1
|
Qu Z, Wu S, Zheng Y, Bing Y, Liu X, Li S, Li W, Zou X. Fecal metabolomics combined with metagenomics sequencing to analyze the antidepressant mechanism of Yueju Wan. J Pharm Biomed Anal 2024; 238:115807. [PMID: 37924576 DOI: 10.1016/j.jpba.2023.115807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Yueju Wan (YJW), defined in Danxi's Mastery of Medicine, has Qi-regulating and Qi-promoting effects. YJW has frequently been applied in the clinic for the treatment of depression. Substantial evidence has shown that depression is related to metabolic abnormalities of the gut microbiota, and traditional Chinese medicine (TCM) can treat depression by adjusting gut microbiota metabolism. The antidepressant effect of YJW is well established, but thus far, whether its mechanism of action is achieved by regulating the intestinal flora has not been elucidated. METHODS In this study, chronic unpredictable mild stress (CUMS) along with isolated feeding created a rat depression model, and YJW was administered for intervention. Rats were put through behavioral tests to determine their level of depression, and ELISA was utilized for measuring the level of monoamine neurotransmitters (MNTs) in the hippocampus. Metagenomic gene sequencing analysis was used to study the effect of depression on the intestinal flora in rats and the regulatory mechanism of YJW on the intestinal flora. Furthermore, ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) was utilized for fecal metabolomics studies to further reveal the antidepressant mechanism of YJW. The antidepressant mechanism of YJW was explored and further verified by Western blot analysis. RESULTS Different doses of YJW improved the depressive state of rats and raised the levels of MNTs in the hippocampus. The results of metagenomic sequencing indicated that the YJW recovered the structure and diversity of the intestinal flora in depressed rats. Metabolomics revealed sustained changes in 21 metabolites after the treatment of YJW, suggesting that YJW can play an antidepressant role by improving abnormal metabolic pathways. The results of correlation analysis suggested that YJW might mediate Eubacterium, Oscillibacter, Roseburia, Romboutsia and Bacterium to regulate purine metabolism, tryptophan metabolism, primary bile acid biosynthesis, and glutamate metabolism and exert antidepressant effects. Western blot analysis showed that YJW reduced the content of IL-1β in the hippocampus, inhibited the activation of the NLRP3 inflammasome in the hippocampus of rats, and increased the content of ZO-1 in the colon of rats. CONCLUSION YJW can alleviate depressive symptoms in depressed rats, and its mechanism is connected to improving intestinal flora and regulating body metabolism.
Collapse
Affiliation(s)
- Zhongyuan Qu
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Shuang Wu
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Yan Zheng
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Yifan Bing
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Xueqin Liu
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Sunan Li
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Wenlan Li
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Xiang Zou
- Engineering Research Center on Natural Antineoplastic Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China.
| |
Collapse
|
2
|
Rubio C, Ochoa E, Gatica F, Portilla A, Vázquez D, Rubio-Osornio M. The Role of the Vagus Nerve in the Microbiome and Digestive System in Relation to Epilepsy. Curr Med Chem 2024; 31:6018-6031. [PMID: 37855342 DOI: 10.2174/0109298673260479231010044020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
The Enteric Nervous System (ENS) is described as a division of the Peripheral Nervous System (PNS), located within the gut wall and it is formed by two main plexuses: the myenteric plexus (Auerbach's) and the submucosal plexus (Meissner's). The contribution of the ENS to the pathophysiology of various neurological diseases such as Parkinson's or Alzheimer's disease has been described in the literature, while some other studies have found a connection between epilepsy and the gastrointestinal tract. The above could be explained by cholinergic neurons and neurotransmission systems in the myenteric and submucosal plexuses, regulating the vagal excitability effect. It is also understandable, as the discharges arising in the amygdala are transmitted to the intestine through projections the dorsal motor nucleus of the vagus, giving rise to efferent fibers that stimulate the gastrointestinal tract and consequently the symptoms at this level. Therefore, this review's main objective is to argue in favor of the existing relationship of the ENS with the Central Nervous System (CNS) as a facilitator of epileptogenic or ictogenic mechanisms. The gut microbiota also participates in this interaction; however, it depends on many individual factors of each human being. The link between the ENS and the CNS is a poorly studied epileptogenic site with a big impact on one of the most prevalent neurological conditions such as epilepsy.
