1
|
Effects of Dizocilpine, Midazolam and Their Co-Application on the Trimethyltin (TMT)-Induced Rat Model of Cognitive Deficit. Brain Sci 2021; 11:brainsci11030400. [PMID: 33809889 PMCID: PMC8004281 DOI: 10.3390/brainsci11030400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/20/2022] Open
Abstract
Research of treatment options addressing the cognitive deficit associated with neurodegenerative disorders is of particular importance. Application of trimethyltin (TMT) to rats represents a promising model replicating multiple relevant features of such disorders. N-methyl-D-aspartate (NMDA) receptor antagonists and gamma-aminobutyric acid type A (GABAA) receptor potentiators have been reported to alleviate the TMT-induced cognitive deficit. These compounds may provide synergistic interactions in other models. The aim of this study was to investigate, whether co-application of NMDA receptor antagonist dizocilpine (MK-801) and GABAA receptor potentiator midazolam would be associated with an improved effect on the TMT-induced model of cognitive deficit. Wistar rats injected with TMT were repeatedly (12 days) treated with MK-801, midazolam, or both. Subsequently, cognitive performance was assessed. Finally, after a 17-day drug-free period, hippocampal neurodegeneration (neuronal density in CA2/3 subfield in the dorsal hippocampus, dentate gyrus morphometry) were analyzed. All three protective treatments induced similar degree of therapeutic effect in Morris water maze. The results of histological analyses were suggestive of minor protective effect of the combined treatment (MK-801 and midazolam), while these compounds alone were largely ineffective at this time point. Therefore, in terms of mitigation of cognitive deficit, the combined treatment was not associated with improved effect.
Collapse
|
2
|
Pham HTN, Phan SV, Tran HN, Phi XT, Le XT, Nguyen KM, Fujiwara H, Yoneyama M, Ogita K, Yamaguchi T, Matsumoto K. Bacopa monnieri (L.) Ameliorates Cognitive Deficits Caused in a Trimethyltin-Induced Neurotoxicity Model Mice. Biol Pharm Bull 2019; 42:1384-1393. [DOI: 10.1248/bpb.b19-00288] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | | | | | - Hironori Fujiwara
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama
| | - Masanori Yoneyama
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Kiyokazu Ogita
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Taro Yamaguchi
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Kinzo Matsumoto
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama
| |
Collapse
|
3
|
Marei HE, Elnegiry AA, Zaghloul A, Althani A, Afifi N, Abd-Elmaksoud A, Farag A, Lashen S, Rezk S, Shouman Z, Cenciarelli C, Hasan A. Nanotubes impregnated human olfactory bulb neural stem cells promote neuronal differentiation in Trimethyltin-induced neurodegeneration rat model. J Cell Physiol 2017; 232:3586-3597. [PMID: 28121007 DOI: 10.1002/jcp.25826] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/03/2017] [Accepted: 01/24/2017] [Indexed: 12/12/2022]
Abstract
Neural stem cells (NSCs) are multipotent self-renewing cells that could be used in cellular-based therapy for a wide variety of neurodegenerative diseases including Alzheimer's diseases (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Being multipotent in nature, they are practically capable of giving rise to major cell types of the nervous tissue including neurons, astrocytes, and oligodendrocytes. This is in marked contrast to neural progenitor cells which are committed to a specific lineage fate. In previous studies, we have demonstrated the ability of NSCs isolated from human olfactory bulb (OB) to survive, proliferate, differentiate, and restore cognitive and motor deficits associated with AD, and PD rat models, respectively. The use of carbon nanotubes (CNTs) to enhance the survivability and differentiation potential of NSCs following their in vivo engraftment have been recently suggested. Here, in order to assess the ability of CNTs to enhance the therapeutic potential of human OBNSCs for restoring cognitive deficits and neurodegenerative lesions, we co-engrafted CNTs and human OBNSCs in TMT-neurodegeneration rat model. The present study revealed that engrafted human OBNSCS-CNTs restored cognitive deficits, and neurodegenerative changes associated with TMT-induced rat neurodegeneration model. Moreover, the CNTs seemed to provide a support for engrafted OBNSCs, with increasing their tendency to differentiate into neurons rather than into glia cells. The present study indicate the marked ability of CNTs to enhance the therapeutic potential of human OBNSCs which qualify this novel therapeutic paradigm as a promising candidate for cell-based therapy of different neurodegenerative diseases.
