1
|
Fumagalli G, Monza L, Cavaletti G, Rigolio R, Meregalli C. Neuroinflammatory Process Involved in Different Preclinical Models of Chemotherapy-Induced Peripheral Neuropathy. Front Immunol 2021; 11:626687. [PMID: 33613570 PMCID: PMC7890072 DOI: 10.3389/fimmu.2020.626687] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Peripheral neuropathies are characterized by nerves damage and axonal loss, and they could be classified in hereditary or acquired forms. Acquired peripheral neuropathies are associated with several causes, including toxic agent exposure, among which the antineoplastic compounds are responsible for the so called Chemotherapy-Induced Peripheral Neuropathy (CIPN). Several clinical features are related to the use of anticancer drugs which exert their action by affecting different mechanisms and structures of the peripheral nervous system: the axons (axonopathy) or the dorsal root ganglia (DRG) neurons cell body (neuronopathy/ganglionopathy). In addition, antineoplastic treatments may affect the blood brain barrier integrity, leading to cognitive impairment that may be severe and long-lasting. CIPN may affect patient quality of life leading to modification or discontinuation of the anticancer therapy. Although the mechanisms of the damage are not completely understood, several hypotheses have been proposed, among which neuroinflammation is now emerging to be relevant in CIPN pathophysiology. In this review, we consider different aspects of neuro-immune interactions in several CIPN preclinical studies which suggest a critical connection between chemotherapeutic agents and neurotoxicity. The features of the neuroinflammatory processes may be different depending on the type of drug (platinum derivatives, taxanes, vinca alkaloids and proteasome inhibitors). In particular, recent studies have demonstrated an involvement of the immune response (both innate and adaptive) and the stimulation and secretion of mediators (cytokines and chemokines) that may be responsible for the painful symptoms, whereas glial cells such as satellite and Schwann cells might contribute to the maintenance of the neuroinflammatory process in DRG and axons respectively. Moreover, neuroinflammatory components have also been shown in the spinal cord with microglia and astrocytes playing an important role in CIPN development. Taking together, better understanding of these aspects would permit the development of possible strategies in order to improve the management of CIPN.
Collapse
Affiliation(s)
- Giulia Fumagalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Laura Monza
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Roberta Rigolio
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
2
|
Matsubara Y, Okuda H, Harada KH, Youssefian S, Koizumi A. Mechanical allodynia triggered by cold exposure in mice with the Scn11a p.R222S mutation: a novel model of drug therapy for neuropathic pain related to Na V1.9. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:299-306. [PMID: 32970203 PMCID: PMC7835175 DOI: 10.1007/s00210-020-01978-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022]
Abstract
Mutations within the SCN11A gene which encodes the voltage-gated sodium channel NaV1.9 mainly expressed in small fiber sensory neurons have been associated with neuropathic disorders; however, suitable medications have not been fully investigated. To develop drug therapies against NaV1.9-related neuropathic pain, we aimed to establish a novel model using mice carrying the Scn11a p.R222S mutation initially identified in patients with familial episodic limb pain that is characterized by paroxysmal pain induced by fatigue or bad weather conditions. We investigated the influence of cold exposure (4 °C, overnight) on the behavioral and biochemical phenotypes of Scn11a p.R222S mutant (R222S) and wild type C57BL/6N (WT) mice. We also tested the effects of acetaminophen (125, 250 mg/kg, perorally, p.o.) and traditional Japanese medicine, goshajinkigan (0.5 or 1.0 g/kg, p.o.), which are analgesic drugs prescribed to patients with neuropathic pain, in this model of cold-induced mechanical allodynia in R222S mice.Cold-exposed R222S mice exhibited enhanced mechanical allodynia and thermal hypersensitivity compared with WT mice. The decrease of the mechanical withdrawal threshold in R222S mice was reversible 24 h after housing at room temperature. There was no significant change in the levels of interleukin-1β, interleukin-6, tumor necrosis factor-α, or interferon-γ in the plasma or spinal cords of WT and R222S mice after cold exposure. Both acetaminophen (250 mg/kg) and goshajinkigan (1.0 g/kg) significantly attenuated mechanical allodynia in R222S mice. The model of cold-induced mechanical allodynia in mice with the Scn11a p.R222S mutation is novel and useful for evaluating analgesic drugs for intractable neuropathies related to NaV1.9.
Collapse
Affiliation(s)
- Yosuke Matsubara
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan.
- Laboratory of Molecular Biosciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Hiroko Okuda
- Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shohab Youssefian
- Laboratory of Molecular Biosciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akio Koizumi
- Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Social Health Medicine Welfare Laboratory, Public Interest Incorporated Association Kyoto Hokenkai, Kyoto, Japan
| |
Collapse
|
3
|
Gabapentin and Duloxetine Prevent Oxaliplatin- and Paclitaxel-Induced Peripheral Neuropathy by Inhibiting Extracellular Signal-Regulated Kinase 1/2 (ERK1/2) Phosphorylation in Spinal Cords of Mice. Pharmaceuticals (Basel) 2020; 14:ph14010030. [PMID: 33396362 PMCID: PMC7824557 DOI: 10.3390/ph14010030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy is a common factor in limiting therapy which can result in therapy cessation or dose reduction. Gabapentin, a calcium channel inhibitor, and duloxetine, a serotonin noradrenaline reuptake inhibitor, are used to treat a variety of pain conditions such as chronic low back pain, postherpetic neuralgia, and diabetic neuropathy. It has been reported that administration of gabapentin suppressed oxaliplatin- and paclitaxel-induced mechanical hyperalgesia in rats. Moreover, duloxetine has been shown to suppress oxaliplatin-induced cold allodynia in rats. However, the mechanisms by which these drugs prevent oxaliplatin- and paclitaxel-induced neuropathy remain unknown. Behavioral assays were performed using cold plate and the von Frey test. The expression levels of proteins were examined using western blot analysis. In this study, we investigated the mechanisms by which gabapentin and duloxetine prevent oxaliplatin- and paclitaxel-induced neuropathy in mice. We found that gabapentin and duloxetine prevented the development of oxaliplatin- and paclitaxel-induced cold and mechanical allodynia. In addition, our results revealed that gabapentin and duloxetine suppressed extracellular signal-regulated protein kinase 1/2 (ERK1/2) phosphorylation in the spinal cord of mice. Moreover, PD0325901 prevented the development of oxaliplatin- and paclitaxel-induced neuropathic-like pain behavior by inhibiting ERK1/2 activation in the spinal cord of mice. In summary, our findings suggest that gabapentin, duloxetine, and PD0325901 prevent the development of oxaliplatin- and paclitaxel-induced neuropathic-like pain behavior by inhibiting ERK1/2 phosphorylation in mice. Therefore, inhibiting ERK1/2 phosphorylation could be an effective preventive strategy against oxaliplatin- and paclitaxel-induced neuropathy.
Collapse
|
4
|
De Logu F, Trevisan G, Marone IM, Coppi E, Padilha Dalenogare D, Titiz M, Marini M, Landini L, Souza Monteiro de Araujo D, Li Puma S, Materazzi S, De Siena G, Geppetti P, Nassini R. Oxidative stress mediates thalidomide-induced pain by targeting peripheral TRPA1 and central TRPV4. BMC Biol 2020; 18:197. [PMID: 33317522 PMCID: PMC7737339 DOI: 10.1186/s12915-020-00935-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
Background The mechanism underlying the pain symptoms associated with chemotherapeutic-induced peripheral neuropathy (CIPN) is poorly understood. Transient receptor potential ankyrin 1 (TRPA1), TRP vanilloid 4 (TRPV4), TRPV1, and oxidative stress have been implicated in several rodent models of CIPN-evoked allodynia. Thalidomide causes a painful CIPN in patients via an unknown mechanism. Surprisingly, the pathway responsible for such proalgesic response has not yet been investigated in animal models. Results Here, we reveal that a single systemic administration of thalidomide and its derivatives, lenalidomide and pomalidomide, elicits prolonged (~ 35 days) mechanical and cold hypersensitivity in C57BL/6J mouse hind paw. Pharmacological antagonism or genetic deletion studies indicated that both TRPA1 and TRPV4, but not TRPV1, contribute to mechanical allodynia, whereas cold hypersensitivity was entirely due to TRPA1. Thalidomide per se did not stimulate recombinant and constitutive TRPA1 and TRPV4 channels in vitro, which, however, were activated by the oxidative stress byproduct, hydrogen peroxide. Systemic treatment with an antioxidant attenuated mechanical and cold hypersensitivity, and the increase in oxidative stress in hind paw, sciatic nerve, and lumbar spinal cord produced by thalidomide. Notably, central (intrathecal) or peripheral (intraplantar) treatments with channel antagonists or an antioxidant revealed that oxidative stress-dependent activation of peripheral TRPA1 mediates cold allodynia and part of mechanical allodynia. However, oxidative stress-induced activation of central TRPV4 mediated the residual TRPA1-resistant component of mechanical allodynia. Conclusions Targeting of peripheral TRPA1 and central TRPV4 may be required to attenuate pain associated with CIPN elicited by thalidomide and related drugs.
