ago Y, Baba A, Matsuda T. T-817MA, a novel neurotrophic agent, improves sodium nitroprusside-induced mitochondrial dysfunction in cortical neurons. Neurochem Int 2005; 48:124-30. [PMID: 16219389 DOI: 10.1016/j.neuint.2005.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 08/19/2005] [Accepted: 08/29/2005] [Indexed: 12/31/2022]
Abstract
1-{3-[2-(1-Benzothiophen-5-yl)ethoxy]propyl}-3-azetidinol maleate (T-817MA), a novel neurotrophic agent, protects against amyloid-beta peptide- or hydrogen peroxide-induced neuronal death. The exact mechanism of the neuroprotection is not known. This study examines the effects of T-817MA on oxidative stress-induced cytotoxicity in primary rat cortical neurons. Treatment with the NO donor sodium nitoroprusside (SNP) at 300microM decreased cell viability and induced apoptotic cell death. SNP-induced neuronal toxicity was accompanied by a decrease in mitochondrial transmembrane potential without an increase in the expression of CHOP and GRP78 mRNAs, endoplasmic reticulum stress makers. T-817MA at 0.1 and 1microM attenuated the neurotoxicity in a dose-dependent way and the protective effect required pretreatment for more than 8h. T-817MA attenuated SNP-induced decrease in mitochondrial transmembrane potential. In addition, the agent reduced SNP-induced increase in mitochondrial reactive oxygen species (ROS) production. The effects of T-817MA on SNP-induced decrease in cell viability and SNP-induced increase in mitochondrial ROS production were blocked by cycloheximide. These results suggest that T-817MA improves SNP-induced mitochondrial dysfunction in cortical neurons in a newly synthesized protein-mediated mechanism and this effect contributes to its neuroprotective effect.
Collapse
Affiliation(s)
- Tetsuo Fukushima
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
17
|
Son E, Jeong J, Lee J, Jung DY, Cho GJ, Choi WS, Lee MS, Kim SH, Kim IK, Suk K. Sequential induction of heme oxygenase-1 and manganese superoxide dismutase protects cultured astrocytes against nitric oxide. Biochem Pharmacol 2005; 70:590-7. [PMID: 15993853 DOI: 10.1016/j.bcp.2005.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 05/16/2005] [Accepted: 05/23/2005] [Indexed: 10/25/2022]
Abstract
Nitric oxide (NO) is a widely recognized mediator of physiological and pathophysiological signal transmission. In an attempt to better understand the molecular actions of NO in astrocytes, stress protein expression in response to NO donor sodium nitroprusside was investigated. Heme oxygenase-1 (HO-1) has been identified as an inducer of manganese superoxide dismutase (MnSOD), playing a cytoprotective role under the condition of nitrosative stress. We present evidence that the sequential induction of HO-1 and MnSOD protects astrocytes from NO toxicity: (1) both HO-1 and MnSOD expression were induced by NO; (2) NO-mediated increase in MnSOD activity was partly abolished by HO-1 inhibitor Zn(II) protoporphyrin IX (ZnPP); (3) pretreatment of astrocytes with a nontoxic dose of NO protected the cells against the later treatment with a toxic dose of NO; (4) inhibition of HO-1 by ZnPP sensitized astrocytes to the nontoxic dose of NO resulting in a marked cytotoxicity; and (5) adenovirus-mediated overexpression of MnSOD protected astrocytes from the NO toxicity. The molecular action of NO in astrocytes appears to be dose-dependent. While a high dose of NO exerts cytotoxicity leading to the tissue damage in the central nervous system, a low dose of NO may act as an important signaling molecule in astrocytes with concurrent induction of cytoprotective proteins such as HO-1 and MnSOD.
