1
|
Sheikh AM, Yano S, Tabassum S, Nagai A. The Role of the Vascular System in Degenerative Diseases: Mechanisms and Implications. Int J Mol Sci 2024; 25:2169. [PMID: 38396849 PMCID: PMC10889477 DOI: 10.3390/ijms25042169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Degenerative diseases, encompassing a wide range of conditions affecting various organ systems, pose significant challenges to global healthcare systems. This comprehensive review explores the intricate interplay between the vascular system and degenerative diseases, shedding light on the underlying mechanisms and profound implications for disease progression and management. The pivotal role of the vascular system in maintaining tissue homeostasis is highlighted, as it serves as the conduit for oxygen, nutrients, and immune cells to vital organs and tissues. Due to the vital role of the vascular system in maintaining homeostasis, its dysfunction, characterized by impaired blood flow, endothelial dysfunction, and vascular inflammation, emerges as a common denominator of degenerative diseases across multiple systems. In the nervous system, we explored the influence of vascular factors on neurodegenerative diseases such as Alzheimer's and Parkinson's, emphasizing the critical role of cerebral blood flow regulation and the blood-brain barrier. Within the kidney system, the intricate relationship between vascular health and chronic kidney disease is scrutinized, unraveling the mechanisms by which hypertension and other vascular factors contribute to renal dysfunction. Throughout this review, we emphasize the clinical significance of understanding vascular involvement in degenerative diseases and potential therapeutic interventions targeting vascular health, highlighting emerging treatments and prevention strategies. In conclusion, a profound appreciation of the role of the vascular system in degenerative diseases is essential for advancing our understanding of degenerative disease pathogenesis and developing innovative approaches for prevention and treatment. This review provides a comprehensive foundation for researchers, clinicians, and policymakers seeking to address the intricate relationship between vascular health and degenerative diseases in pursuit of improved patient outcomes and enhanced public health.
Collapse
Affiliation(s)
- Abdullah Md. Sheikh
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya Cho, Izumo 693-8501, Japan; (S.Y.); (S.T.); (A.N.)
| | - Shozo Yano
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya Cho, Izumo 693-8501, Japan; (S.Y.); (S.T.); (A.N.)
| | - Shatera Tabassum
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya Cho, Izumo 693-8501, Japan; (S.Y.); (S.T.); (A.N.)
| | - Atsushi Nagai
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya Cho, Izumo 693-8501, Japan; (S.Y.); (S.T.); (A.N.)
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya Cho, Izumo 693-8501, Japan
| |
Collapse
|
2
|
Lymperopoulos A, Borges JI, Suster MS. Angiotensin II-dependent aldosterone production in the adrenal cortex. VITAMINS AND HORMONES 2023; 124:393-404. [PMID: 38408805 DOI: 10.1016/bs.vh.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The adrenal cortex is responsible for production of adrenal steroid hormones and is anatomically divided into three distinct zones: zona glomerulosa secreting mineralocorticoids (mainly aldosterone), zona fasciculata secreting glucocorticoids (cortisol), and zona reticularis producing androgens. Importantly, due to their high lipophilicity, no adrenal steroid hormone (including aldosterone) is stored in vesicles but rather gets synthesized and secreted instantly upon cell stimulation with specific stimuli. Aldosterone is the most potent mineralocorticoid hormone produced from the adrenal cortex in response to either angiotensin II (AngII) or elevated K+ levels in the blood (hyperkalemia). AngII, being a peptide, cannot cross cell membranes and thus, uses two distinct G protein-coupled receptor (GPCR) types, AngII type 1 receptor (AT1R) and AT2R to exert its effects inside cells. In zona glomerulosa cells, AT1R activation by AngII results in aldosterone synthesis and secretion via two main pathways: (a) Gq/11 proteins that activate phospholipase C ultimately raising intracellular free calcium concentration; and (b) βarrestin1 and -2 (also known as Arrestin-2 and -3, respectively) that elicit sustained extracellular signal-regulated kinase (ERK) activation. Both pathways induce upregulation and acute activation of StAR (steroidogenic acute regulatory) protein, the enzyme that catalyzes the rate-limiting step in aldosterone biosynthesis. This chapter describes these two salient pathways underlying AT1R-induced aldosterone production in zona glomerulosa cells. We also highlight some pharmacologically important notions pertaining to the efficacy of the currently available AT1R antagonists, also known as angiotensin receptor blockers (ARBs) or sartans at suppressing both pathways, i.e., their inverse agonism efficacy at G proteins and βarrestins.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States.