Collapse
Affiliation(s)
- Francesco De Logu
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Gabriela Trevisan
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Ilaria Maddalena Marone
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, Florence, Italy
| | | | - Mustafa Titiz
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Matilde Marini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Lorenzo Landini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Daniel Souza Monteiro de Araujo
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Simone Li Puma
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Serena Materazzi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Gaetano De Siena
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy.
| |
Collapse
|
5
|
Pozzi E, Fumagalli G, Chiorazzi A, Canta A, Meregalli C, Monza L, Carozzi VA, Oggioni N, Rodriguez-Menendez V, Cavaletti G, Marmiroli P. The relevance of multimodal assessment in experimental oxaliplatin-induced peripheral neurotoxicity. Exp Neurol 2020; 334:113458. [PMID: 32889007 DOI: 10.1016/j.expneurol.2020.113458] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 12/21/2022]
Abstract
Chemotherapy-induced peripheral neurotoxicity represents one of the most relevant dose-limiting side effects that can affect cancer patients treated with the common antineoplastic agents. Since the severity of neurotoxicity often leads to dose reduction or early cessation of chemotherapy, the investigation of molecular mechanisms underlying chemotherapy-induced peripheral neurotoxicity is an urgent clinical need in order to better understand its physiopathology and find effective strategies for neuroprotection. Several in vivo preclinical models of chemotherapy-induced peripheral neurotoxicity have been developed but a great variability in mouse strain, dose, route of administration of the drug, treatment schedule and assessment of neurotoxicity is observed between the different published studies making difficult the comparison and interpretation of their results. In many of these studies only behavioural tests are used as outcome measures, while possible neurophysiological and neuropathological changes are not evaluated. In this study, focused on experimental oxaliplatin-induced peripheral neurotoxicity, we reproduced and compared four mouse models with very different drug dose (low or high dose-intensity) and treatment schedules (short or long-term treatment), selected from the literature. Using a multimodal assessment based on behavioural, neurophysiological and neuropathological methods, we evidenced remarkable differences in the results obtained in the selected animal models. This work suggests the importance of a multimodal approach including extensive pathological investigation to confirm the behavioural results.
Collapse
Affiliation(s)
- Eleonora Pozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Giulia Fumagalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alessia Chiorazzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Annalisa Canta
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Monza
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Valentina Alda Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Norberto Oggioni
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | - Paola Marmiroli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
6
|
Yu H, Toume K, Kurokawa Y, Andoh T, Komatsu K. Iridoids isolated from Viticis Fructus inhibit paclitaxel-induced mechanical allodynia in mice. J Nat Med 2020; 75:48-55. [PMID: 32816150 DOI: 10.1007/s11418-020-01441-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/29/2020] [Indexed: 01/07/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) manifests as mechanical allodynia and hyperalgesia, and is one of the main adverse effects of chemotherapeutic agents. Currently available therapeutic drugs are not sufficiently effective for the management of this adverse effect in the clinic. Therefore, the development of novel therapeutic agents for treating CIPN is necessary. Our previous study suggested the potential of aucubin and pedicularis-lactone (1) as active compounds responsible for the anti-allodynic property of Plantaginis Semen. However, the activity of purified 1 has not been evaluated due to its low content in Plantaginis Semen. In the present study, 1 was isolated from Viticis Fructus, as well as viteoid I (2) and viteoid II (3) during the process of isolation. The purities of isolated 1, 2, and 3 were determined as 67.15%, 92.12%, and 86.72%, respectively, by quantitative 1H-NMR, using DSS-d6 as an internal standard. Repeated daily oral administration of these three iridoids at a dose of 15 mg/kg significantly inhibited the PTX-induced mechanical allodynia in mice, suggesting the anti-allodynic activities of 1, 2, and 3. This study provides confirmatory evidence for the anti-allodynic activity of purified 1 and also reveals two additional active iridoids from Viticis Fructus. These three iridoids could be potential candidates for the treatment of CIPN.
Collapse
Affiliation(s)
- Huanhuan Yu
- Section of Pharmacognosy, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Kazufumi Toume
- Section of Pharmacognosy, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.
| | - Yoko Kurokawa
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Tsugunobu Andoh
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.,Department of Pharmacology and Pathophysiology, College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi, 463-8521, Japan
| | - Katsuko Komatsu
- Section of Pharmacognosy, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
7
|
Goto Y, Hosomi K, Shimokawa T, Shimizu T, Yoshino K, Kim SJ, Mano T, Kishima H, Saitoh Y. Pilot study of repetitive transcranial magnetic stimulation in patients with chemotherapy-induced peripheral neuropathy. J Clin Neurosci 2020; 73:101-107. [PMID: 32063448 DOI: 10.1016/j.jocn.2020.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/05/2020] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Chemotherapy-induced peripheral neuropathy (CIPN) is one of the intractable long-term side effects of anticancer medications and results in pain and dysesthesia. Repetitive transcranial magnetic stimulation (rTMS) of the primary motor cortex has been demonstrated to provide effective relief for intractable neuropathic pain. The objective of this study was to investigate the effects of rTMS treatment on CIPN in cancer patients. MATERIALS AND METHODS Eleven female patients with breast cancer or gynecologic cancer (mean age 64.8 [standard deviation 7.8]) who had neuropathic pain and/or peripheral sensory neuropathy, with a minimum two grade severity based on the scale of the National Cancer Institutes' Common Terminology Criteria for Adverse Events (version 4.0) were enrolled. Patients received rTMS (5-Hz; 500 pulses/session; figure-8 coil) on their primary motor cortex corresponding to the target extremity. The intensity of pain and dysesthesia for all extremities was evaluated using a visual analog scale for pain, dysesthesia, and the Japanese version of the short-form McGill Pain Questionnaire 2 (SFMPQ2). RESULTS rTMS for target extremity significantly decreased the visual analog scale of pain and dysesthesia. The intensity of pain measured by the SFMPQ2 was also decreased in the target extremity. Regarding non-target extremities, only dysesthesia significantly decreased as a result of rTMS. No adverse events were observed. CONCLUSION This is an initial report demonstrating the potential of rTMS for the treatment of CIPN. We suggest rTMS could be potentially beneficial and effective as a treatment for pain and dysesthesia in patients with CIPN.
Collapse
Affiliation(s)
- Yuko Goto
- Departments of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; Yu Neurosurgery Clinic, Toyonaka, Osaka 560-0083, Japan.
| | - Koichi Hosomi
- Departments of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | - Toshio Shimokawa
- Clinical Study Support Center, Wakayama Medical University, Wakayama, Wakayama 641-8509, Japan.
| | - Takeshi Shimizu
- Department of Neurosurgery, Kansai Rosai Hospital, Amagasaki, Hyogo 660-8511, Japan.
| | - Kiyoshi Yoshino
- Department of Obstetrics and Gynecology, University of Occupational and Environmental Health, Graduate School of Medicine, Kita-kyushu, Fukuoka, Japan.
| | - Seung Jin Kim
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | - Tomoo Mano
- Departments of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | - Youichi Saitoh
- Departments of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
8
|
Improvement of peripheral vascular impairment by a phosphodiesterase type 5 inhibitor tadalafil prevents oxaliplatin-induced peripheral neuropathy in mice. J Pharmacol Sci 2019; 141:131-138. [PMID: 31734027 DOI: 10.1016/j.jphs.2019.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/03/2019] [Accepted: 10/23/2019] [Indexed: 12/23/2022] Open
Abstract
Oxaliplatin, a platinum-based chemotherapeutic drug, frequently induces peripheral neuropathy. Accumulating evidences suggest a possible relationship between peripheral vascular impairment and peripheral neuropathy. In this study, we investigated the effects of vasodilators on cumulative peripheral neuropathy induced by repeated injections of oxaliplatin (10 mg/kg) once a week for 8 weeks in mice. Single injections of vasodilators, including a phosphodiesterase type 5 inhibitor tadalafil acutely alleviated oxaliplatin-induced cold hypersensitivity, while tadalafil had no effect on the mechanical hypersensitivity. By contrast, long-term administration of tadalafil (0.1% in chow diets) during the oxaliplatin injection period reduced the oxaliplatin-induced decreases in skin temperature and blood flow without affecting platinum concentrations in blood, sciatic nerves, and dorsal root ganglion. The long-term administration significantly suppressed cold, mechanical, and electrical current hypersensitivities as well as thermal hypoesthesia. Furthermore, it prevented the decreases in sensory nerve conductance velocity and the number of endoneurial microvessels, and axon degeneration in the sciatic nerves. In vitro studies confirmed that tadalafil does not interfere with the cytotoxicity of oxaliplatin against human cancer cell lines. Altogether, these results suggest that improvement of peripheral vascular impairment by tadalafil could alleviate and prevent oxaliplatin-induced peripheral neuropathy.
Collapse
|
9
|
Toume K, Hou Z, Yu H, Kato M, Maesaka M, Bai Y, Hanazawa S, Ge Y, Andoh T, Komatsu K. Search of anti-allodynic compounds from Plantaginis Semen, a crude drug ingredient of Kampo formula "Goshajinkigan". J Nat Med 2019; 73:761-768. [PMID: 31190267 PMCID: PMC7176603 DOI: 10.1007/s11418-019-01327-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 06/01/2019] [Indexed: 01/22/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the dose-limiting side effects of cancer chemotherapy. Although the control of CIPN is important, it is difficult to manage with currently available therapeutic drugs. Therefore, there is a need for novel therapeutic agents for treating CIPN. Goshajinkigan (GJG) is a Kampo formula composed of ten crude drugs. While GJG has been used for the treatment of CIPN, the active constituents of GJG and their underlying mechanisms of pharmacological effects are still unknown. Our previous study revealed that repetitive oral administration of the water extract of Plantaginis Semen, a crude drug ingredient of GJG, inhibited the mechanical allodynia induced by an intraperitoneal injection of paclitaxel in mice. To elucidate the active compounds of Plantaginis Semen, activity-guided separation of the water extract of Plantaginis Semen was performed. From the active fraction, four iridoids (1-4) were identified. Repetitive oral administration of aucubin (1) at 100 or 30 mg/kg and 100 mg/kg of the fraction crude 3 [primarily comprised of pedicularis-lactone (3)], showed anti-allodynic activity, suggesting 1 and 3 could be some of the active compounds responsible for the anti-allodynic property of Plantaginis Semen and GJG. Our study establishes that oral administration of 1 has potent anti-allodynic effect in addition to the activity of intraperitoneally administered 1 reported previously. Identification of active anti-allodynic compounds found in Kampo formulations will support the development of novel therapies for the management of CIPN in cancer patients.