Collapse
Affiliation(s)
- Eunyung Son
- Department of Pharmacology, Kyungpook National University School of Medicine, 101 Dong-In, Joong-gu, Daegu, 700-422 Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang C, Wang MW, Tashiro SI, Onodera S, Ikejima T. IL-1beta acts in synergy with endogenous IL-1beta in A375-S2 human melanoma cell apoptosis through mitochondrial pathway. J Korean Med Sci 2005; 20:555-61. [PMID: 16100443 PMCID: PMC2782147 DOI: 10.3346/jkms.2005.20.4.555] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interleukin-1beta (IL-1beta) is a pivotal proinflammatory cytokine. To investigate the mechanism of IL-1beta-induced cell death in human malignant melanoma A375-S2 cells, MTT assay, photomicroscopical observation, DNA agarose gel electrophoresis, radioimmunoassay and Western blot analysis were carried out. IL-1beta did not only induce nuclear condensation and DNA fragmentation, but also increased degradation of two substrates of caspase-3, poly ADP-ribose polymerase (PARP) and inhibitor of caspase-activated DNase (ICAD). Simultaneously, release of precursor of IL-1beta (pro-IL-1beta) and endogenous IL-1beta production were involved in the apoptotic process. IL-1beta enhanced the ratio of Bax/Bcl-2 and Bax/Bcl-xL expression and up-regulated apoptosis inducing factor (AIF) expression, which required the activation of downstream caspases. These results suggest that IL-1beta induces endogenous IL-1beta production, enhances cleavage of caspase downstream substrates and promotes mitochondria mediated apoptosis in A375-S2 cells.
Collapse
Affiliation(s)
- Che Wang
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, China
| | | | | | | | | |
Collapse
|
19
|
Yao HH, Ding JH, Zhou F, Wang F, Hu LF, Sun T, Hu G. Enhancement of glutamate uptake mediates the neuroprotection exerted by activating group II or III metabotropic glutamate receptors on astrocytes. J Neurochem 2005; 92:948-61. [PMID: 15686497 DOI: 10.1111/j.1471-4159.2004.02937.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We investigated whether the activation of astroglial group II and III metabotropic glutamate receptors (mGluRs) could exert neuroprotective effects and whether the neuroprotection was related to glutamate uptake. Our results showed that the activation of astroglial group II or III mGluRs exerted neuroprotection against 1-methyl-4-phenylpyridinium (MPP+) astroglial conditioned medium-induced neurotoxicity in midbrain neuron cultures. Furthermore, MPP+ decreased glutamate uptake of primary astrocytes and C6 glioma cells, which was recovered by activating group II or III mGluRs. Specific group II or III mGluRs antagonists completely abolished the neuroprotective effects and the enhancement of glutamate uptake of their respective agonists. Our results showed that the primary cultured rat astrocytes and C6 glioma cells expressed receptor proteins for group II mGluR2/3, group III mGluR4, mGluR6 and mGluR7. C6 glioma cells expressed mRNA for group II mGluR3, group III mGluR4, mGluR6, mGluR7 and mGluR8. In conclusion, we confirmed that the activation of astroglial mGluRs exerted neuroprotection, and demonstrated that the mechanism underlying this protective role was at least partially related to the enhancement of glutamate uptake.
