1
|
Miyauchi-Wakuda S, Kagota S, Maruyama-Fumoto K, Wakuda H, Yamada S, Shinozuka K. Effect of Royal Jelly on Mouse Isolated Ileum and Gastrointestinal Motility. J Med Food 2019; 22:789-796. [DOI: 10.1089/jmf.2018.4340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Shino Miyauchi-Wakuda
- Department of Pharmacology II, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Satomi Kagota
- Department of Pharmacology II, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Kana Maruyama-Fumoto
- Department of Pharmacology II, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Hirokazu Wakuda
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Oita University, Yufu, Japan
| | - Shizuo Yamada
- Center for Pharma-Food Research (CPFR), Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kazumasa Shinozuka
- Department of Pharmacology II, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| |
Collapse
|
2
|
Recent Trends in Pharmacological Activity of Alkaloids in Animal Colitis: Potential Use for Inflammatory Bowel Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:8528210. [PMID: 28191024 PMCID: PMC5278565 DOI: 10.1155/2017/8528210] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/30/2016] [Accepted: 11/24/2016] [Indexed: 11/24/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic and disrupted inflammation of the gastrointestinal tract. IBD have two main conditions, Crohn's disease and ulcerative colitis, and have been extensively investigated in recent years. Antibiotics derived from salicylates, steroids, immunosuppressors, and anti-TNF therapy are part of the therapeutic arsenal for IBD. However, very often patients stop responding to treatments over the time. In this context, searching for alternative agents is crucial for IBD clinical management. Natural products derived from medicinal plants are an interesting therapeutic alternative, since several studies have proven effective treatments in animal models of intestinal inflammation. Several naturally occurring compounds are potent antioxidants, both as free radical scavengers and as modulators of antioxidant enzymes expression and activity. A number of natural compounds have also been proved to inhibit the release of proinflammatory cytokines, decreasing the activation of nuclear factor κB (NF-κB), which is important to the inflammatory response in IBD. The alkaloids are substances of a very diverse class of plant secondary metabolites; an extensive list of biological activities has been attributed to alkaloids, such as being anticholinergic, antitumor, diuretic, antiviral, antihypertensive, antiulcer, analgesic, and anti-inflammatory. In the present work, studies on the pharmacological activity of alkaloids in experimental models of IBD were reviewed.
Collapse
|
3
|
Anti-inflammatory effects of the nicotinergic peptides SLURP-1 and SLURP-2 on human intestinal epithelial cells and immunocytes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:609086. [PMID: 24877120 PMCID: PMC4024406 DOI: 10.1155/2014/609086] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/17/2014] [Indexed: 12/18/2022]
Abstract
A search for novel and more efficient therapeutic modalities of inflammatory bowel disease (IBD) is one of the most important tasks of contemporary medicine. The anti-inflammatory action of nicotine in IBD might be therapeutic, but its toxicity due to off-target and nonreceptor effects limited its use and prompted a search for nontoxic nicotinergic drugs. We tested the hypothesis that SLURP-1 and -2—the physiological nicotinergic substances produced by the human intestinal epithelial cells (IEC) and immunocytes—can mimic the anti-inflammatory effects of nicotine. We used human CCL-241 enterocytes, CCL-248 colonocytes, CCRF-CEM T-cells, and U937 macrophages. SLURP-1 diminished the TLR9-dependent secretion of IL-8 by CCL-241, and IFNγ-induced upregulation of ICAM-1 in both IEC types. rSLURP-2 inhibited IL-1β-induced secretion of IL-6 and TLR4- and TLR9-dependent induction of CXCL10 and IL-8, respectively, in CCL-241. rSLURP-1 decreased production of TNFα by T-cells, downregulated IL-1β and IL-6 secretion by macrophages, and moderately upregulated IL-10 production by both types of immunocytes. SLURP-2 downregulated TNFα and IFNγR in T-cells and reduced IL-6 production by macrophages. Combining both SLURPs amplified their anti-inflammatory effects. Learning the pharmacology of SLURP-1 and -2 actions on enterocytes, colonocytes, T cells, and macrophages may help develop novel effective treatments of IBD.