Collapse
Affiliation(s)
- Kazufumi Toume
- Division of Pharmacognosy, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.
| | - Zhiyan Hou
- Division of Pharmacognosy, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Huanhuan Yu
- Division of Pharmacognosy, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Mitsuru Kato
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Miki Maesaka
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Yanjing Bai
- Division of Pharmacognosy, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Shiho Hanazawa
- Division of Pharmacognosy, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Yuewei Ge
- Division of Pharmacognosy, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Tsugunobu Andoh
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Katsuko Komatsu
- Division of Pharmacognosy, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
10
|
Prophylactic Repetitive Treatment with the Herbal Medicine Kei-kyoh-zoh-soh-oh-shin-bu-toh Attenuates Oxaliplatin-Induced Mechanical Allodynia by Decreasing Spinal Astrocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4029694. [PMID: 31118957 PMCID: PMC6500670 DOI: 10.1155/2019/4029694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/24/2019] [Accepted: 04/09/2019] [Indexed: 01/27/2023]
Abstract
Chemotherapeutic drugs typically induce peripheral neuropathy, which is a major dose-limiting side effect of these drugs and is difficult to manage. In this study, we examined whether the traditional herbal formulation Kei-kyoh-zoh-soh-oh-shin-bu-toh (KSOT) could relieve the mechanical allodynia induced by chemotherapeutic drugs (oxaliplatin, paclitaxel, vincristine, and bortezomib) in mice. A single intraperitoneal injection of oxaliplatin, paclitaxel, vincristine, and bortezomib was used to induce mechanical allodynia, which peaked on days 10, 14, 14, and 12 after the injection, respectively. A single oral administration of KSOT did not inhibit mechanical allodynia after any of the treatments. However, prophylactic repetitive oral administrations of KSOT inhibited the exacerbation of mechanical allodynia induced by oxaliplatin but were not effective for allodynia induced by the other drugs. A single intraperitoneal injection of oxaliplatin did not alter the mRNA expression of the NMDA receptor NR2B in the spinal cord and that of neuregulin-1 in the sciatic nerve. In addition, the number of microglia in spinal dorsal horn did not increase in oxaliplatin-treated mice. However, the number of reactivated astrocytes in the spinal dorsal horn increased, which could be inhibited by repetitive administration of KSOT. These results suggest that prophylactic repetitive treatment of KSOT attenuates oxaliplatin-induced mechanical allodynia by decreasing the number of spinal astrocytes.
Collapse
|
11
|
Ishida H, Saito SY, Horie A, Ishikawa T. Alleviation of mechanical stress-induced allodynia by improving blood flow in chronic constriction injury mice. Eur J Pharmacol 2019; 849:67-74. [PMID: 30716308 DOI: 10.1016/j.ejphar.2019.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
Abstract
Reduced blood flow in the skin is observed in patients with neuropathic pain and in animal models. The aim of the present study was to elucidate the relationship between reduced skin blood flow and neuropathic pain in mice with a chronic constriction injury (CCI). Noradrenaline-induced contraction was enhanced in isolated plantar arteries ipsilateral to the CCI surgery compared to the contralateral arteries. Ten μM hydralazine, a peripheral vasodilator, at improved the enhanced contractile response in the ipsilateral arteries. The plantar blood flow in vivo was lower on the ipsilateral side of the CCI mice than on the contralateral side, and a 50% paw withdrawal threshold, as measured using the von Frey filament test, was lower on the former than on the latter side. An intraperitoneal injection (i.p.) of hydralazine (1 mg/kg) or phentolamine (5 mg/kg) improved blood flow in the skin and hyperalgesia in the ipsilateral plantar. In adrenalectomized CCI mice, plantar blood flow in the skin on the ipsilateral side was increased compared to in sham-operated mice, which was accompanied by alleviation of hyperalgesia. Moreover, the enhanced contractile response to noradrenaline was also observed in the ipsilateral plantar arteries isolated from the adrenalectomized CCI mice. Either hydralazine (1 mg/kg, i.p.) or an adrenalectomy barely affected mean arterial pressure in the CCI mice, whereas phentolamine (5 mg/kg, i.p.) lowered it. These results suggest that reduced blood flow in the skin contributes to neuropathic pain and that improving that blood flow with peripheral vasodilators, such as hydralazine, can alleviate it.
Collapse
Affiliation(s)
- Hirotake Ishida
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Japan
| | - Shin-Ya Saito
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Japan
| | - Ayaka Horie
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Japan
| | - Tomohisa Ishikawa
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Japan.
| |
Collapse
|
12
|
Ami N, Sato H, Hayakawa Y. Paclitaxel-induced hypothermia and hypoperfusion increase breast cancer metastasis and angiogenesis in mice. Oncol Lett 2017; 15:2330-2334. [PMID: 29434941 PMCID: PMC5776906 DOI: 10.3892/ol.2017.7621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/06/2017] [Indexed: 01/07/2023] Open
Abstract
Housing temperature has been shown to influence thermoregulation and behavior of preclinical cancer models; and anti-cancer drugs typically reduce peripheral blood flow and body temperature. In the present study, the effects of paclitaxel (PTX)-induced reduction of body temperature and peripheral blood flow on metastatic 4T1 breast cancer was investigated in a mouse model and the modification of these effects by thermoneutral temperature was also assessed. A single dose of PTX decreased the body temperature and peripheral blood flow in mice housed at a standard temperature (23°C). Furthermore, although lung metastasis and angiogenesis of inoculated 4T1 cells increased in mice pretreated with PTX, mice housed at a thermoneutral temperature (30°C) could compensate their body temperature and peripheral blood flow compared with control mice, and also suppressed 4T1 angiogenesis and metastasis to lung. The present results imply that maintenance of body temperature or efficient energy supply for thermogenesis may prevent tumor relapse or metastasis after chemotherapy.
Collapse
Affiliation(s)
- Nozomi Ami
- R&D Center, Terumo Corp., Nakai-machi, Kanagawa 259-0151, Japan.,Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama-shi, Toyama 930-0194, Japan
| | - Hideki Sato
- R&D Center, Terumo Corp., Nakai-machi, Kanagawa 259-0151, Japan
| | - Yoshihiro Hayakawa
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama-shi, Toyama 930-0194, Japan
| |
Collapse
|
13
|
Andoh T, Uta D, Kato M, Toume K, Komatsu K, Kuraishi Y. Prophylactic Administration of Aucubin Inhibits Paclitaxel-Induced Mechanical Allodynia via the Inhibition of Endoplasmic Reticulum Stress in Peripheral Schwann Cells. Biol Pharm Bull 2017; 40:473-478. [PMID: 28381802 DOI: 10.1248/bpb.b16-00899] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Paclitaxel is a chemotherapeutic agent that causes peripheral neuropathy as its major dose-limiting side effect. However, the peripheral neuropathy is difficult to manage. A study we recently conducted showed that repetitive administration of aucubin as a prophylactic inhibits paclitaxel-induced mechanical allodynia. However, the mechanisms underlying the anti-allodynic activity of aucubin, which is a major component of Plantaginis Semen, was unclear. In addition to mechanical allodynia, aucubin inhibited spontaneous and mechanical stimuli-induced firing in spinal dorsal horn neurons; however, catalpol, a metabolite of aucubin, did not show these effects. Furthermore, paclitaxel induced the expression of CCAAT/enhancer-binding protein homologous protein, a marker of endoplasmic reticulum (ER) stress, in the sciatic nerve and a Schwann cell line (LY-PPB6 cells); however, this effect was inhibited by aucubin. These results suggest that aucubin inhibits paclitaxel-induced mechanical allodynia through the inhibition of ER stress in peripheral Schwann cells.
Collapse
Affiliation(s)
- Tsugunobu Andoh
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | | | | | | | | | | |
Collapse
|
14
|
Effect of ninjin'yoeito and ginseng extracts on oxaliplatin-induced neuropathies in mice. J Nat Med 2017; 71:757-764. [PMID: 28695397 DOI: 10.1007/s11418-017-1113-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/04/2017] [Indexed: 02/04/2023]
Abstract
Oxaliplatin (L-OHP) is a platinum-based anticancer agent used to treat various types of cancer. It frequently causes acute and chronic peripheral neuropathies, such as cold allodynia and mechanical hyperalgesia. Ninjin'yoeito (NYT) is a formula used in traditional Japanese Kampo medicine to improve recovery from diseases and other medical disorders. We previously reported that treatment with a boiling-water extract of NYT prevented L-OHP-induced damage to neurite-like outgrowths from differentiated PC12 cells. The objectives of the present study were to evaluate the in vivo effects of NYT on L-OHP-induced neuropathic pain in mice and identify the active ingredients in NYT. Treatment with NYT extract significantly ameliorated both cold allodynia and mechanical hyperalgesia induced by L-OHP. While L-OHP treatment suppressed neurite outgrowths from primary dorsal root ganglion cells in vitro, NYT extract blocked this suppression in a concentration-dependent manner. Among the herbal components of NYT, the extract of ginseng (Panax ginseng roots) showed a protective effect against neurite damage induced by L-OHP, and one of its active ingredients was identified as ginsenoside Rg3. Ginseng extract partially relieved L-OHP-induced neuropathic pain in mice. Our results suggest that NYT could be an attractive agent for treating L-OHP-induced neuropathic pain, and that the active ingredient of NYT may be ginseng.