Collapse
Affiliation(s)
- Hany E Marei
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Ahmed A Elnegiry
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Adel Zaghloul
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Asma Althani
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Ahmed Abd-Elmaksoud
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Amany Farag
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Samah Lashen
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Shymaa Rezk
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Zeinab Shouman
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | | | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Magnolol protects against trimethyltin-induced neuronal damage and glial activation in vitro and in vivo. Neurotoxicology 2016; 53:173-185. [DOI: 10.1016/j.neuro.2016.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/05/2015] [Accepted: 01/01/2016] [Indexed: 02/07/2023]
|
5
|
Yoneyama M, Tanaka M, Hasebe S, Yamaguchi T, Shiba T, Ogita K. Beneficial effect of cilostazol-mediated neuronal repair following trimethyltin-induced neuronal loss in the dentate gyrus. J Neurosci Res 2014; 93:56-66. [PMID: 25139675 DOI: 10.1002/jnr.23472] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/05/2014] [Accepted: 07/24/2014] [Indexed: 01/16/2023]
Abstract
Cilostazol acts as an antiplatelet agent and has other pleiotropic effects based on phosphodiesterase-3-dependent mechanisms. We evaluated whether cilostazol would have a beneficial effect on neuronal repair following hippocampal neuronal damage by using a mouse model of trimethyltin (TMT)-induced neuronal loss/self-repair in the hippocampal dentate gyrus [Ogita et al. (2005) J Neurosci Res 82:609-621]; these mice will hereafter be referred to as impaired animals. A single treatment with cilostazol (10 mg/kg, i.p.) produced no significant change in the number of 5-bromo-2'-deoxyuridine (BrdU)-incorporating cells in the dentate granule cell layer (GCL) or subgranular zone on day 3 after TMT treatment. However, chronic treatment with cilostazol on days 3-15 posttreatment resulted in an increase in the number of BrdU-incorporating cells in the dentate GCL of the impaired animals, and these cells were positive for neuronal nuclear antigen or doublecortin. Cilostazol was effective in elevating the level of phosphorylated cyclic adrenosine monophosphate response element-binding protein (pCREB) in the dentate gyrus of impaired animals. The results of a forced swimming test revealed that the chronic treatment with cilostazol improved the depression-like behavior seen in the impaired animals. In the cultures of hippocampal neural stem/progenitor cells, exposure to cilostazol produced not only enhancement of proliferation activity but also elevation of pCREB levels. Taken together, our data suggest that cilostazol has a beneficial effect on neuronal repair following neuronal loss in the dentate gyrus through promotion of proliferation and/or neuronal differentiation of neural progenitor cells in the subgranular zone.
Collapse
Affiliation(s)
- Masanori Yoneyama
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Ishimoto T, Nakamichi N, Hosotani H, Masuo Y, Sugiura T, Kato Y. Organic cation transporter-mediated ergothioneine uptake in mouse neural progenitor cells suppresses proliferation and promotes differentiation into neurons. PLoS One 2014; 9:e89434. [PMID: 24586778 PMCID: PMC3934899 DOI: 10.1371/journal.pone.0089434] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 01/11/2014] [Indexed: 01/11/2023] Open
Abstract