| | - Jordana I Borges
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Malka S Suster
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
| |
Collapse
|
3
|
Kragesteen BK, Giladi A, David E, Halevi S, Geirsdóttir L, Lempke OM, Li B, Bapst AM, Xie K, Katzenelenbogen Y, Dahl SL, Sheban F, Gurevich-Shapiro A, Zada M, Phan TS, Avellino R, Wang SY, Barboy O, Shlomi-Loubaton S, Winning S, Markwerth PP, Dekalo S, Keren-Shaul H, Kedmi M, Sikora M, Fandrey J, Korneliussen TS, Prchal JT, Rosenzweig B, Yutkin V, Racimo F, Willerslev E, Gur C, Wenger RH, Amit I. The transcriptional and regulatory identity of erythropoietin producing cells. Nat Med 2023; 29:1191-1200. [PMID: 37106166 DOI: 10.1038/s41591-023-02314-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/17/2023] [Indexed: 04/29/2023]
Abstract
Erythropoietin (Epo) is the master regulator of erythropoiesis and oxygen homeostasis. Despite its physiological importance, the molecular and genomic contexts of the cells responsible for renal Epo production remain unclear, limiting more-effective therapies for anemia. Here, we performed single-cell RNA and transposase-accessible chromatin (ATAC) sequencing of an Epo reporter mouse to molecularly identify Epo-producing cells under hypoxic conditions. Our data indicate that a distinct population of kidney stroma, which we term Norn cells, is the major source of endocrine Epo production in mice. We use these datasets to identify the markers, signaling pathways and transcriptional circuits characteristic of Norn cells. Using single-cell RNA sequencing and RNA in situ hybridization in human kidney tissues, we further provide evidence that this cell population is conserved in humans. These preliminary findings open new avenues to functionally dissect EPO gene regulation in health and disease and may serve as groundwork to improve erythropoiesis-stimulating therapies.
Collapse
Affiliation(s)
- Bjørt K Kragesteen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Amir Giladi
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Eyal David
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Shahar Halevi
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Laufey Geirsdóttir
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Olga M Lempke
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Baoguo Li
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Andreas M Bapst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Ken Xie
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Sophie L Dahl
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Fadi Sheban
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Gurevich-Shapiro
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
- Division of Haematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mor Zada
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Truong San Phan
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Roberto Avellino
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Shuang-Yin Wang
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Oren Barboy
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Shir Shlomi-Loubaton
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Sandra Winning
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | | | - Snir Dekalo
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Urology Department, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Hadas Keren-Shaul
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Merav Kedmi
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Martin Sikora
- GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Fandrey
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | | | - Josef T Prchal
- Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Barak Rosenzweig
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Urology, Sheba Medical Center, Ramat Gan, Israel
| | - Vladimir Yutkin
- Department of Urology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Fernando Racimo
- GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Eske Willerslev
- GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Chamutal Gur
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
- Department of Medicine, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- National Centre of Competence in Research 'Kidney.CH', University of Zurich, Zurich, Switzerland
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
RAS inhibition modulates kynurenine levels in a CKD population with and without type 2 diabetes mellitus. Int Urol Nephrol 2020; 52:1125-1133. [PMID: 32314169 DOI: 10.1007/s11255-020-02469-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
Abstract
Kynurenine pathway of tryptophan metabolism is involved in the pathophysiology of chronic kidney disease (CKD) and diabetes mellitus, mainly through the inflammation-induced activity of indoleamine 2,3-dioxygenase (IDO), and few studies have investigated its potential link with proteinuria. Renin-angiotensin system inhibitors (RASis) are recommended in these patients to decrease proteinuria, slow CKD progression and reduce cardiovascular risk, but whether these drugs influence kynurenine levels in humans is unknown. We evaluated serum tryptophan and kynurenine in patients suffering from CKD with or without type 2 diabetes mellitus, their correlations with markers of reduced kidney function, and their relationship with RAS-inhibiting therapy. Of 72 adult patients enrolled, 55 were receiving RASis, whereas 17 were not. Tryptophan was assessed by HPLC (high-performance liquid chromatography); kynurenine was measured using an enzyme-linked immunosorbent assay kit; IDO activity (%) was calculated with the formula (kynurenine/tryptophan) × 100. Kynurenine levels were significantly lower in the group under RASis compared to the untreated group (1.56 ± 0.79 vs 2.16 ± 1.51 µmol/l; P = 0.0378). In patients not receiving RASis, kynurenine was inversely related to estimated glomerular filtration rate (eGFR) (r = - 0.4862; P = 0.0478) and directly related to both proteinuria (ρ = 0.493; P = 0.0444) and albuminuria (ρ = 0.542; P = 0.0247). IDO activity was higher in patients with history of cardiovascular disease compared to patients with no such history, and it negatively correlated with eGFR (ρ = - 0.554; P = 0.0210) in the same group. These findings may contribute to explain the well-known beneficial effects of RAS inhibition in CKD population, especially considering that kynurenine is emerging as a potential new biomarker of CKD.