Collapse
|
15
|
Andoh T, Kobayashi N, Uta D, Kuraishi Y. Prophylactic topical paeoniflorin prevents mechanical allodynia caused by paclitaxel in mice through adenosine A 1 receptors. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 25:1-7. [PMID: 28190463 DOI: 10.1016/j.phymed.2016.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 11/29/2016] [Accepted: 12/18/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND The chemotherapeutic agent paclitaxel (PTX) causes refractory peripheral neuropathy as a side effect. Prophylactic oral administration of the traditional herbal medicine Shakuyakukanzoto containing Paeoniae Radix and Glycyrrhizae Radix prevents the development of PTX-induced mechanical allodynia in mice via peripheral effects, mostly due to Paeoniae Radix. However, the bioactive component responsible for the prevention of PTX-induced neuropathic pain remains unknown. PURPOSE To determine whether a monoterpene glycoside paeoniflorin (PF), which is the principal bioactive constituent of Paeoniae Radix, has inhibitory effects on PTX-induced mechanical allodynia and investigate the underlying mechanisms. METHODS C57BL/6NCr mice received a single intraperitoneal injection of PTX and then were topically administered PF to the planar surface twice daily for 13 days. Mechanical allodynia was evaluated by the von Frey filament test, peripheral nerve activity was recorded using bipolar electrodes, and demyelination in peripheral nerves was analysed by electron microscopy. Schwann cell line LY-PPB6 pre-treated with PF and then treated with PTX was used to analyse the expression of the transcription factor CHOP, a marker of endoplasmic reticulum (ER) stress, by western blotting. RESULTS PTX caused mechanical allodynia and increased both spontaneous and mechanical stimuli-evoked peripheral nerve activities, whereas repetitive topical application of PF significantly attenuated PTX-induced allodynia, suppressed saphenous nerve firing, and inhibited demyelination in the plantar nerve. Moreover, in cultured Schwann cells, PF downregulated PTX-induced expression of CHOP, indicating the inhibition of ER stress. The attenuation of mechanical allodynia in mice and downregulation of CHOP levels in cell cultures was inhibited by adenosine A1 receptor (A1R) antagonist 8-cyclopentyl-1,3-diprooylxanrhine, suggesting the involvement of A1R in PF-associated analgesic effects. CONCLUSION These results suggest that prophylactic topical application of PF is effective in alleviating PTX-induced mechanical allodynia by protecting sensory nerves from demyelination via activation of the A1R.
Collapse
Affiliation(s)
- Tsugunobu Andoh
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan.
| | - Nao Kobayashi
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Daisuke Uta
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Yasushi Kuraishi
- Research Administration Division, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| |
Collapse
|
16
|
Taguchi K. [Role of Transient Receptor Potential Channels in Paclitaxel- and Oxaliplatin-induced Peripheral Neuropathy]. YAKUGAKU ZASSHI 2016; 136:287-96. [PMID: 26831807 DOI: 10.1248/yakushi.15-00214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peripheral neuropathy is a common adverse effect of paclitaxel and oxaliplatin treatment. The major dose-limiting side effect of these drugs is peripheral sensory neuropathy. The symptoms of paclitaxel-induced neuropathy are mostly sensory and peripheral in nature, consisting of mechanical allodynia/hyperalgesia, tingling, and numbness. Oxaliplatin-induced neurotoxicity manifests as rapid-onset neuropathic symptoms that are exacerbated by cold exposure and as chronic neuropathy that develops after several treatment cycles. Although many basic and clinical researchers have studied anticancer drug-induced peripheral neuropathy, the mechanism is not well understood. In this review, we focus on (1) analysis of transient receptor potential vanilloid 1 (TRPV1) channel expression in the rat dorsal root ganglion (DRG) after paclitaxel treatment and (2) analysis of transient receptor potential ankyrin 1 (TRPA1) channel in the DRG after oxaliplatin treatment. This review describes that (1) paclitaxel-induced neuropathic pain may be the result of up-regulation of TRPV1 in small- and medium-diameter DRG neurons. In addition, paclitaxel treatment increases the release of substance P, but not calcitonin gene-related peptide, in the superficial layers of the spinal dorsal horn. (2) TRPA1 expression via activation of p38 mitogen-activated protein kinase in small-diameter DRG neurons, at least in part, contributes to the development of oxaliplatin-induced acute cold hyperalgesia. We suggest that TRPV1 or TRPA1 antagonists may be potential therapeutic lead compounds for treating anticancer drug-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Kyoji Taguchi
- Departments of Medicinal Pharmacology, Showa Pharmaceutical University
| |
Collapse
|
17
|
Involvement of oxidative stress in increased peripheral nerve firing during spontaneous dysesthesia in a mouse model of ischemia-reperfusion. Neurosci Lett 2016; 631:109-114. [DOI: 10.1016/j.neulet.2016.08.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 12/21/2022]
|
18
|
Andoh T, Kato M, Kitamura R, Mizoguchi S, Uta D, Toume K, Komatsu K, Kuraishi Y. Prophylactic administration of an extract from Plantaginis Semen and its major component aucubin inhibits mechanical allodynia caused by paclitaxel in mice. J Tradit Complement Med 2016; 6:305-8. [PMID: 27419098 PMCID: PMC4936767 DOI: 10.1016/j.jtcme.2015.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/06/2015] [Accepted: 12/01/2015] [Indexed: 11/21/2022] Open
Abstract
The chemotherapeutic agent paclitaxel (PTX) causes peripheral neuropathy as a major dose-limiting side effect, and this peripheral neuropathy is difficult to control. Our previous report showed that prophylactic repetitive administration of goshajinkigan ( niú chē shèn qì wán), but not hachimijiogan ( bā wèi dì huáng wán), which lacks two of the constituents of goshajinkigan, inhibited PTX-induced mechanical allodynia in mice. Thus, the herbal medicines Plantaginis Semen ( chē qián zǐ) or Achyranthis Radix ( niú xī) may contribute to the inhibitory action of goshajinkigan on the exacerbation of PTX-induced mechanical allodynia [Andoh et al, J. Tradit. Complement. Med. 2014; 4: 293-297]. Therefore, in this study, we examined whether an extract of Plantaginis Semen (EPS) or Achyranthis Radix (EAR) would relieve PTX-induced mechanical allodynia in mice. A single intraperitoneal injection of PTX caused mechanical allodynia, which peaked on day 14 after injection. Repetitive oral administration of EPS, but not EAR, starting from the day after PTX injection significantly inhibited the exacerbation of PTX-induced mechanical allodynia. Repetitive intraperitoneal injection of aucubin, one of the main components of EPS, starting from the day after PTX injection also significantly reduced PTX-induced mechanical allodynia. However, repetitive intraperitoneal injection of geniposide acid (a precursor of aucubin) or catalpol (a metabolite of aucubin) did not prevent the exacerbation of mechanical allodynia. These results suggest that prophylactic administration of EPS is effective for preventing the exacerbation of PTX-induced allodynia. Aucubin may contribute to the inhibitory action of EPS on the exacerbation of PTX-induced allodynia.
Collapse
Affiliation(s)
- Tsugunobu Andoh
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mitsuru Kato
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Ryo Kitamura
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shizuka Mizoguchi
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Daisuke Uta
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kazufumi Toume
- Division of Pharmacognosy, Institutes of Natural Medicine, University of Toyama, Toyama, Japan
| | - Katsuko Komatsu
- Division of Pharmacognosy, Institutes of Natural Medicine, University of Toyama, Toyama, Japan
| | - Yasushi Kuraishi
- Research Administration Division, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
19
|
Hopkins HL, Duggett NA, Flatters SJ. Chemotherapy-induced painful neuropathy: pain-like behaviours in rodent models and their response to commonly used analgesics. Curr Opin Support Palliat Care 2016; 10:119-128. [PMID: 27054288 PMCID: PMC4982532 DOI: 10.1097/spc.0000000000000204] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW Chemotherapy-induced painful neuropathy (CIPN) is a major dose-limiting side-effect of several widely used chemotherapeutics. Rodent models of CIPN have been developed using a range of dosing regimens to reproduce pain-like behaviours akin to patient-reported symptoms. This review aims to connect recent evidence-based suggestions for clinical treatment to preclinical data. RECENT FINDINGS We will discuss CIPN models evoked by systemic administration of taxanes (paclitaxel and docetaxel), platinum-based agents (oxaliplatin and cisplatin), and the proteasome-inhibitor - bortezomib. We present an overview of dosing regimens to produce CIPN models and their phenotype of pain-like behaviours. In addition, we will discuss how potential, clinically available treatments affect pain-like behaviours in these rodent models, relating those effects to clinical trial data wherever possible. We have focussed on antidepressants, opioids, and gabapentinoids given their broad usage. SUMMARY The review outlines the latest description of the most-relevant rodent models of CIPN enabling comparison between chemotherapeutics, dosing regimen, rodent strain, and sex. Preclinical data support many of the recent suggestions for clinical management of established CIPN and provides evidence for potential treatments warranting clinical investigation. Continued research using rodent CIPN models will provide much needed understanding of the causal mechanisms of CIPN, leading to new treatments for this major clinical problem.