The aim of the present study is to clarify the functional expression and physiological role in neural progenitor cells (NPCs) of carnitine/organic cation transporter OCTN1/SLC22A4, which accepts the naturally occurring food-derived antioxidant ergothioneine (ERGO) as a substrate in vivo. Real-time PCR analysis revealed that mRNA expression of OCTN1 was much higher than that of other organic cation transporters in mouse cultured cortical NPCs. Immunocytochemical analysis showed colocalization of OCTN1 with the NPC marker nestin in cultured NPCs and mouse embryonic carcinoma P19 cells differentiated into neural progenitor-like cells (P19-NPCs). These cells exhibited time-dependent [3H]ERGO uptake. These results demonstrate that OCTN1 is functionally expressed in murine NPCs. Cultured NPCs and P19-NPCs formed neurospheres from clusters of proliferating cells in a culture time-dependent manner. Exposure of cultured NPCs to ERGO or other antioxidants (edaravone and ascorbic acid) led to a significant decrease in the area of neurospheres with concomitant elimination of intracellular reactive oxygen species. Transfection of P19-NPCs with small interfering RNA for OCTN1 markedly promoted formation of neurospheres with a concomitant decrease of [3H]ERGO uptake. On the other hand, exposure of cultured NPCs to ERGO markedly increased the number of cells immunoreactive for the neuronal marker βIII-tubulin, but decreased the number immunoreactive for the astroglial marker glial fibrillary acidic protein (GFAP), with concomitant up-regulation of neuronal differentiation activator gene Math1. Interestingly, edaravone and ascorbic acid did not affect such differentiation of NPCs, in contrast to the case of proliferation. Knockdown of OCTN1 increased the number of cells immunoreactive for GFAP, but decreased the number immunoreactive for βIII-tubulin, with concomitant down-regulation of Math1 in P19-NPCs. Thus, OCTN1-mediated uptake of ERGO in NPCs inhibits cellular proliferation via regulation of oxidative stress, and also promotes cellular differentiation by modulating the expression of basic helix-loop-helix transcription factors via an unidentified mechanism different from antioxidant action.
Collapse
Affiliation(s)
- Takahiro Ishimoto
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Noritaka Nakamichi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroshi Hosotani
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yusuke Masuo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tomoko Sugiura
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
- * E-mail:
| |
Collapse
|
7
|
Lithium promotes neuronal repair and ameliorates depression-like behavior following trimethyltin-induced neuronal loss in the dentate gyrus. PLoS One 2014; 9:e87953. [PMID: 24504050 PMCID: PMC3913660 DOI: 10.1371/journal.pone.0087953] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 01/06/2014] [Indexed: 11/19/2022] Open
Abstract
Lithium, a mood stabilizer, is known to ameliorate the stress-induced decrease in hippocampal neurogenesis seen in animal models of stress-related disorders. However, it is unclear whether lithium has beneficial effect on neuronal repair following neuronal damage in neuronal degenerative diseases. Here, we evaluated the effect of in vivo treatment with lithium on the hippocampal neuronal repair in a mouse model of trimethyltin (TMT)-induced neuronal loss/self-repair in the hippocampal dentate gyrus (such mice referred to as "impaired animals") [Ogita et al. (2005) J Neurosci Res 82: 609-621]. The impaired animals had a dramatically increased number of 5-bromo-2'-deoxyuridine (BrdU)-incorporating cells in their dentate gyrus at the initial time window (days 3 to 5 post-TMT treatment) of the self-repair stage. A single treatment with lithium produced no significant change in the number of BrdU-incorporating cells in the dentate granule cell layer and subgranular zone on day 3 post-TMT treatment. On day 5 post-TMT treatment, however, BrdU-incorporating cells were significantly increased in number by lithium treatment for 3 days. Most interestingly, chronic treatment (15 days) with lithium increased the number of BrdU-incorporating cells positive for NeuN or doublecortin in the dentate granule cell layer of the impaired animals, but not in that of naïve animals. The results of a forced swimming test revealed that the chronic treatment with lithium improved the depression-like behavior seen in the impaired animals. Taken together, our data suggest that lithium had a beneficial effect on neuronal repair following neuronal loss in the dentate gyrus through promoted proliferation and survival/neuronal differentiation of neural stem/progenitor cells in the subgranular zone.