Collapse
|
4
|
Abstract
INTRODUCTION The ability of nicotine, the primary psychoactive substance in tobacco smoke, to regulate appetite and body weight is one of the factors cited by smokers that prevents them from quitting and is the primary reason for smoking initiation in teenage girls. The regulation of feeding and metabolism by nicotine is complex, and recent studies have begun to identify nicotinic acetylcholine receptor (nAChR) subtypes and circuits or cell types involved in this regulation. DISCUSSION We will briefly describe the primary anatomical and functional features of the input, output, and central integration structures of the neuroendocrine systems that regulate energy homeostasis. Then, we will describe the nAChR subtypes expressed in these structures in mammals to identify the possible molecular targets for nicotine. Finally, we will review the effects of nicotine and its withdrawal on feeding and energy metabolism and attribute them to potential central and peripheral cellular targets.
Collapse
Affiliation(s)
- Michele Zoli
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy.
| | | |
Collapse
|
5
|
Hamada Y, Kato E, Nakamura H, Fujino H, Matsumoto K, Tashima K, Horie S, Murayama T. Decrease of guanylyl cyclase β1 subunit and nitric oxide (NO)-induced relaxation in mouse rectum with colitis and its reproduction on long-term NO treatment. Naunyn Schmiedebergs Arch Pharmacol 2011; 385:81-94. [PMID: 21947227 DOI: 10.1007/s00210-011-0681-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 08/11/2011] [Indexed: 02/08/2023]
Abstract
Nitric oxide (NO) influences motility in the colon in patients with ulcerative colitis, but the exact mechanism involved remains unknown. Colitis was induced in mice by the oral administration of 2.5% dextran sodium sulfate (DSS), and the motility in longitudinal preparations from rectum and distal colon and expression of β1 subunit of soluble guanylyl cyclase (sGCβ1) were analyzed. Electrical stimulation (ES) caused a transient relaxation via the NO pathway in both rectum and colon from control mice. Stimulation with sodium nitroprusside (SNP) caused relaxation in the two regions, and the half-time (T (1/2)) of the maximal relaxation induced by 100 μM SNP was 8.1 ± 1.0 s in rectum. DSS treatment (1) abolished the ES-induced relaxation, but not dibutyryl cyclic GMP-induced response, in both regions, (2) decreased the maximal response to SNP accompanied by a loss of immunoreactive sGCβ1 protein in rectum, but did not affect the amplitude of the relaxant response or the protein in distal colon, and (3) caused an increase in the T (1/2) value in response to SNP in both regions. Pretreatment of both preparations from control mice with 600 μM SNP for 30 min decreased both ES- and SNP-induced relaxation, SNP-induced cyclic GMP formation, and immunoreactive sGCβ1 levels. NO-mediated relaxation was impaired by a dysfunctional sGC with and without a loss of immunoreactivity to sGCβ1 in rectum and colon from DSS-treated mice, respectively. Long-term exposure of the tissues with an excess amount of NO changes the sGC-mediated relaxation.
Collapse
Affiliation(s)
- Yuri Hamada
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Kato E, Yamane S, Nomura R, Matsumoto K, Tashima K, Horie S, Saito T, Fujino H, Murayama T. Dysfunction of neurogenic VIP-mediated relaxation in mouse distal colon with dextran sulfate sodium-induced colitis. Pharmacol Res 2011; 65:204-12. [PMID: 21939768 DOI: 10.1016/j.phrs.2011.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/09/2011] [Accepted: 09/07/2011] [Indexed: 12/13/2022]
Abstract
Vasoactive intestinal peptide (VIP) regulates various functions including motility and immune homeostasis in colon. The VIP system including its receptors has been established to control the development of ulcerative colitis, but the functional changes of the system-regulated motility in colon with ulcerative colitis are not well understood. In this study, we investigated VIP-related contractile responses in distal colon from mice with dextran sulfate sodium (DSS)-induced acute colitis. Electrical stimulation (ES) under our conditions caused relaxation during ES and contraction after withdrawal of ES in a tetrodotoxin-sensitive manner. Pharmacological analyses showed two phases of ES-induced relaxation: a transient neuronal nitric oxide (NO) synthase-dependent phase (I), and a continued VIP receptor-mediated phase (II). Inhibition of VIP receptors and protein kinase A decreased both phases. In colon from DSS-treated mice, ES-induced phase II (also phase I) and VIP-induced, but not cyclic AMP analog-induced, relaxation were decreased. Stimulation with VIP significantly increased cyclic AMP formation in colon preparations from control but not DSS-treated mice. In colon from DSS-treated mice, the basal cyclic AMP level was markedly greater without changes in the level of VIP receptor VPAC(2). Isoprenaline- and forskolin-induced relaxation and cyclic AMP formation were not changed by DSS treatment. These findings suggest that dysfunction of VIP receptors in muscles, in addition to loss of the neuronal VIP and NO pathways, are involved in abnormal motility in mouse colon with DSS-induced colitis.