Collapse
Affiliation(s)
- Holly L. Hopkins
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, UK
| | - Natalie A. Duggett
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, UK
| | - Sarah J.L. Flatters
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, UK
| |
Collapse
|
20
|
Mizoguchi S, Andoh T, Yakura T, Kuraishi Y. Involvement of c-Myc-mediated transient receptor potential melastatin 8 expression in oxaliplatin-induced cold allodynia in mice. Pharmacol Rep 2016; 68:645-8. [PMID: 27031051 DOI: 10.1016/j.pharep.2016.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 02/20/2016] [Accepted: 03/02/2016] [Indexed: 02/02/2023]
Abstract
BACKGROUND Oxaliplatin, a platinum-based chemotherapeutic agent, induces acute cold allodynia and dysesthesia. Cold-sensitive transient receptor potential channels (TRPM8 and TRPA1) have been implicated as candidates to mediate oxaliplatin-induced cold allodynia and hyperalgesia, but precise roles of these channels remain unclear. In this study, we investigated the role of TRPM8 in oxaliplatin-induced cold allodynia. METHODS Oxaliplatin was injected intraperitoneally in mice. Cold allodynia was evaluated by the acetone test. Expression levels of TRPM8 mRNA and protein were measured using reverse transcription-polymerase chain reaction and Western blotting, respectively. RESULTS Oxaliplatin-induced cold allodynia was alleviated by the TRPM8 blockers N-(2-aminoethyl)-N-[4-(benzyloxy)-3-methoxybenzyl]-N'-(1S)-1-(phenyl) ethyl] urea and TC-I 2014. Oxaliplatin increased the expression levels of TRPM8 mRNA and protein in the dorsal root ganglia and plantar skin, respectively. Prophylactic administration of the c-Myc inhibitor 10058-F4 prevented cold allodynia and the increase of TRPM8 mRNA after oxaliplatin injection. CONCLUSION These results suggest that oxaliplatin induces cold allodynia through the increase of c-Myc-mediated TRPM8 expression in primary sensory neurons.
Collapse
Affiliation(s)
- Shizuka Mizoguchi
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tsugunobu Andoh
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| | - Takayuki Yakura
- Department of Organomolecular Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | | |
Collapse
|
21
|
Shakuyakukanzoto attenuates oxaliplatin-induced cold dysesthesia by inhibiting the expression of transient receptor potential melastatin 8 in mice. J Tradit Complement Med 2016; 7:30-33. [PMID: 28053885 PMCID: PMC5198822 DOI: 10.1016/j.jtcme.2016.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 01/18/2016] [Accepted: 01/26/2016] [Indexed: 11/23/2022] Open
Abstract
Oxaliplatin-induced peripheral neuropathy characterized especially as cold dysesthesia is a major dose-limiting side effect of the drug and is very difficult to control. In the present study, we examined whether the traditional herbal formulation Shakuyakukanzoto (SKT: 芍藥甘草湯Sháo Yào Gān Cǎo Tāng) could relieve oxaliplatin-induced cold dysesthesia in mice. The inhibitory mechanisms were also investigated. Repetitive administration of SKT (0.1–1.0 g/kg) starting from the day after oxaliplatin injection inhibited cold dysesthesia in a dose-dependent manner. Our previous report has shown that the mRNA expression of transient receptor potential melastatin 8 (TRPM8), characterized as a cold-sensing cation channel, is increased in the dorsal root ganglia of mice treated with oxaliplatin. In addition, TRPM8 antagonist TC-I 2014 (10 and 30 mg/kg) also attenuated cold dysesthesia in oxaliplatin-treated mice. Taken together, it is suggested that TRPM8 is involved in the cold dysesthesia induced by oxaliplatin. Repetitive administration of SKT inhibited the mRNA expression of TRPM8 induced by oxaliplatin in the dorsal root ganglia. These results suggested that prophylactic repetitive administration of SKT is effective in preventing the exacerbation of oxaliplatin-induced cold dysesthesia by inhibiting the mRNA expression of TRPM8 in the dorsal root ganglia.
Collapse
|
22
|
Involvement of mast cells and proteinase-activated receptor 2 in oxaliplatin-induced mechanical allodynia in mice. Pharmacol Res 2016; 105:84-92. [PMID: 26804251 DOI: 10.1016/j.phrs.2016.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 12/12/2022]
Abstract
The chemotherapeutic agent oxaliplatin induces neuropathic pain, a dose-limiting side effect, but the underlying mechanisms are not fully understood. Here, we show the potential involvement of cutaneous mast cells in oxaliplatin-induced mechanical allodynia in mice. A single intraperitoneal injection of oxaliplatin induced mechanical allodynia, which peaked on day 10 after injection. Oxaliplatin-induced mechanical allodynia was almost completely prevented by congenital mast cell deficiency. The numbers of total and degranulated mast cells was significantly increased in the skin after oxaliplatin administration. Repetitive topical application of the mast cell stabilizer azelastine hydrochloride inhibited mechanical allodynia and the degranulation of mast cells without affecting the number of mast cells in oxaliplatin-treated mice. The serine protease inhibitor camostat mesilate and the proteinase-activated receptor 2 (PAR2) antagonist FSLLRY-NH2 significantly inhibited oxaliplatin-induced mechanical allodynia. However, it was not inhibited by the H1 histamine receptor antagonist terfenadine. Single oxaliplatin administration increased the activity of cutaneous serine proteases, which was attenuated by camostat and mast cell deficiency. Depletion of the capsaicin-sensitive primary afferents by neonatal capsaicin treatment almost completely prevented oxaliplatin-induced mechanical allodynia, the increase in the number of mast cells, and the activity of cutaneous serine proteases. These results suggest that serine protease(s) released from mast cells and PAR2 are involved in oxaliplatin-induced mechanical allodynia. Therefore, oxaliplatin may indirectly affect the functions of mast cells through its action on capsaicin-sensitive primary afferents.
Collapse
|
23
|
Andoh T, Kobayashi N, Kuraishi Y. Prophylactic repetitive shakuyakukanzoto treatment inhibits paclitaxel-induced mechanical allodynia in mice via peripheral effects. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/tkm2.1039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tsugunobu Andoh
- Department of Applied Pharmacology; Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama; Toyama Japan
| | - Nao Kobayashi
- Department of Applied Pharmacology; Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama; Toyama Japan
| | - Yasushi Kuraishi
- Research Administration Division; Tokyo Medical and Dental University; Tokyo Japan
| |
Collapse
|
24
|
Kono T, Suzuki Y, Mizuno K, Miyagi C, Omiya Y, Sekine H, Mizuhara Y, Miyano K, Kase Y, Uezono Y. Preventive effect of oral goshajinkigan on chronic oxaliplatin-induced hypoesthesia in rats. Sci Rep 2015; 5:16078. [PMID: 26542342 PMCID: PMC4635352 DOI: 10.1038/srep16078] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 10/02/2015] [Indexed: 12/21/2022] Open
Abstract
Oxaliplatin, a widely used chemotherapeutic agent, induces peripheral neuropathy that manifests itself as two distinct phases: acute cold hyperesthesia and chronic peripheral hypoesthesia/dysesthesia. The latter is a serious dose-limiting side effect that can often lead to withdrawal of treatment. We have developed a rat model expressing both phases and used the model to investigate the action of goshajinkigan (GJG), a traditional Japanese herbal medicine, which was reported to ameliorate oxaliplatin-induced neuropathy in a placebo-controlled double-blind randomized phase II study. In this study, neuropathy was induced by injection of oxaliplatin twice weekly for 8 wks. The maximum level of cold hyperesthesia was observed at 4 wks with heat hypoesthesia developing later. Microscopy studies revealed atrophy of axons of myelinated sciatic nerve fibers in oxaliplatin-treated rats at 8 wks. Co-administration of GJG ameliorated both abnormal sensations as well as histological damage to the sciatic nerve. A pharmacokinetic study revealed numerous neuroprotective components of GJG that are rapidly absorbed into the blood. GJG and some of its components attenuated the generation of oxaliplatin-induced reactive oxygen species, which is a possible mechanism of oxaliplatin-induced neurotoxicity. The present study provides a useful animal model for oxaliplatin-induced neurotoxicity as well as a promising prophylactic agent.