Collapse
|
8
|
Yoneyama M, Hasebe S, Kawamoto N, Shiba T, Yamaguchi T, Kikuta M, Shuto M, Ogita K. Beneficial in vivo effect of aripiprazole on neuronal regeneration following neuronal loss in the dentate gyrus: evaluation using a mouse model of trimethyltin-induced neuronal loss/self-repair in the dentate gyrus. J Pharmacol Sci 2013; 124:99-111. [PMID: 24389877 DOI: 10.1254/jphs.13201fp] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Aripiprazole is used clinically as an atypical antipsychotic. We evaluated the effect of in vivo treatment with aripiprazole on the proliferation and differentiation of neural stem/progenitor cells in a mouse model, trimethyltin-induced neuronal loss/self-repair in the hippocampal dentate gyrus (referred as "impaired animals") [Ogita et al., J Neurosci Res. 82, 609 - 621 (2005)]. In the impaired animals, an increased number of 5-bromo-2'-deoxyuridine (BrdU)-positive cells was seen in the dentate gyrus at the initial time window of the self-repair stage. At the same time window, a single treatment with aripiprazole significantly increased the number of cells positive for both BrdU and nestin in the dentate gyrus of the impaired animals. Chronic treatment with aripiprazole promoted the proliferation/survival and neuronal differentiation of the cells newly-generated following the neuronal loss in the dentate gyrus of the impaired animals. The chronic treatment with aripiprazole improved depression-like behavior seen in the impaired animals. Taken together, our data suggest that aripiprazole had a beneficial effect on neuronal regeneration following neuronal loss in the dentate gyrus through indirectly promoted proliferation/survival and neuronal differentiation of neural stem/progenitor cells in the subgranular zone of the dentate gyrus.
Collapse
Affiliation(s)
- Masanori Yoneyama
- Department of Pharmacology, Setsunan University Faculty of Pharmaceutical Sciences, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Apoptosis induced by trimethyltin chloride in human neuroblastoma cells SY5Y is regulated by a balance and cross-talk between NF-κB and MAPKs signaling pathways. Arch Toxicol 2013; 87:1273-85. [PMID: 23423712 DOI: 10.1007/s00204-013-1021-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 01/31/2013] [Indexed: 01/30/2023]
Abstract
Trimethyltin chloride (TMT) has been known as a classic neurotoxicant which can cause serious neuronal degeneration diseases. Nuclear factor κB (NF-κB) and mitogen-activated protein kinases (MAPKs) signaling pathways play pivotal role in the central nerves system. In the present study, the intracellular pathways involved in TMT-induced apoptosis on human neuroblastoma cells SY5Y (SH-SY5Y) were investigated. We observed high level of nuclear NF-κB p65 submit, activated JNK, ERK, and p38 by TMT exposure. In contrast, low level of Bcl-2 and XIAP (two known NF-κB-regulated endogenous anti-apoptotic molecules) was present. To further investigate the role of these pathways and the relationship between them, specific inhibitors were used and the alteration of each pathway was evaluated. Pretreatment with MG132, an inhibitor of proteasome activity, and BAY11-7082, an inhibitor of IκBα phosphorylation, both inhibited NF-κB p65 translocation and significantly promoted apoptosis. NF-κB inhibition also induced down-expression of Bcl-2 and XIAP, exaggerated JNK phosphorylation, and ERK inhibition. SP600125 and U0126, by blocking the phosphorylation of c-Jun and MEK1/2, inhibited JNK and ERK phosphorylation, respectively, and attenuated apoptosis significantly. JNK and ERK inhibition also induced IκBα degradation and NF-κB p65 translocation, leading to expression of Bcl-2 and XIAP. The detrimental role of MG132 and BAY11-7082 appears related to the exaggerated JNK phosphorylation. The SP600125 and U0126 neuroprotection appears related to NF-κB-regulated transcriptional control of Bcl-2 and XIAP. These results suggest that the cross-talk and a balance between NF-κB and MAPKs may be involved in TMT-induced apoptosis on SH-SY5Y cells.
Collapse
|
10
|
Neuroprotective strategies in hippocampal neurodegeneration induced by the neurotoxicant trimethyltin. Neurochem Res 2012. [PMID: 23179590 DOI: 10.1007/s11064-012-0932-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The selective vulnerability of specific neuronal subpopulations to trimethyltin (TMT), an organotin compound with neurotoxicant effects selectively involving the limbic system and especially marked in the hippocampus, makes it useful to obtain in vivo models of neurodegeneration associated with behavioural alterations, such as hyperactivity and aggression, cognitive impairment as well as temporal lobe epilepsy. TMT has been widely used to study neuronal and glial factors involved in selective neuronal death, as well as the molecular mechanisms leading to hippocampal neurodegeneration (including neuroinflammation, excitotoxicity, intracellular calcium overload, mitochondrial dysfunction and oxidative stress). It also offers a valuable instrument to study the cell-cell interactions and signalling pathways that modulate injury-induced neurogenesis, including the involvement of newly generated neurons in the possible repair processes. Since TMT appears to be a useful tool to damage the brain and study the various responses to damage, this review summarises current data from in vivo and in vitro studies on neuroprotective strategies to counteract TMT-induced neuronal death, that may be useful to elucidate the role of putative candidates for translational medical research on neurodegenerative diseases.