Collapse
|
5
|
Smyth LJ, Cañadas-Garre M, Cappa RC, Maxwell AP, McKnight AJ. Genetic associations between genes in the renin-angiotensin-aldosterone system and renal disease: a systematic review and meta-analysis. BMJ Open 2019; 9:e026777. [PMID: 31048445 PMCID: PMC6501980 DOI: 10.1136/bmjopen-2018-026777] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is defined by abnormalities in kidney structure and/or function present for more than 3 months. Worldwide, both the incidence and prevalence rates of CKD are increasing. The renin-angiotensin-aldosterone system (RAAS) regulates fluid and electrolyte balance through the kidney. RAAS activation is associated with hypertension, which is directly implicated in causation and progression of CKD. RAAS blockade, using drugs targeting individual RAAS mediators and receptors, has proven to be renoprotective. OBJECTIVES To assess genomic variants present within RAAS genes, ACE, ACE2, AGT, AGTR1, AGTR2 and REN, for association with CKD. DESIGN AND DATA SOURCES A systematic review and meta-analysis of observational research was performed to evaluate the RAAS gene polymorphisms in CKD using both PubMed and Web of Science databases with publication date between the inception of each database and 31 December 2018. Eligible articles included case-control studies of a defined kidney disease and included genotype counts. ELIGIBILITY CRITERIA Any paper was removed from the analysis if it was not written in English or Spanish, was a non-human study, was a paediatric study, was not a case-control study, did not have a renal disease phenotype, did not include data for the genes, was a gene expression-based study or had a pharmaceutical drug focus. RESULTS A total of 3531 studies were identified, 114 of which met the inclusion criteria. Genetic variants reported in at least three independent publications for populations with the same ethnicity were determined and quantitative analyses performed. Three variants returned significant results in populations with different ethnicities at p<0.05: ACE insertion, AGT rs699-T allele and AGTR1 rs5186-A allele; each variant was associated with a reduced risk of CKD development. CONCLUSIONS Further biological pathway and functional analyses of the RAAS gene polymorphisms will help define how variation in components of the RAAS pathway contributes to CKD.