Collapse
Affiliation(s)
- Carmen Rubio
- Departamento de Neurofisiología, Instituto Nacional de Neurologìa y Neurocirugía, Mexico city, Mexico
| | - Ernesto Ochoa
- Departamento de Neurofisiología, Instituto Nacional de Neurologìa y Neurocirugía, Mexico city, Mexico
| | - Fernando Gatica
- Departamento de Neurofisiología, Instituto Nacional de Neurologìa y Neurocirugía, Mexico city, Mexico
- Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Alonso Portilla
- Departamento de Neurofisiología, Instituto Nacional de Neurologìa y Neurocirugía, Mexico city, Mexico
- Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - David Vázquez
- Departamento de Neurofisiología, Instituto Nacional de Neurologìa y Neurocirugía, Mexico city, Mexico
- Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Moisés Rubio-Osornio
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Mexico city, Mexico
| |
Collapse
|
3
|
Oligosaccharides from Morinda officinalis Slow the Progress of Aging Mice by Regulating the Key Microbiota-Metabolite Pairs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9306834. [PMID: 31929824 PMCID: PMC6942866 DOI: 10.1155/2019/9306834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/26/2019] [Accepted: 11/27/2019] [Indexed: 11/17/2022]
Abstract
The gut microbiota is considered an important factor in the progression of Alzheimer's disease (AD). Active research on the association between the metabolome and the gut microbiome is ongoing and can provide a large amount of beneficial information about the interactions between the microbiome and the metabolome. Previous studies have shown that the oligosaccharides from Morinda officinalis (OMO) can delay the progress of AD in model animals by regulating the diversity of the gut microbiome and metabolic components, and the correlation between the gut microbiome and metabolic components still needs to be further verified. This study applied a new two-level strategy to investigate and ensure the accuracy and consistency of the results. This strategy can be used to determine the association between the gut microbiome and serum metabolome in APP/PS1 transgenic mice and C57BL/6J male mice. The “4C0d-2 spp.-Cholesterol,” “CW040 spp.-L-valine,” “CW040 spp.-L-acetylcarnitine,” “RF39 spp.-L-valine,” “TM7-3 spp.-L-valine,” and “TM7-3 spp.-L-acetylcarnitine” associations among specific “microbiota-metabolite” pairs were further identified based on univariate and multivariate correlation analyses and functional analyses. The key relevant pairs were verified by an independent oligosaccharide intervention study, and the gut microbiome and serum metabolome of the OMO intervention group were similar to those of the normal group. The results indicate that OMO can significantly suppress Alzheimer's disease by regulating the key microbiota-metabolite pairs. Therefore, this two-level strategy is effective in identifying the principal correlations in large datasets obtained from combinations of multiomic studies and further enhancing our understanding of the correlation between the brain and gut in patients with AD.