Collapse
|
11
|
Corvino V, Marchese E, Giannetti S, Lattanzi W, Bonvissuto D, Biamonte F, Mongiovì AM, Michetti F, Geloso MC. The neuroprotective and neurogenic effects of neuropeptide Y administration in an animal model of hippocampal neurodegeneration and temporal lobe epilepsy induced by trimethyltin. J Neurochem 2012; 122:415-26. [DOI: 10.1111/j.1471-4159.2012.07770.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
12
|
Nagashima R, Yamaguchi T, Kuramoto N, Ogita K. Acoustic overstimulation activates 5'-AMP-activated protein kinase through a temporary decrease in ATP level in the cochlear spiral ligament prior to permanent hearing loss in mice. Neurochem Int 2011; 59:812-20. [PMID: 21906645 DOI: 10.1016/j.neuint.2011.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/10/2011] [Accepted: 08/22/2011] [Indexed: 01/02/2023]
Abstract
Inner ear disorders are known to be elicited by mitochondrial dysfunction, which decreases the ATP level in the inner ear. 5'-AMP-activated protein kinase (AMPK) is a serine/threonine kinase activated by metabolic stress and by an increase in the AMP/ATP ratio. To elucidate the involvement of AMPK-derived signals in noise-induced hearing loss, we investigated whether in vivo acoustic overstimulation would activate AMPK in the cochlea of mice. Std-ddY mice were exposed to 8kHz octave band noise at a 90-, 110- or 120-dB sound pressure level (SPL) for 2h. Exposure to the noise at 110 or 120dB SPL produced outer hair cell death in the organ of Corti and permanent hearing loss. Exposure to the noise at 120-dB SPL elevated the level of the phospho-AMPK α-subunit (p-AMPKα), without affecting the protein level of this subunit, immediately and at 12-h post-exposure in the lateral wall structures including the spiral ligament and stria vascularis. In the hair cells and spiral ganglion cells, no marked change in the level of p-AMPKα was observed at any time post-exposure. The level of phospho-c-Jun N-terminal kinase (p-JNK) was increased in the lateral wall structures at 2- to 4-h post-exposure at 120dB SPL. Noise exposure significantly, but temporarily, decreased the ATP level in the spiral ligament, in an SPL-dependent manner at 110dB and above. Likewise, elevation of p-AMPKα and p-JNK levels was also observed in the lateral wall structures post-exposure to noise at an SPL of 110dB and above. Taken together, our data suggest that AMPK and JNK were activated by ATP depletion in the cochlear spiral ligament prior to permanent hearing loss induced by in vivo acoustic overstimulation.