Collapse
Affiliation(s)
- Hong-Hong Yao
- Department of Pharmacology & Neurobiology, Nanjing Medical University, Nanjing City, Jiangsu Province, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Cabell L, Ferguson C, Luginbill D, Kern M, Weingart A, Audesirk G. Differential induction of heme oxygenase and other stress proteins in cultured hippocampal astrocytes and neurons by inorganic lead. Toxicol Appl Pharmacol 2004; 198:49-60. [PMID: 15207648 DOI: 10.1016/j.taap.2004.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Accepted: 03/01/2004] [Indexed: 01/23/2023]
Abstract
We examined the effects of exposure to inorganic lead (Pb2+) on the induction of stress proteins in cultured hippocampal neurons and astrocytes, with particular emphasis on the induction of heme oxygenase-1 (HO-1). In radiolabeled neuronal cultures, Pb2+ exposure had no significant effect on the synthesis of any protein at any concentration (up to 250 microM) or duration of exposure (up to 4 days). In radiolabeled astrocyte cultures, however, Pb2+ exposure (100 nM to 100 microM; 1-4 days) increased synthesis of proteins with approximate molecular weights of 23, 32, 45, 57, 72, and 90 kDa. Immunoblot experiments showed that Pb2+ exposure (100 nM to 10 microM, 1-14 days) induces HO-1 synthesis in astrocytes, but not in neurons; this is probably the 32-kDa protein. The other heme oxygenase isoform, HO-2, is present in both neurons and astrocytes, but is not inducible by Pb2+ at concentrations up to 100 microM. HO-1 can be induced by a variety of stimuli. We found that HO-1 induction in astrocytes is increased by combined exposure to Pb2+ and many other stresses, including heat, nitric oxide, H2O2, and superoxide. One of the stimuli that may induce HO-1 is oxidative stress. Lead exposure causes oxidative stress in many cell types, including astrocytes. Induction of HO-1 by Pb2+ is reduced by the hydroxyl radical scavengers dimethylthiourea (DMTU) and mannitol, but not by inhibitors of calmodulin, calmodulin-dependent protein kinases, protein kinase C, or extracellular signal-regulated kinases (ERK). Therefore, we conclude that oxidative stress is an important mechanism by which Pb2+ induces HO-1 synthesis in astrocytes.
Collapse
Affiliation(s)
- Leigh Cabell
- Biology Department, University of Colorado at Denver, Denver, CO 80217-3364, USA
| | | | | | | | | | | |
Collapse
|
21
|
Yung HW, Bal-Price AK, Brown GC, Tolkovsky AM. Nitric oxide-induced cell death of cerebrocortical murine astrocytes is mediated through p53- and Bax-dependent pathways. J Neurochem 2004; 89:812-21. [PMID: 15140181 DOI: 10.1111/j.1471-4159.2004.02395.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have investigated the mechanism by which nitric oxide (NO) induces the death of mouse astrocytes. We show that NO (from donor diethylenetriamine-NO adduct) induces death with several features of apoptosis, including chromatin condensation, phosphatidylserine exposure on the outer leaflet of the plasma membrane, Bax translocation to the mitochondria and cytochrome c release, but no caspase activation or nuclear fragmentation is observed. Nitric oxide also elevates p53 expression, causing a concomitant increase in p53 serine 18 phosphorylation and p53 translocation from the cytoplasm to the nucleus. Activation of Bax and p53 is important for NO-induced apoptosis-like cell death because Bax- or p53-deficient astrocytes are much more resistant than wild-type cells to the same NO treatment. We further demonstrate that LY294002-sensitive kinases are responsible for controlling serine 18 phosphorylation of p53, thereby regulating the pro-apoptotic activity of p53 in astrocytes. While apoptosis is suppressed in the presence of LY294002, however, death by necrosis is increased, suggesting that LY294002-sensitive kinases additionally suppress a latent necrotic response to NO. We conclude that NO-induced death in astrocytes is mediated by p53- and Bax-dependent mechanisms, although full manifestation of apoptosis is aborted by concomitant inhibition of caspase activation. More generally, our data suggest that apoptotic mediators should be evaluated as the cause of cell death even in cases where a full apoptotic phenotype is lacking.