Collapse
Affiliation(s)
- Erina Kato
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Azuma YT, Matsuo Y, Nakajima H, Yancopoulos GD, Valenzuela DM, Murphy AJ, Karow M, Takeuchi T. Interleukin-19 is a negative regulator of innate immunity and critical for colonic protection. J Pharmacol Sci 2010; 115:105-111. [PMID: 21157117 DOI: 10.1254/jphs.10r02cr] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 10/08/2010] [Indexed: 12/09/2022] Open
Abstract
The cytokine, interleukin (IL)-19, is a member of the IL-10 family that includes IL-20, IL-22, IL-24, and IL-26. Recent studies have shown that IL-19 is produced by keratinocytes, epithelial cells, macrophages, and B-cells. Little is known about the exact biological role of IL-19 in immunological regulation, although there is an increasing body of data demonstrating that IL-19 is associated with the development of Th2 responses and the pathogenesis of psoriasis. In this review, I shall attempt to discuss current knowledge about the role of IL-19 on macrophages and the potential role in inflammatory bowel disease.
Collapse
Affiliation(s)
- Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Izumisano, Osaka 598-8531, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Carter PR, McElhatten RM, Zhang S, Wright WS, Harris NR. Thromboxane-prostanoid receptor expression and antagonism in dextran-sodium sulfate-induced colitis. Inflamm Res 2010; 60:87-92. [DOI: 10.1007/s00011-010-0240-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 07/23/2010] [Indexed: 10/19/2022] Open
|
9
|
Sakuma S, Yano T, Masaoka Y, Kataoka M, Hiwatari KI, Tachikawa H, Shoji Y, Kimura R, Ma H, Yang Z, Tang L, Hoffman RM, Yamashita S. Detection of early colorectal cancer imaged with peanut agglutinin-immobilized fluorescent nanospheres having surface poly(N-vinylacetamide) chains. Eur J Pharm Biopharm 2010; 74:451-60. [PMID: 20060903 DOI: 10.1016/j.ejpb.2010.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/26/2009] [Accepted: 01/05/2010] [Indexed: 11/17/2022]
Abstract
Peanut agglutinin (PNA)-immobilized fluorescent nanospheres were designed as a novel imaging agent for colonoscopy. PNA is a targeting moiety that binds to beta-D-galactosyl-(1-3)-N-acetyl-D-galactosamine, which is the terminal sugar of the Thomsen-Friedenreich antigen that is specifically expressed on the mucosal side of colorectal cancer cells. The in vivo performance of the imaging agent was evaluated using a human colorectal cancer orthotopic animal model. Human colorectal adenocarcinoma cell lines, HT-29, HCT-116, and LS174T, were implanted on the cecal serosa of immune-deficient mice. A loop of the tumor-bearing cecum was made, and the luminal side was treated with the imaging agent. Strong fluorescence was observed at several sites of the cecal mucosa, irrespective of cancer cell type. Microscopic histological evaluation of the cecal mucosa revealed that bright areas with fluorescence derived from the imaging agent and dark areas without the fluorescence well denoted the presence and absence, respectively, of the invasion of implanted cancer cells on the mucosal side. This good correlation showed that PNA-immobilized fluorescent nanospheres recognized millimeter-sized tumors on the cecal mucosa with high affinity and specificity.
Collapse
Affiliation(s)
- Shinji Sakuma
- Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|