Collapse
Affiliation(s)
- Reiko Nagashima
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | | | | | | |
Collapse
|
13
|
Shin EJ, Jeong JH, Chung YH, Kim WK, Ko KH, Bach JH, Hong JS, Yoneda Y, Kim HC. Role of oxidative stress in epileptic seizures. Neurochem Int 2011; 59:122-37. [PMID: 21672578 PMCID: PMC3606551 DOI: 10.1016/j.neuint.2011.03.025] [Citation(s) in RCA: 301] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 03/27/2011] [Accepted: 03/28/2011] [Indexed: 11/16/2022]
Abstract
Oxidative stress resulting from excessive free-radical release is likely implicated in the initiation and progression of epilepsy. Therefore, antioxidant therapies aimed at reducing oxidative stress have received considerable attention in epilepsy treatment. However, much evidence suggests that oxidative stress does not always have the same pattern in all seizures models. Thus, this review provides an overview aimed at achieving a better understanding of this issue. We summarize work regarding seizure models (i.e., genetic rat models, kainic acid, pilocarpine, pentylenetetrazol, and trimethyltin), oxidative stress as an etiologic factor in epileptic seizures (i.e., impairment of antioxidant systems, mitochondrial dysfunction, involvement of redox-active metals, arachidonic acid pathway activation, and aging), and antioxidant strategies for seizure treatment. Combined, this review highlights pharmacological mechanisms associated with oxidative stress in epileptic seizures and the potential for neuroprotection in epilepsy that targets oxidative stress and is supported by effective antioxidant treatment.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharamcology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 156-756, South Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul 156-756, South Korea
| | - Won-Ki Kim
- Department of Neuroscience, College of Medicine, Korea University, Seoul 136-705, South Korea
| | - Kwang-Ho Ko
- Pharmacology Laboratory, College of Pharmacy, Seoul National University, Seoul 143-701, South Korea
| | - Jae-Hyung Bach
- Neuropsychopharamcology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Yukio Yoneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa 920-1192, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharamcology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| |
Collapse
|
14
|
Geloso MC, Corvino V, Michetti F. Trimethyltin-induced hippocampal degeneration as a tool to investigate neurodegenerative processes. Neurochem Int 2011; 58:729-38. [DOI: 10.1016/j.neuint.2011.03.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 03/02/2011] [Accepted: 03/08/2011] [Indexed: 12/29/2022]
|
15
|
Yoneyama M, Shiba T, Hasebe S, Ogita K. Adult neurogenesis is regulated by endogenous factors produced during neurodegeneration. J Pharmacol Sci 2011; 115:425-32. [PMID: 21422724 DOI: 10.1254/jphs.11r02cp] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Adult neurogenesis is the process of generating new neurons that become integrated into existing circuits after fetal and early postnatal development has ceased. In most mammalian species, adult neurogenesis only appears to occur in the olfactory bulb and the hippocampus, where neural stem/progenitor cells (NPCs) exist to create new neurons. In adult neurogenesis, microenviromental change is thought to provide a specific modulation for maintaining the multi-potent state of these NPCs. Neurodegeneration is driven by the activation of resident microglia, astrocytes, and infiltrating peripheral macrophages, which release a plethora of cytokines, chemokines, neurotransmitters, and reactive oxygen species. These endogenous factors cause further bystander damage to neurons and produces both detrimental and favorable conditions for neurogenesis. Interestingly, these endogenous factors also affect the proliferation, migration, differentiation, and survival of the NPCs, as well as regulate the incorporation of newly formed neurons into the brain circuitry. The unique profile of the endogenous factors released can vary the degree of neuroregeneration after neurodegeneration. This current review summarizes recent knowledge in the emerging field that is showing that adult neurogenesis is regulated by endogenous factors produced during neurodegeneration.
Collapse
Affiliation(s)
- Masanori Yoneyama
- Department of Pharmacology, Setsunan University Faculty of Pharmaceutical Sciences, Japan
| | | | | | | |
Collapse
|
16
|
Kuramoto N, Seko K, Sugiyama C, Shuto M, Ogita K. Trimethyltin initially activates the caspase 8/caspase 3 pathway for damaging the primary cultured cortical neurons derived from embryonic mice. J Neurosci Res 2011; 89:552-61. [PMID: 21290413 DOI: 10.1002/jnr.22588] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 11/06/2010] [Accepted: 11/29/2010] [Indexed: 01/05/2023]
Abstract
The organotin trimethyltin (TMT) is well known to cause neuronal damage in the central nervous system. To elucidate the mechanisms underlying the toxicity of TMT toward neurons, we prepared primary cultures of neurons from the neocortex of mouse embryos. A continuous exposure to TMT produced a decrease in cell viability as well as an increase in the number of cells with nuclear condensation/shrinkage at the exposure time window up to 24 hr. In addition to the events at the early time window, lactate dehydrogenase released was significantly elevated at the later exposure time from 36 to 48 hr. With a 3-hr exposure to TMT, a significant increase was observed in the activity of caspase 8, but not in that of caspase 9. TMT exposure produced no elevation in the level of cytochrome c released from mitochondria until 12 hr of exposure, with a significant facilitation of cytochrome c release at the exposure times of 16 and 24 hr. After the activation of caspase 8 by TMT exposure, caspase 3 activation and nuclear translocation of caspase-activated DNase were caused by exposure for 6 hr or longer. However, nuclear DNase II was elevated at the later time window of exposure. A caspase inhibitor completely prevented TMT from damaging the cells in any time window. Taken together, our data are the first demonstration that TMT toxicity is initially caused by activation of the caspase 8/caspase 3 pathway for nuclear translocation of DNases in cortical neurons in primary culture.