Collapse
Affiliation(s)
- Laura Jane Smyth
- Epidemiology and Public Health Research Group, Queen's University Belfast Centre for Public Health, Belfast, UK
| | - Marisa Cañadas-Garre
- Epidemiology and Public Health Research Group, Queen's University Belfast Centre for Public Health, Belfast, UK
| | - Ruaidhri C Cappa
- Epidemiology and Public Health Research Group, Queen's University Belfast Centre for Public Health, Belfast, UK
| | - Alexander P Maxwell
- Epidemiology and Public Health Research Group, Queen's University Belfast Centre for Public Health, Belfast, UK
- Regional Nephrology Unit, Belfast City Hospital, Belfast, UK
| | - Amy Jayne McKnight
- Epidemiology and Public Health Research Group, Queen's University Belfast Centre for Public Health, Belfast, UK
| |
Collapse
|
6
|
Deng T, Xie X, Duan J, Chen M. Di-(2-ethylhexyl) phthalate induced an increase in blood pressure via activation of ACE and inhibition of the bradykinin-NO pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:927-934. [PMID: 30823347 DOI: 10.1016/j.envpol.2019.01.099] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Epidemiological studies and animal experiments have suggested that exposure to Di-(2-ethylhexyl) phthalate (DEHP) is strongly associated with an increase in blood pressure. However, the mechanisms that result in the detrimental effects of DEHP exposure on blood pressure are unclear. In our study, mice were orally exposed to DEHP dosages of 0.1, 1, 10 mg/kg/day for 6 weeks. The results showed that DEHP could induce a significant increase in systolic blood pressure (SBP) and heart rate, and a significant thickening of the ventricular wall. To explore the underlying mechanism, we measured the level of: angiotensin converting enzyme (ACE); bradykinin B2 receptor (BK2R); endothelial nitric oxide synthase (eNOS); bradykinin and Ca2+ in cardiac cytoplasm as well as in serum nitric oxide (NO). The results suggested that DEHP could induce an increase in ACE levels, and a decrease in bradykinin levels. Moreover, BK2R, Ca2+, eNOS and NO decreased when mice were exposed to 10 mg/kg/day DEHP. Interestingly, 5 mg/kg/day angiotensin converting enzyme inhibitor (ACEI) treatment inhibited the increase in blood pressure, and inhibited the decrease in the levels of BK2R, Ca2+, eNOS, and NO, that were induced by DEHP exposure. Our results suggest that DEHP might increase blood pressure by activating ACE expression, and inhibiting the bradykinin-NO pathway.
Collapse
Affiliation(s)
- Ting Deng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Xiaoman Xie
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Jiufei Duan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China.
| |
Collapse
|
7
|
Josephs RD, Stoppacher N, Daireaux A, Choteau T, Lippa KA, Phinney KW, Westwood S, Wielgosz RI. State-of-the-art and trends for the SI traceable value assignment of the purity of peptides using the model compound angiotensin I. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.09.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Nishiyama A, Kobori H. Independent regulation of renin-angiotensin-aldosterone system in the kidney. Clin Exp Nephrol 2018; 22:1231-1239. [PMID: 29600408 PMCID: PMC6163102 DOI: 10.1007/s10157-018-1567-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 03/21/2018] [Indexed: 01/13/2023]
Abstract
Renin-angiotensin-aldosterone system (RAAS) plays important roles in regulating renal hemodynamics and functions, as well as in the pathophysiology of hypertension and renal disease. In the kidney, angiotensin II (Ang II) production is controlled by independent multiple mechanisms. Ang II is compartmentalized in the renal interstitial fluid with much higher concentrations than those existing in the circulation. Inappropriate activation of the intrarenal RAAS is an important contributor to the pathogenesis of hypertension and renal injury. It has been revealed that intrarenal Ang II levels are predominantly regulated by angiotensinogen and therefore, urinary angiotensinogen could be a biomarker for intrarenal Ang II generation. In addition, recent studies have demonstrated that aldosterone contributes to the progression of renal injury via direct actions on glomerular podocytes, mesangial cells, proximal tubular cells and tubulo-interstitial fibroblasts through the activation of locally expressed mineralocorticoid receptor. Thus, it now appears that intrarenal RAAS is independently regulated and its inappropriate activation contributes to the pathogenesis of the development of hypertension and renal disease. This short review article will focus on the independent regulation of the intrarenal RAAS with an emphasis on the specific role of angiotensinogen.
Collapse
Affiliation(s)
- Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Miki-cho, Kita-gun, Kagawa, 761-0793, Japan.