Collapse
Affiliation(s)
- Toru Kono
- Faculty of Pharmaceutical Sciences, Hokkaido University, W-6, N-12, Kita-ku, Sapporo 060-0812, Japan.,Center for Clinical and Biomedical Research, Sapporo Higashi Tokushukai Hospital, 3-1, N-33, E-14, Higashi-ku, Sapporo 065-0033, Japan
| | - Yasuyuki Suzuki
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura &Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Keita Mizuno
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura &Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Chika Miyagi
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura &Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Yuji Omiya
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura &Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Hitomi Sekine
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura &Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Yasuharu Mizuhara
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura &Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Kanako Miyano
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yoshio Kase
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura &Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Yasuhito Uezono
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
25
|
The TRPA1 channel in inflammatory and neuropathic pain and migraine. Rev Physiol Biochem Pharmacol 2015; 167:1-43. [PMID: 24668446 DOI: 10.1007/112_2014_18] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The transient receptor potential ankyrin 1 (TRPA1), a member of the TRP superfamily of channels, is primarily localized to a subpopulation of primary sensory neurons of the trigeminal, vagal, and dorsal root ganglia. This subset of nociceptors produces and releases the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP), which mediate neurogenic inflammatory responses. TRPA1 is activated by a number of exogenous compounds, including molecules of botanical origin, environmental irritants, and medicines. However, the most prominent feature of TRPA1 resides in its unique sensitivity for large series of reactive byproducts of oxidative and nitrative stress. Here, the role of TRPA1 in models of different types of pain, including inflammatory and neuropathic pain and migraine, is summarized. Specific attention is paid to TRPA1 as the main contributing mechanism to the transition of mechanical and cold hypersensitivity from an acute to a chronic condition and as the primary transducing pathway by which oxidative/nitrative stress produces acute nociception, allodynia, and hyperalgesia. A series of migraine triggers or medicines have been reported to modulate TRPA1 activity and the ensuing CGRP release. Thus, TRPA1 antagonists may be beneficial in the treatment of inflammatory and neuropathic pain and migraine.
Collapse
|
26
|
Andoh T, Kitamura R, Kuraishi Y. Milnacipran Inhibits Oxaliplatin-Induced Mechanical Allodynia through Spinal Action in Mice. Biol Pharm Bull 2015; 38:151-4. [DOI: 10.1248/bpb.b14-00581] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tsugunobu Andoh
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences
| | - Ryo Kitamura
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences
| | - Yasushi Kuraishi
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences
| |
Collapse
|
27
|
Carozzi VA, Chiorazzi A, Canta A, Meregalli C, Oggioni N, Cavaletti G, Marmiroli P. Chemotherapy-induced peripheral neurotoxicity in immune-deficient mice: new useful ready-to-use animal models. Exp Neurol 2014; 264:92-102. [PMID: 25450467 DOI: 10.1016/j.expneurol.2014.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/27/2014] [Accepted: 11/04/2014] [Indexed: 12/13/2022]
Abstract
Cisplatin, paclitaxel and bortezomib are effective chemotherapy drugs in cancer treatment. However, they share severe peripheral neurotoxicity (PN) as one of their major dose-limiting side effects, often impairing cancer patients' quality of life and sometimes being permanent. Even if preclinical oncology is largely based on the use of immune-deficient mice, rodent models used to study the chemotherapy-induced PN are available only in immune-competent animals. In this study we characterized for the first time the PN induced by these chemotherapies through neurophysiological, behavioral, morphological and morphometric studies in athymic nude mice, a commonly employed strain in the preclinical oncology. The animals, divided into four groups, were chronically treated with cisplatin, paclitaxel or bortezomib once or twice a week for 4 or 6 weeks or were left untreated. These schedules were tolerated, neurotoxic and in the range of antineoplastic effectiveness. Despite similarities, differences in the features of PN were evident if compared with immune-competent models under comparable regimens of treatment. The results of this study may provide a basis for future combined analysis of antineoplastic and neurotoxic effects of chemotherapy in the same animals.
Collapse
Affiliation(s)
- Valentina Alda Carozzi
- Experimental Neurology Unit and Center for Neuroscience of Milan, Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, MB, Italy; Young Against Pain (YAP) Italian Group, Italy.
| | - Alessia Chiorazzi
- Experimental Neurology Unit and Center for Neuroscience of Milan, Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, MB, Italy
| | - Annalisa Canta
- Experimental Neurology Unit and Center for Neuroscience of Milan, Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, MB, Italy
| | - Cristina Meregalli
- Experimental Neurology Unit and Center for Neuroscience of Milan, Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, MB, Italy
| | - Norberto Oggioni
- Experimental Neurology Unit and Center for Neuroscience of Milan, Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, MB, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit and Center for Neuroscience of Milan, Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, MB, Italy
| | - Paola Marmiroli
- Experimental Neurology Unit and Center for Neuroscience of Milan, Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, MB, Italy
| |
Collapse
|
28
|
Andoh T, Kitamura R, Fushimi H, Komatsu K, Shibahara N, Kuraishi Y. Effects of goshajinkigan, hachimijiogan, and rokumigan on mechanical allodynia induced by Paclitaxel in mice. J Tradit Complement Med 2014; 4:293-7. [PMID: 25379475 PMCID: PMC4220511 DOI: 10.4103/2225-4110.128906] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Peripheral neuropathy is a major dose-limiting side effect of the chemotherapeutic agent paclitaxel. This study examined whether the three related traditional herbal formulations, goshajinkigan (GJG; 牛車腎氣丸 Niú Chē Shèn Qì Wán), hachimijiogan (HJG; 八味地黃丸 Bā Wèi Dì Huáng Wán), and rokumigan (RMG; 六味丸 Liù Wèi Wán), would relieve paclitaxel-induced mechanical allodynia in mice. A single intraperitoneal injection of paclitaxel (5 mg/kg) induced mechanical allodynia, which peaked on day 14 after injection. On day 14 after paclitaxel injection, oral administration of GJG (0.1-1.0 g/kg) produced a significant inhibition of established allodynia, but HJG and RMG did not affect the allodynia. Repeated oral administration of GJG (0.1-1.0 g/kg) starting from the day after paclitaxel injection did not affect allodynia development, but significantly inhibited allodynia exacerbation. Repeated oral administration of HJG produced a slight inhibition of allodynia exacerbation, but that of RMG did not. These results suggest that prophylactic administration of GJG is effective in preventing the exacerbation of paclitaxel-induced allodynia. The herbal medicines Plantaginis Semen (車前子 Chē Qián Zǐ) and Achyranthis Radix (牛膝 Niú Xī), which are present in GJG but not in HJG, may contribute to the inhibitory action of GJG on the exacerbation of paclitaxel-induced allodynia.
Collapse
Affiliation(s)
- Tsugunobu Andoh
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Ryo Kitamura
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hirotoshi Fushimi
- Museum of Materia Medica, Research Center for Ethnomedicine, Institutes of Natural Medicine, University of Toyama, Toyama, Japan
| | - Katsuko Komatsu
- Division of Pharmacognosy, Institutes of Natural Medicine, University of Toyama, Toyama, Japan
| | - Naotoshi Shibahara
- Division of Kampo Diagnostics, Institutes of Natural Medicine, University of Toyama, Toyama, Japan
| | - Yasushi Kuraishi
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
29
|
Kuraishi Y. [A memoir of my research on pain and analgesia for 39 years]. YAKUGAKU ZASSHI 2014; 134:1125-42. [PMID: 25366910 DOI: 10.1248/yakushi.14-00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review describes my research for the past 39 years regarding the pharmacology of pain and analgesia. We have demonstrated that the descending noradrenergic system is involved in the analgesic effect of morphine injected into the nucleus reticularis gigantocellularis, and that noradrenaline exerts antinociception mediated by α-adrenoceptors. We have found that noxious mechanical and thermal stimuli to the skin increase the release of substance P and somatostatin, respectively, from the dorsal horn in situ, and that noradrenaline inhibits the release of substance P and glutamate from primary afferents. We developed an animal model of cancer pain using melanoma cells. We have shown that the suppression of cancer pain results in the inhibition of tumor growth and lung metastasis, and that melanoma cells release several algogenic substances including ATP, endothelin-1, and bradykinin. We investigated neuropathic allodynia induced by the chemotherapeutic drugs paciltaxel, oxaliplatin, vincristine, and bortezomib. Single administration of these drugs caused allodynia with similar time-courses. However, antiallodynic actions of adjuvant analgesics, including gabapentin and limaprost, were dependent on the chemotherapeutic drugs used. Limaprost experiments have revealed that a decrease in peripheral blood flow is involved in allodynia exacerbation after the administration of paciltaxel and oxaliplatin. We have developed animal models of herpetic pain and postherpetic neuralgia using herpes simplex virus 1. We have demonstrated that nitric oxide, prostaglandin E2, and galectin-3 are involved in herpetic allodynia, that risk factors associated with postherpetic allodynia include severe herpetic pain, nociceptin, and major histocompatibility complex, and that deafferentation and nitric oxide are involved in postherpetic allodynia.
Collapse
Affiliation(s)
- Yasushi Kuraishi
- Laboratory of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
30
|
Sasaki A, Mizoguchi S, Kagaya K, Shiro M, Sakai A, Andoh T, Kino Y, Taniguchi H, Saito Y, Takahata H, Kuraishi Y. A Mouse Model of Peripheral Postischemic Dysesthesia: Involvement of Reperfusion-Induced Oxidative Stress and TRPA1 Channel. J Pharmacol Exp Ther 2014; 351:568-75. [DOI: 10.1124/jpet.114.217570] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
31
|
Effects of xaliproden, a 5-HT1A agonist, on mechanical allodynia caused by chemotherapeutic agents in mice. Eur J Pharmacol 2013; 721:231-6. [DOI: 10.1016/j.ejphar.2013.09.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 09/03/2013] [Accepted: 09/11/2013] [Indexed: 12/18/2022]
|
32
|
Herbal Medicine Goshajinkigan Prevents Paclitaxel-Induced Mechanical Allodynia without Impairing Antitumor Activity of Paclitaxel. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:849754. [PMID: 24198846 PMCID: PMC3807841 DOI: 10.1155/2013/849754] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 09/02/2013] [Indexed: 11/17/2022]
Abstract
Chemotherapy-induced peripheral neuropathy is a major dose-limiting side effect of commonly used chemotherapeutic agents. However, there are no effective strategies to treat the neuropathy. We examined whether Goshajinkigan, a herbal medicine, would prevent paclitaxel-induced allodynia without affecting the anticancer action in mice. Murine breast cancer 4T1 cells were inoculated into the mammary fat pad. Paclitaxel (10 and 20 mg/kg, intraperitoneal, alternate day from day 7 postinoculation) inhibited the tumor growth, and Goshajinkigan (1 g/kg, oral, daily from day 2 postinoculation) did not affect the antitumor action of paclitaxel. Mechanical allodynia developed in the inoculated region due to tumor growth and in the hind paw due to paclitaxel-induced neuropathy. Paclitaxel-induced allodynia was markedly prevented by Goshajinkigan, although tumor-associated allodynia was not inhibited by Goshajinkigan. These results suggest that Goshajinkigan prevents paclitaxel-induced peripheral neuropathy without interfering with the anti-cancer action of paclitaxel.