Collapse
Affiliation(s)
- Nobuyuki Kuramoto
- Department of Pharmacology, Setsunan University Faculty of Pharmaceutical Sciences, Hirakata, Osaka, Japan
| | | | | | | | | |
Collapse
|
17
|
Yoneyama M, Kawada K, Shiba T, Ogita K. Endogenous Nitric Oxide Generation Linked to Ryanodine Receptors Activates Cyclic GMP / Protein Kinase G Pathway for Cell Proliferation of Neural Stem/Progenitor Cells Derived From Embryonic Hippocampus. J Pharmacol Sci 2011; 115:182-195. [DOI: 10.1254/jphs.10290fp] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 12/06/2010] [Indexed: 10/18/2022] Open
|
18
|
Yoneyama M, Kawada K, Ogita K. Enhanced neurogenesis in the olfactory bulb in adult mice after injury induced by acute treatment with trimethyltin. J Neurosci Res 2010; 88:1242-51. [PMID: 19998485 DOI: 10.1002/jnr.22305] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In adults, the subventricular zone is known to contain undifferentiated neural progenitor cells that proliferate and generate the olfactory bulb (OB) interneurons throughout life. We earlier showed that trimethyltin (TMT) causes neuronal damage in the granular cell layer of the OB in adult mice. In the current study, we examined neurogenesis in the OB in adult mice after injury induced by acute treatment with TMT. On day 2 post-TMT treatment, enhanced incorporation of 5-bromo-2'-deoxyuridine (BrdU) was seen in the granular cell layer of the OB. Many of the BrdU-labeled cells were undifferentiated cells on day 2 post-treatment. On day 30 post-TMT treatment, BrdU-labeled neuronal cells were dramatically increased in number in the granular cell layer of the OB. However, TMT treatment was ineffective in affecting the migration of BrdU-labeled cells from the subventricular zone to the OB. The results of a neurosphere assay revealed that the number of neurospheres derived from the OB was significantly increased on day 2 post-TMT treatment. The neurosphere-forming neural progenitor cells derived from the OB of TMT-treated animals were capable of differentiating into neuronal cells as well as into astrocytes. Taken together, our data suggest that the OB has the ability to undergo enhanced neurogenesis following TMT-induced neuronal injury in adult mice.
Collapse
Affiliation(s)
- Masanori Yoneyama
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University Hirakata, Osaka, Japan
| | | | | |
Collapse
|
19
|
Casalbore P, Barone I, Felsani A, D'Agnano I, Michetti F, Maira G, Cenciarelli C. Neural stem cells modified to express BDNF antagonize trimethyltin-induced neurotoxicity through PI3K/Akt and MAP kinase pathways. J Cell Physiol 2010; 224:710-21. [PMID: 20432466 DOI: 10.1002/jcp.22170] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Nagashima R, Sano S, Huong NQ, Shiba T, Ogita K. Enhanced Expression of Glutathione S-Transferase in the Hippocampus Following Acute Treatment With Trimethyltin In Vivo. J Pharmacol Sci 2010; 113:267-70. [DOI: 10.1254/jphs.09158sc] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
21
|
Nagashima R, Yamaguchi T, Tanaka H, Ogita K. Mechanism Underlying the Protective Effect of Tempol and Nω-Nitro-L-arginine Methyl Ester on Acoustic Injury: Possible Involvement of c-Jun N-Terminal Kinase Pathway and Connexin26 in the Cochlear Spiral Ligament. J Pharmacol Sci 2010; 114:50-62. [DOI: 10.1254/jphs.10113fp] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
22
|
Yoneyama M, Kawada K, Gotoh Y, Shiba T, Ogita K. Endogenous reactive oxygen species are essential for proliferation of neural stem/progenitor cells. Neurochem Int 2009; 56:740-6. [PMID: 19958807 DOI: 10.1016/j.neuint.2009.11.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 11/24/2009] [Accepted: 11/25/2009] [Indexed: 11/30/2022]
Abstract