| | - Hiroyuki Kobori
- Departments of Pharmacology and Nephrology, Faculty of Medicine, International University of Health and Welfare, Narita, Japan
| |
Collapse
|
9
|
Stoppacher N, Josephs RD, Daireaux A, Choteau T, Westwood S, Wielgosz RI. Accurate quantification of impurities in pure peptide material - angiotensin I: Comparison of calibration requirements and method performance characteristics of liquid chromatography coupled to hybrid tandem mass spectrometry and linear ion trap high-resolution mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1651-1660. [PMID: 26467117 DOI: 10.1002/rcm.7261] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/17/2015] [Accepted: 06/21/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE The prohormone angiotensin I (ANG I) [amino acid sequence: DRVYIHPFHL] and other structurally related peptide hormones play an essential role in the regulation of the water and electrolyte balance in the human body as well as blood pressure. ANG I is a biomarker for hypertension and diabetes. Therefore, well-characterized pure reference materials and comparable and SI-traceable analytical characterization methods are required to establish reference measurement systems (RMS) for laboratory medicine. METHODS Two analytical characterization methods based on liquid chromatography/mass spectrometry (LC/MS) systems with electrospray ionization have been developed and validated in-house. Both high-resolution MS (hrMS) and hybrid-tandem MS/MS were used for the identification and quantification of the major structurally related peptide impurities of ANG I. The impurities were quantified by use of external calibrations with original impurity standards. Mass fraction impurity values and corresponding expanded measurement uncertainties were calculated. RESULTS Five structurally related degradation products were detected as major impurities in a 'pure' ANG I material. The peptides ANG (2-10) [RVYIHPFHL], ANG II [DRVYIHPF] and three ANG I isomers [DRVYLHPFHL, DRVYIHPFHI and DRVYLHPFHI] were identified and corresponding mass fraction values calculated that range from 0.66 to 4.86 mg/g. CONCLUSIONS The mass fraction values for the major related peptide impurities in the ANG I material obtained with both LC/hrMS and LC/MS/MS systems are in excellent agreement. This study emphasizes the importance of mass spectrometric techniques for application to mass balance approaches for mass fraction value and uncertainty assignment of impurities in 'pure' substance reference materials for peptides.
Collapse
Affiliation(s)
- N Stoppacher
- Bureau International des Poids et Mesures (BIPM), Département de Chimie, Pavillon de Breteuil, 92312, Sèvres Cedex, France
| | - R D Josephs
- Bureau International des Poids et Mesures (BIPM), Département de Chimie, Pavillon de Breteuil, 92312, Sèvres Cedex, France
| | - A Daireaux
- Bureau International des Poids et Mesures (BIPM), Département de Chimie, Pavillon de Breteuil, 92312, Sèvres Cedex, France
| | - T Choteau
- Bureau International des Poids et Mesures (BIPM), Département de Chimie, Pavillon de Breteuil, 92312, Sèvres Cedex, France
| | - S Westwood
- Bureau International des Poids et Mesures (BIPM), Département de Chimie, Pavillon de Breteuil, 92312, Sèvres Cedex, France
| | - R I Wielgosz
- Bureau International des Poids et Mesures (BIPM), Département de Chimie, Pavillon de Breteuil, 92312, Sèvres Cedex, France
| |
Collapse
|
10
|
Abstract
Aldosterone is a steroid hormone synthesized in and secreted from the outer layer of the adrenal cortex, the zona glomerulosa. Aldosterone is responsible for regulating sodium homeostasis, thereby helping to control blood volume and blood pressure. Insufficient aldosterone secretion can lead to hypotension and circulatory shock, particularly in infancy. On the other hand, excessive aldosterone levels, or those too high for sodium status, can cause hypertension and exacerbate the effects of high blood pressure on multiple organs, contributing to renal disease, stroke, visual loss, and congestive heart failure. Aldosterone is also thought to directly induce end-organ damage, including in the kidneys and heart. Because of the significance of aldosterone to the physiology and pathophysiology of the cardiovascular system, it is important to understand the regulation of its biosynthesis and secretion from the adrenal cortex. Herein, the mechanisms regulating aldosterone production in zona glomerulosa cells are discussed, with a particular emphasis on signaling pathways involved in the secretory response to the main controllers of aldosterone production, the renin-angiotensin II system, serum potassium levels and adrenocorticotrophic hormone. The signaling pathways involved include phospholipase C-mediated phosphoinositide hydrolysis, inositol 1,4,5-trisphosphate, cytosolic calcium levels, calcium influx pathways, calcium/calmodulin-dependent protein kinases, diacylglycerol, protein kinases C and D, 12-hydroxyeicostetraenoic acid, phospholipase D, mitogen-activated protein kinase pathways, tyrosine kinases, adenylate cyclase, and cAMP-dependent protein kinase. A complete understanding of the signaling events regulating aldosterone biosynthesis may allow the identification of novel targets for therapeutic interventions in hypertension, primary aldosteronism, congestive heart failure, renal disease, and other cardiovascular disorders.