Collapse
Affiliation(s)
- Hong Wa Yung
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
22
|
Takuma K, Baba A, Matsuda T. Astrocyte apoptosis: implications for neuroprotection. Prog Neurobiol 2004; 72:111-27. [PMID: 15063528 DOI: 10.1016/j.pneurobio.2004.02.001] [Citation(s) in RCA: 344] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Accepted: 02/04/2004] [Indexed: 12/21/2022]
Abstract
Astrocytes, the most abundant glial cell types in the brain, provide metabolic and trophic support to neurons and modulate synaptic activity. Accordingly, impairment in these astrocyte functions can critically influence neuronal survival. Recent studies show that astrocyte apoptosis may contribute to pathogenesis of many acute and chronic neurodegenerative disorders, such as cerebral ischemia, Alzheimer's disease and Parkinson's disease. We found that incubation of cultured rat astrocytes in a Ca(2+)-containing medium after exposure to a Ca(2+)-free medium causes an increase in intracellular Ca(2+) concentration followed by apoptosis, and that NF-kappa B, reactive oxygen species, and enzymes such as calpain, xanthine oxidase, calcineurin and caspase-3 are involved in reperfusion-induced apoptosis. Furthermore, we demonstrated that heat shock protein, mitogen-activated protein/extracellular signal-regulated kinase, phosphatidylinositol-3 kinase and cyclic GMP phosphodiesterase are target molecules for anti-apoptotic drugs. This review summarizes (1) astrocytic functions in neuroprotection, (2) current evidence of astrocyte apoptosis in both in vitro and in vivo studies including its molecular pathways such as Ca(2+) overload, oxidative stress, NF-kappa B activation, mitochondrial dysfunction, endoplasmic reticulum stress, and protease activation, and (3) several drugs preventing astrocyte apoptosis. As a whole, this article provides new insights into the potential role of astrocytes as targets for neuroprotection. In addition, the advance in the knowledge of molecular mechanisms of astrocyte apoptosis may lead to the development of novel therapeutic strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Kazuhiro Takuma
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences and High Technology Research Center, Kobe Gakuin University, Kobe 651-2180, Japan
| | | | | |
Collapse
|
23
|
Wu Z, Wu L, Li L, Tashiro SI, Onodera S, Ikejima T. p53-Mediated Cell Cycle Arrest and Apoptosis Induced by Shikonin via a Caspase-9-Dependent Mechanism in Human Malignant Melanoma A375-S2 Cells. J Pharmacol Sci 2004; 94:166-76. [PMID: 14978355 DOI: 10.1254/jphs.94.166] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Natural products regulate cell growth in response to oncogene activation that induces cell cycle arrest and apoptosis in tumor cell lines. We investigated the mechanisms of caspase activation in human malignant melanoma, A375-S2 cells, by the natural product shikonin, which was isolated from the plant Lithospermum erythrorhizon SIEB. et ZUCC. Shikonin inhibited cell growth in a time- and dose-dependent manner, which might be mediated through up-regulation of p53 and down-regulation of cyclin-dependent protein kinase 4. Caspase activation was detected in shikonin-induced cell apoptosis, which involved in a post-mitochondrial caspase-9-dependent pathway. Decreased Bcl-2 protein levels and increased Bax protein levels were positively correlated with elevated expression of p53 protein. Apoptosis-inducing factor, another apoptotic protein of mitochondria, partially contributed to shikonin-induced release of cytochrome c. Taken together, shikonin-induced DNA damage activates p53 and caspase-9 pathways.
Collapse
Affiliation(s)
- Zhen Wu
- Department of Phytochemistry, Shenyang Pharmaceutical University, P.R. China
| | | | | | | | | | | |
Collapse
|
24
|
Phuagphong P, Fukushima T, Hatanaka R, Tanaka K, Baba A, Matsuda T. T-588, a Cognitive Enhancer, Protects Against Sodium Nitroprusside-Induced Toxicity in Cultured Astrocytes. J Pharmacol Sci 2004; 95:135-8. [PMID: 15153661 DOI: 10.1254/jphs.95.135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The effects of (1R)-1-benzo[b]thiophen-5-yl-2-[2-(diethylamino)ethoxy]ethan-1-ol hydrochloride (T-588), a cognitive enhancer, on sodium nitroprusside (SNP)-induced cytotoxicity were examined in cultured rat astrocytes. Treatment with 100 microM SNP for 72 h decreased cell viability and mitochondrial function assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenil tetrazolium bromide (MTT) reduction activity, mitochondrial transmembrane potential, and intracellular ATP level. T-588 at 100 microM prevented SNP-induced mitochondrial dysfunction and cell injury. Furthermore, T-588 increased MTT reduction activity without affecting cell proliferation in astrocytes. These results suggest that T-588 has a protective effect against SNP-mediated toxicity via improvement of mitochondrial dysfunction in astrocytes.
Collapse
Affiliation(s)
- Patamawan Phuagphong
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | | | | | | | | | | |
Collapse
|