It is widely thought that accumulation of reactive oxygen species (ROS) causes injury to cells. In this study, we investigated the effect of endogenous ROS on the proliferation of neural stem/progenitor cells derived from the hippocampus of embryonic mice. The cells were treated with free radical-scavenging agents [3-methyl-1-phenyl-2-pyrazolin-5-one (edaravone) or 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (tempol)], an NADPH oxidase inhibitor (apocynin), catalase, a nitric oxide synthase inhibitor [N(omega)-nitro-L-arginine methyl ester hydrochloride (L-NAME)] or a peroxynitrite generator (SIN-1) during the culture period. Edaravone and tempol had the ability to decrease endogenous ROS in the cells exposed for periods from 1 to 24h, with attenuation of the proliferation activity of the cells during culture. Apocynin and L-NAME were also effective in attenuating cell proliferation but not cellular damage. Conversely, SIN-1 was capable of promoting the proliferation activity. However, catalase had no effect on the proliferation activity of the cells during culture. Furthermore, tempol significantly decreased the level of NFkappaB p65, phospho-cyclic AMP response element-binding protein, and beta-catenin within the nucleus of the cells. These data suggest that endogenous ROS and nitric oxide are essential for the proliferation of embryonic neural stem/progenitor cells.
Collapse
Affiliation(s)
- Masanori Yoneyama
- Department of Pharmacology, Setsunan University, Faculty of Pharmaceutical Sciences, Hirakata, Osaka, Japan
| | | | | | | | | |
Collapse
|
23
|
Yoneyama M, Seko K, Kawada K, Sugiyama C, Ogita K. High susceptibility of cortical neural progenitor cells to trimethyltin toxicity: involvement of both caspases and calpain in cell death. Neurochem Int 2009; 55:257-64. [PMID: 19524117 DOI: 10.1016/j.neuint.2009.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/26/2009] [Accepted: 03/10/2009] [Indexed: 10/21/2022]
Abstract
Neural progenitor cells play an essential role in both the developing embryonic nervous system and in the adult brain, where the capacity for self-renewal would be important for normal brain functions. In the present study, we used embryonic cortical neural progenitor cells to investigate the effects of trimethyltin chloride (TMT) on the survival of neural progenitor cells. In cultures of cortical neural progenitor cells, the formation of round neurospheres was observed in the presence of epidermal growth factor and basic fibroblast growth factor within 9 days in vitro. The neurospheres were then harvested for subsequent replating and culturing for assessment of cell viability in either the presence or absence of TMT at the concentration of 5microM. Lasting exposure to TMT produced not only nuclear condensation in the cells in a time-dependent manner over a period of 6-24h, but also the release of lactate dehydrogenase into the culture medium. Immunoblot and immunocytochemical analyses revealed that TMT had the ability to activate both caspase-3 and calpain, as well as to cause nuclear translocation of deoxyribonuclease II, which is located within cytoplasm in intact cells. Additionally, treatment with a calpain inhibitor [trans-epoxysuccinyl-l-leucylamido-(4-guanidino) butane] and a caspase inhibitor [Z-Val-Ala-Asp(OMe)-CH2F] produced a significant reduction in damaged cells induced by TMT. Taken together, our data indicate that neural progenitor cells are highly susceptible to TMT in undergoing cell death via the activation of 2 parallel pathways, ones involving calpain and the other, caspase-3.
Collapse
Affiliation(s)
- Masanori Yoneyama
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | | | | | | | | |
Collapse
|
24
|
Shuto M, Higuchi K, Sugiyama C, Yoneyama M, Kuramoto N, Nagashima R, Kawada K, Ogita K. Endogenous and Exogenous Glucocorticoids Prevent Trimethyltin From Causing Neuronal Degeneration of the Mouse Brain In Vivo: Involvement of Oxidative Stress Pathways. J Pharmacol Sci 2009; 110:424-36. [DOI: 10.1254/jphs.09107fp] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|