Collapse
|
33
|
Trevisan G, Materazzi S, Fusi C, Altomare A, Aldini G, Lodovici M, Patacchini R, Geppetti P, Nassini R. Novel therapeutic strategy to prevent chemotherapy-induced persistent sensory neuropathy by TRPA1 blockade. Cancer Res 2013; 73:3120-31. [PMID: 23477783 DOI: 10.1158/0008-5472.can-12-4370] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a severe and painful adverse reaction of cancer treatment in patients that is little understood or treated. Cytotoxic drugs that cause CIPN exert their effects by increasing oxidative stress, which activates the ion channel TRPA1 expressed by nociceptors. In this study, we evaluated whether TRPA1 acted as a critical mediator of CIPN by bortezomib or oxaliplatin in a mouse model system. Bortezomib evoked a prolonged mechanical, cold, and selective chemical hypersensitivity (the latter against the TRPA1 agonist allyl isothiocyanate). This CIPN hypersensitivity phenotype that was stably established by bortezomib could be transiently reverted by systemic or local treatment with the TRPA1 antagonist HC-030031. A similar effect was produced by the oxidative stress scavenger α-lipoic acid. Notably, the CIPN phenotype was abolished completely in mice that were genetically deficient in TRPA1, highlighting its essential role. Administration of bortezomib or oxaliplatin, which also elicits TRPA1-dependent hypersensitivity, produced a rapid, transient increase in plasma of carboxy-methyl-lysine, a by-product of oxidative stress. Short-term systemic treatment with either HC-030031 or α-lipoic acid could completely prevent hypersensitivity if administered before the cytotoxic drug. Our findings highlight a key role for early activation/sensitization of TRPA1 by oxidative stress by-products in producing CIPN. Furthermore, they suggest prevention strategies for CIPN in patients through the use of early, short-term treatments with TRPA1 antagonists.
Collapse
Affiliation(s)
- Gabriela Trevisan
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Department of Chemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Limaprost alfadex and nonsteroidal anti-inflammatory drugs for sciatica due to lumbar spinal stenosis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2012; 22:794-801. [PMID: 23090093 DOI: 10.1007/s00586-012-2551-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 08/02/2012] [Accepted: 10/10/2012] [Indexed: 12/12/2022]
Abstract
PURPOSE Limaprost, a prostaglandin E1 analog, has vasodilatory properties and increases blood flow of the nerve root. However, it has not been clarified whether limaprost affects pain sensation associated with radiculopathy due to lumbar spinal stenosis (LSS). The aim of this study was to compare the efficacy of oral limaprost with nonsteroidal anti-inflammatory drugs (NSAIDs) for radiculopathy. METHODS We performed a multicenter prospective randomized trial. Patients with LSS who had radicular-type neurologic intermittent claudication assessed based on a self-reported diagnostic support tool were randomized into three treatment groups. Limaprost, NSAIDs, or limaprost plus NSAIDs were administered orally for 6 weeks. Leg pain, low back pain (LBP) and the associated symptoms were assessed by a numerical rating scale (NRS) both at rest and on movement as well as the Roland-Morris Disability Questionnaire (RDQ) and Short Form (SF)-36. RESULTS Sixty-one patients were enrolled in the study. Each treatment finally reduced radicular pain, and the improvement was prominent in a combination treatment. There were no significant differences in radicular pain among three groups at final follow-up. LBP was not influenced by limaprost, and a significant reduction of LBP and RDQ was confirmed in a combination treatment compared with limaprost. Physical function of the SF-36 subscales after a combination treatment showed a marked alleviation compared with NSAIDs. CONCLUSIONS These obtained findings suggest that the effects of limaprost seem to be limited to radicular pain, not for LBP. Overall, a combination treatment might be more effective in the management of radiculopathy induced by LSS than monotherapy with either agent.
Collapse
|
35
|
Effect of synthetic eel calcitonin, elcatonin, on cold and mechanical allodynia induced by oxaliplatin and paclitaxel in rats. Eur J Pharmacol 2012; 696:62-9. [PMID: 23001015 DOI: 10.1016/j.ejphar.2012.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 08/27/2012] [Accepted: 09/06/2012] [Indexed: 11/23/2022]
Abstract
Oxaliplatin and paclitaxel are commonly used anti-cancer drugs, but they frequently cause peripheral neuropathic pain. In this study, we investigated the effect of elcatonin, a synthetic eel calcitonin, on oxaliplatin- and paclitaxel-induced neuropathy in rats. The rats were treated with a single dose of oxaliplatin (6 mg/kg, i.p.) or repeated doses of paclitaxel (2 mg/kg, i.p.) on 4 alternate days. Both treatments resulted in cold and mechanical allodynia. We assessed the anti-allodynic effects of subcutaneously administered elcatonin (20 U/kg/day) by using a newly developed method to provide cold stimulation (8°C) directly to the hind paw of the rats and by using the von Frey test. Elcatonin almost completely reversed the effects of both cold and mechanical allodynia. To determine the mechanism of this anti-allodynic effect, we examined the effect of elcatonin on neuropathy induced by intraplantar injection of two organic compounds: allyl isothiocyanate (1 nmol/paw), which activates transient receptor potential ankyrin-1 channels, and menthol (1.28 μmol/paw), which activates transient receptor potential ankyrin-1 and melastatin-8. Pre-administration of elcatonin almost completely prevented cold and mechanical allodynia from being induced by both compounds. These results suggest that elcatonin attenuates oxaliplatin- and paclitaxel-induced neuropathic pain by inhibiting the cellular signaling related to transient receptor potential ankyrin-1 and melastatin-8. Thus, we conclude that administration of elcatonin may improve the quality of life of cancer patients receiving chemotherapy.
Collapse
|
36
|
Zhao M, Isami K, Nakamura S, Shirakawa H, Nakagawa T, Kaneko S. Acute cold hypersensitivity characteristically induced by oxaliplatin is caused by the enhanced responsiveness of TRPA1 in mice. Mol Pain 2012; 8:55. [PMID: 22839205 PMCID: PMC3495669 DOI: 10.1186/1744-8069-8-55] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 07/21/2012] [Indexed: 12/11/2022] Open
Abstract
Background Oxaliplatin, a platinum-based chemotherapeutic agent, causes an unusual acute peripheral neuropathy. Oxaliplatin-induced acute peripheral neuropathy appears in almost all patients rapidly after infusion, and is triggered or exacerbated by cold, while its mechanisms are poorly understood. In this study, the involvement of thermosensitive transient receptor potential channels (TRPA1, TRPM8 and TRPV1) in oxaliplatin-induced acute hypersensitivity was investigated in mice. Results A single intraperitoneal administration of oxaliplatin (1–10 mg/kg) induced cold but not mechanical hypersensitivity within 2 h in a dose-dependent manner. Infusion of the oxaliplatin metabolite, oxalate (1.7 mg/kg), also induced acute cold hypersensitivity, while another platinum-based chemotherapeutic agent, cisplatin (5 mg/kg), or the non-platinum-containing chemotherapeutic agent, paclitaxel (6 mg/kg) failed to induce mechanical or cold hypersensitivity. The oxaliplatin-induced acute cold hypersensitivity was abolished by the TRPA1 antagonist HC-030031 (100 mg/kg) and by TRPA1 deficiency. The nocifensive behaviors evoked by intraplantar injections of allyl-isothiocyanate (AITC; TRPA1 agonist) were significantly enhanced in mice treated for 2 h with oxaliplatin (1–10 mg/kg) in a dose-dependent manner, while capsaicin (TRPV1 agonist)-evoked nocifensive behaviors were not affected. Menthol (TRPM8/TRPA1 agonist)-evoked nocifensive-like behaviors were also enhanced by oxaliplatin pretreatment, which were inhibited by TRPA1 deficiency. Similarly, oxalate enhanced, but neither cisplatin nor paclitaxel affected AITC-evoked nocifensive behaviors. Pretreatment of cultured mouse dorsal root ganglia (DRG) neurons with oxaliplatin (30–300 μM) for 1, 2, or 4 h significantly increased the number of AITC-sensitive neurons in a concentration-dependent manner whereas there was no change in the number of menthol- or capsaicin-sensitive neurons. Conclusions Taken together, these results suggest that a brief treatment with oxaliplatin or its metabolite oxalate is sufficient to enhance the responsiveness of TRPA1 but not that of TRPM8 and TRPV1 expressed by DRG neurons, which may contribute to the characteristic acute peripheral neuropathy induced by oxaliplatin.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Ami N, Okamoto K, Oshima H. Analgesic effect of magnetic stimulation on paclitaxel-induced peripheral neuropathic pain in mice. Brain Res 2012; 1461:24-9. [DOI: 10.1016/j.brainres.2012.04.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/17/2012] [Accepted: 04/21/2012] [Indexed: 12/18/2022]
|
38
|
Jaggi AS, Singh N. Mechanisms in cancer-chemotherapeutic drugs-induced peripheral neuropathy. Toxicology 2011; 291:1-9. [PMID: 22079234 DOI: 10.1016/j.tox.2011.10.019] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/19/2011] [Accepted: 10/26/2011] [Indexed: 12/15/2022]
Abstract
Anti-cancer drugs such as vincristine, paclitaxel, oxaliplatin, cisplatin and bortezomib are well reported to exert direct and indirect effects on sensory nerves to alter the amplitude of action potential, conduction velocity and induce pain. It results in patient suffering and also limits the treatment with potentially useful anticancer drugs. The different scientists have worked in this area to explore the mechanisms responsible for its pathogenesis. Anti-cancer agents activate plasma membrane localized ion channels on dorsal root ganglia and dorsal horn neurons including sodium, calcium, potassium, glutamate activated NMDA receptors to alter cytosolic ionic mileu particularly intracellular calcium that trigger secondary changes to induce neuropathic pain. These may include opening of mPTP pore on mitochondria to induce intracellular calcium release; activation of protein kinase C; phosphorylation of TRPV; activation of calpases/calpains; generation of nitric oxide and free radicals to induce cytotoxicity to axons and neuronal cell bodies. Furthermore, the inflammatory process initiated in glial cells and macrophages also trigger changes in the sensory neurons to alter nociceptive processing. The present review elaborates the role of all these individual targets in the pathogenesis of anticancer agents-induced neuropathic pain to develop effective therapeutic modalities for pain management.