Collapse
Affiliation(s)
- Wendy B Bollag
- Charlie Norwood VA Medical Center, Augusta, Georgia; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, Georgia
| |
Collapse
|
11
|
Gynura procumbens causes vasodilation by inhibiting angiotensin II and enhancing bradykinin actions. J Cardiovasc Pharmacol 2013; 61:378-84. [PMID: 23328388 DOI: 10.1097/fjc.0b013e31828685b3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous studies showed that Gynura procumbens reduced blood pressure by blocking calcium channels and inhibiting the angiotensin-converting enzyme activity. The present experiments were to further explore the effects and mechanisms of a purer aqueous fraction (FA-I) of G. procumbens on angiotensin I (Ang I)-induced and angiotensin II (Ang II)-induced contraction of aortic rings and also on the bradykinin (BK) effect on cardiovascular system. Rat aortic rings suspended in organ chambers were used to investigate the vascular reactivity of FA-I. Effect of FA-I on BK was studied by in vitro and in vivo methods. Results show that FA-I significantly (P < 0.05) decreased the contraction evoked by Ang I and Ang II. In the presence of indomethacin (10 µM) or N-nitro-L-arginine methyl ester (0.1 µM), the inhibitory effect of FA-I on Ang II-induced contraction of aortic rings was reduced. Besides, FA-I potentiated the vasorelaxant effect and enhanced the blood pressure-lowering effect of BK. In conclusion, FA-I reduced the contraction evoked by Ang II probably via the endothelium-dependent pathways, which involve activation of the release of nitric oxide and prostaglandins. The inhibition of angiotensin-converting enzyme activity by FA-I may contribute to the potentiation of the effects of BK on cardiovascular system.
Collapse
|
12
|
Angeli F, Reboldi G, Mazzotta G, Poltronieri C, Verdecchia P. Safety and efficacy of aliskiren in the treatment of hypertension: a systematic overview. Expert Opin Drug Saf 2012; 11:659-70. [PMID: 22724663 DOI: 10.1517/14740338.2012.696608] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Aliskiren is the first orally active direct renin inhibitor approved for the treatment of hypertension. Aliskiren's inhibitory effect on angiotensin I generation, through renin blockade, is highly specific and long-lasting (24 hours). This feature differentiates aliskiren from traditional antihypertensive drugs. AREAS COVERED This paper reviews the results of various clinical trials which investigate the safety and efficacy of aliskiren on blood pressure (BP) reduction and clinical end points. EXPERT OPINION Aliskiren is suitable for once-daily administration. Its antihypertensive effect is comparable or superior to that of other antihypertensive agents at recommended doses. The tolerability profile of aliskiren is placebo-like at the licensed doses of 150 and 300 mg. In particular, the discontinuation of therapy due to clinical adverse events occurs similarly among patients treated with either aliskiren or placebo. Aliskiren is not recommended in association with ACE-inhibitors or angiotensin II receptor blockers in patients with type 2 diabetes and renal impairment. Pending disclosure of full results, the early termination of the ALTITUDE seems to confirm previous concerns about the safety of the dual pharmacological blockade of the renin-angiotensin system in these patients. Aliskiren is a well-tolerated antihypertensive drug that may help to achieve the recommended targets of BP control.
Collapse
Affiliation(s)
- Fabio Angeli
- Hospital Media Valle del Tevere - Pantalla, AUSL 2 Umbria, Department of Cardiology, Section of Cardiology, Perugia, Italy.
| | | | | | | | | |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW The world population is aging and a rapid increase is being seen in the very elderly (aged >80 years). Cholesterol levels in general rise with age and high cholesterol has been associated with extreme longevity. The relationship between lipids and cardiovascular events in the extreme elderly is unclear. RECENT FINDINGS A number of genetic factors associated with lipid metabolism have also been described as having potential antiaging roles, including the genes encoding lipoprotein-associated factors - apolipoprotein E and cholesterol ester transfer protein; adipose tissue metabolism - adiponectin, leptin, glycaemia; and blood pressure - angiotensinogen. Clinical trials of lipid-lowering therapies have recruited subgroups of moderately elderly patients, but only the Prospective Study of Pravastatin in the Elderly at Risk (PROSPER) trial specifically recruited an elderly population. There is no direct equivalent of the Hypertension in the Very Elderly trial (HYVET) study of antihypertensive patients in the extreme elderly. No heterogeneity has been seen with the effects of statin therapy in the elderly compared with younger age groups on classical cardiovascular endpoints of coronary heart disease and stroke. SUMMARY The optimal cholesterol target, long-term tolerability and the specific effects of statins on other vascular-associated diseases of aging, for example arterial aneurysms, microvascular renal and cerebral disease (dementias), remain to be determined.