Collapse
Affiliation(s)
- Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India
| | | |
Collapse
|
39
|
Ushio S, Egashira N, Sada H, Kawashiri T, Shirahama M, Masuguchi K, Oishi R. Goshajinkigan reduces oxaliplatin-induced peripheral neuropathy without affecting anti-tumour efficacy in rodents. Eur J Cancer 2011; 48:1407-13. [PMID: 21907570 DOI: 10.1016/j.ejca.2011.08.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/04/2011] [Accepted: 08/15/2011] [Indexed: 12/18/2022]
Abstract
Oxaliplatin is a key drug in the treatment of colorectal cancer, but it causes acute and chronic neuropathies in patients. Goshajinkigan (GJG) is a Kampo medicine that is used for the treatments of several neurological symptoms including pain and numbness. More recently, GJG has been reported to prevent the oxaliplatin-induced peripheral neuropathy in clinical studies. No experimental study, however, has been conducted to date to determine the effect of GJG on pain behaviour in a rat model of oxaliplatin-induced neuropathy. Moreover, the impact on the anti-tumour effect of oxaliplatin remains unknown. In the present study, we examined the effects of GJG on the peripheral neuropathy and anti-tumour activity of oxaliplatin in rodents. Repeated administration of oxaliplatin caused cold hyperalgesia from days 3 to 37 and mechanical allodynia from days 21 to 28. Repeated administration of GJG prevented the oxaliplatin-induced cold hyperalgesia but not mechanical allodynia and axonal degeneration in rat sciatic nerve. Single administration of GJG reduced both cold hyperalgesia and mechanical allodynia after the development of neuropathy. In addition, GJG did not affect the anti-tumour effect of oxaliplatin in the tumour cells or tumour cells-implanted mice. These results suggest that GJG relieves the oxaliplatin-induced cold hyperalgesia and mechanical allodynia without affecting anti-tumour activity of oxaliplatin, and, therefore, may be useful for the oxaliplatin-induced neuropathy in clinical practice.
Collapse
Affiliation(s)
- Soichiro Ushio
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Nassini R, Gees M, Harrison S, De Siena G, Materazzi S, Moretto N, Failli P, Preti D, Marchetti N, Cavazzini A, Mancini F, Pedretti P, Nilius B, Patacchini R, Geppetti P. Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation. Pain 2011; 152:1621-1631. [PMID: 21481532 DOI: 10.1016/j.pain.2011.02.051] [Citation(s) in RCA: 244] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 02/18/2011] [Accepted: 02/28/2011] [Indexed: 02/09/2023]
Abstract
Platinum-based anticancer drugs cause neurotoxicity. In particular, oxaliplatin produces early-developing, painful, and cold-exacerbated paresthesias. However, the mechanism underlying these bothersome and dose-limiting adverse effects is unknown. We hypothesized that the transient receptor potential ankyrin 1 (TRPA1), a cation channel activated by oxidative stress and cold temperature, contributes to mechanical and cold hypersensitivity caused by oxaliplatin and cisplatin. Oxaliplatin and cisplatin evoked glutathione-sensitive relaxation, mediated by TRPA1 stimulation and the release of calcitonin gene-related peptide from sensory nerve terminals in isolated guinea pig pulmonary arteries. No calcium response was observed in cultured mouse dorsal root ganglion neurons or in naïve Chinese hamster ovary (CHO) cells exposed to oxaliplatin or cisplatin. However, oxaliplatin, and with lower potency, cisplatin, evoked a glutathione-sensitive calcium response in CHO cells expressing mouse TRPA1. One single administration of oxaliplatin produced mechanical and cold hyperalgesia in rats, an effect selectively abated by the TRPA1 antagonist HC-030031. Oxaliplatin administration caused mechanical and cold allodynia in mice. Both responses were absent in TRPA1-deficient mice. Administration of cisplatin evoked mechanical allodynia, an effect that was reduced in TRPA1-deficient mice. TRPA1 is therefore required for oxaliplatin-evoked mechanical and cold hypersensitivity, and contributes to cisplatin-evoked mechanical allodynia. Channel activation is most likely caused by glutathione-sensitive molecules, including reactive oxygen species and their byproducts, which are generated after tissue exposure to platinum-based drugs from cells surrounding nociceptive nerve terminals.
Collapse
Affiliation(s)
- Romina Nassini
- Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy Department of Molecular Cell Biology, Katholieke Universiteit, Leuven, Belgium Department of Pharmacology, Chiesi Farmaceutici, Parma, Italy Department of Pharmaceutical Chemistry, University of Ferrara, Ferrara, Italy Chemistry Department, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Authier N, Balayssac D, Marchand F, Ling B, Zangarelli A, Descoeur J, Coudore F, Bourinet E, Eschalier A. Animal models of chemotherapy-evoked painful peripheral neuropathies. Neurotherapeutics 2009; 6:620-9. [PMID: 19789067 PMCID: PMC5084284 DOI: 10.1016/j.nurt.2009.07.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 07/09/2009] [Indexed: 12/22/2022] Open
Abstract
This review examines recent preclinical research on toxic peripheral neuropathy and potential therapeutic developments. Chemotherapy-induced peripheral neurotoxicity is a major clinical problem because it represents the dose-limiting side effects of a significant number of antineoplastic drugs. Patients are unable to complete full or optimal treatment schedules. The incidence of chemotherapy-induced peripheral neuropathy varies depending on the drugs and schedules used, and this can be quite high, particularly when neurophysiological methods are used to make a diagnosis. However, even when chemotherapy-induced peripheral neuropathy is not a dose-limiting side effect, its onset may severely affect the quality of life of cancer patients and cause chronic discomfort. As such, improved understanding of the pathophysiology of chemotherapy-induced neurotoxicity need for animal models is clinically relevant and will assist in the development of future neuroprotective strategies and also in the design of novel chemotherapies with improved toxicity profiles. In this review, the features of animal models of chemotherapy-induced painful neuropathy developed for 20 years, due to the administration of the most widely used drugs, such as platinum drugs, taxanes, and vinca alkaloids, will be discussed. In a second part, data available on neuroprotectants and treatment strategies, evaluated using these previous animal models in the attempt to prevent neuropathic pain, will be summarized.
Collapse
|
42
|
Involvement of increased expression of transient receptor potential melastatin 8 in oxaliplatin-induced cold allodynia in mice. Neurosci Lett 2009; 458:93-5. [PMID: 19375484 DOI: 10.1016/j.neulet.2009.04.029] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Revised: 03/28/2009] [Accepted: 04/11/2009] [Indexed: 12/15/2022]
Abstract
Oxaliplatin is a chemotherapy drug and induces peripheral neuropathy which is aggravated by exposure to cold, the mechanism of which is unclear. In the present study, we investigated in mice whether transient receptor potential melastatin 8 (TRPM8), which is activated by cooling temperature, would be involved in cold allodynia induced by oxaliplatin. Mice were given an intraperitoneal injection of oxaliplatin. Acetone was applied to hind paw for cooling stimulation, and the time spent for licking to the hind paw was measured. The expression of TRPM8 mRNA in dorsal root ganglion was determined by the RT-PCR method. An injection of oxaliplatin induced cold allodynia, which peaked on day 3 after injection and did not disappear even on day 25. Peak cold allodynia was inhibited by capsazepine, a blocker of both TRPM8 and heat-activated TRPV1, but not by 5'-iodoresiniferatoxin, a TRPV1 blocker. Oxaliplatin increased wet-dog shake and jumping behaviors evoked by the TRPM8 agonist icilin. An injection of oxaliplatin increased the expression level of TRPM8 mRNA at day 3 after injection and the expression was decreased to the near-normal level on days 10 and 25. These results suggest that cold allodynia induced by oxaliplatin is at least partly due to the increased expression of TRPM8 in the primary afferents.
Collapse
|