Collapse
|
14
|
Tsai LCL, Beavo JA. The roles of cyclic nucleotide phosphodiesterases (PDEs) in steroidogenesis. Curr Opin Pharmacol 2011; 11:670-5. [PMID: 21962440 DOI: 10.1016/j.coph.2011.09.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 01/09/2023]
Abstract
The second messenger, cAMP, is one of the most important regulatory signals for control of steroidogenesis. This review focuses on current knowledge about regulation of cyclic nucleotides by phosphodiesterases (PDEs) in steroidogenic tissues. The first PDE known to directly regulate steroidogenesis was PDE2, the cGMP-stimulated PDE. PDE2 mediates ANP/cGMP-induced decreases in aldosterone production. Recently, the PDE8 family has been shown to control steroidogenesis in two tissues. Specifically, PDE8A regulates testosterone production by itself and in concert with additional IBMX-sensitive PDEs. PDE8B modulates basal corticosterone synthesis via acute and chronic mechanisms. In addition to cAMP-dependent pathways, cGMP signaling also can promote steroidogenesis, and PDE5 modulates this process. Finally, PDE mutations may lead to several human diseases characterized by abnormal steroid levels.
Collapse
Affiliation(s)
- Li-Chun Lisa Tsai
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
15
|
Coppo M, Bandinelli M, Berni A, Galastri S, Abbate R, Poggesi L, Marra F, Gensini GF, Boddi M. Ang II Upregulation of the T-lymphocyte renin-angiotensin system is amplified by low-grade inflammation in human hypertension. Am J Hypertens 2011; 24:716-23. [PMID: 21394089 DOI: 10.1038/ajh.2011.32] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Low-grade inflammation facilitates the development of essential hypertension and target organ damage (TOD). Recently, human T-lymphocytes were shown to be endowed with a functional active renin-angiotensin system (RAS). We investigated whether in hypertensive patients a selective angiotensin (Ang) II-driven upregulation of T-cell RAS occurs and whether it is differently modulated in presence of low-grade inflammation. METHODS T-lymphocytes were obtained from 21 hypertensives (I-II World Health Organization class; 16 males, 5 females; 56 ± 11 years). Low-grade inflammation was defined for high sensitive C-reactive protein (hsCRP) > 2 mg/l. Ten healthy subjects formed the age- and sex-matched control group. After T-lymphocytes isolation, mRNAs for angiotensin-converting enzyme (ACE) and angiotensin type 1 receptor (AT1-R) were quantified by reverse-transcriptase PCR with or without 0.1 pmol/l Ang II in addition to T-cells cultures. Cell pellet and supernatant ACE activity and Ang II content were measured. Cardiac and renal TOD-indexes were evaluated. RESULTS Both in controls and hypertensives, Ang II-stimulation significantly increased ACE and AT1-R mRNA levels (P < 0.05). In patients, the increase was earlier and higher than controls, with the highest values in hypertensives with > 2 mg/l hsCRP. Peak Ang II-induced ACE and AT1-R mRNA levels were positively related to hsCRP, systolic blood pressure and body mass index (BMI) at the univariate analyses. The stepwise regression analyses selected hsCRP (r = 0.47) and left ventricular mass index (LVMI) (r = 0.50) as the variables independently related to peak ace-gene expression, while BMI resulted independently related to peak AT1-R gene expression (P < 0.001). CONCLUSIONS In hypertension, an Ang II-driven activation of T-cell RAS, further amplified by low-grade inflammation, does occur and is associated to worse TOD. New therapeutic approaches aimed at this specific target might be proposed to control hypertension and hypertensive damage.
Collapse
|
16
|
The influence of genetic polymorphisms and interacting drugs on initial response to warfarin in Chinese patients with heart valve replacement. Eur J Clin Pharmacol 2011; 67:581-90. [DOI: 10.1007/s00228-011-0995-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
|