Collapse
|
4
|
Chen T, You Y, Xie G, Zheng X, Zhao A, Liu J, Zhao Q, Wang S, Huang F, Rajani C, Wang C, Chen S, Ni Y, Yu H, Deng Y, Wang X, Jia W. Strategy for an Association Study of the Intestinal Microbiome and Brain Metabolome Across the Lifespan of Rats. Anal Chem 2018; 90:2475-2483. [PMID: 29353471 DOI: 10.1021/acs.analchem.7b02859] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is increased appreciation for the diverse roles of the microbiome-gut-brain axis on mammalian growth and health throughout the lifespan. Numerous studies have demonstrated that the gut microbiome and their metabolites are extensively involved in the communication between brain and gut. Association study of brain metabolome and gut microbiome is an active field offering large amounts of information on the interaction of microbiome, brain and gut but data size and complicated hierarchical relationships were found to be major obstacles to the formation of significant, reproducible conclusions. This study addressed a two-level strategy of brain metabolome and gut microbiome association analysis of male Wistar rats in the process of growth, employing several analytical platforms and various bioinformatics methods. Trajectory analysis showed that the age-related brain metabolome and gut microbiome had similarity in overall alteration patterns. Four high taxonomical level correlated pairs of "metabolite type-bacterial phylum", including "lipids-Spirochaetes", "free fatty acids (FFAs)-Firmicutes", "bile acids (BAs)-Firmicutes", and "Neurotransmitters-Bacteroidetes", were screened out based on unit- and multivariant correlation analysis and function analysis. Four groups of specific "metabolite-bacterium" association pairs from within the above high level key pairs were further identified. The key correlation pairs were validated by an independent animal study. This two-level strategy is effective in identifying principal correlations in big data sets obtained from the systematic multiomics study, furthering our understanding on the lifelong connection between brain and gut.
Collapse
Affiliation(s)
- Tianlu Chen
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233, China
| | - Yijun You
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233, China
| | - Guoxiang Xie
- University of Hawaii Cancer Center , Honolulu, Hawaii 96813, United States
| | - Xiaojiao Zheng
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233, China
| | - Aihua Zhao
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233, China
| | - Jiajian Liu
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233, China
| | - Qing Zhao
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233, China
| | - Shouli Wang
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233, China
| | - Fengjie Huang
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233, China
| | - Cynthia Rajani
- University of Hawaii Cancer Center , Honolulu, Hawaii 96813, United States
| | - Congcong Wang
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Shaoqiu Chen
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Yan Ni
- University of Hawaii Cancer Center , Honolulu, Hawaii 96813, United States
| | - Herbert Yu
- University of Hawaii Cancer Center , Honolulu, Hawaii 96813, United States
| | - Youping Deng
- Biostatistics and Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa , Honolulu, Hawaii 96813, United States
| | - Xiaoyan Wang
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Wei Jia
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233, China.,University of Hawaii Cancer Center , Honolulu, Hawaii 96813, United States
| |
Collapse
|
5
|
Mazzoli R, Pessione E. The Neuro-endocrinological Role of Microbial Glutamate and GABA Signaling. Front Microbiol 2016; 7:1934. [PMID: 27965654 PMCID: PMC5127831 DOI: 10.3389/fmicb.2016.01934] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota provides the host with multiple functions (e.g., by contributing to food digestion, vitamin supplementation, and defense against pathogenic strains) and interacts with the host organism through both direct contact (e.g., through surface antigens) and soluble molecules, which are produced by the microbial metabolism. The existence of the so-called gut–brain axis of bi-directional communication between the gastrointestinal tract and the central nervous system (CNS) also supports a communication pathway between the gut microbiota and neural circuits of the host, including the CNS. An increasing body of evidence has shown that gut microbiota is able to modulate gut and brain functions, including the mood, cognitive functions, and behavior of humans. Nonetheless, given the extreme complexity of this communication network, its comprehension is still at its early stage. The present contribution will attempt to provide a state-of-the art description of the mechanisms by which gut microbiota can affect the gut–brain axis and the multiple cellular and molecular communication circuits (i.e., neural, immune, and humoral). In this context, special attention will be paid to the microbial strains that produce bioactive compounds and display ascertained or potential probiotic activity. Several neuroactive molecules (e.g., catecholamines, histamine, serotonin, and trace amines) will be considered, with special focus on Glu and GABA circuits, receptors, and signaling. From the basic science viewpoint, “microbial endocrinology” deals with those theories in which neurochemicals, produced by both multicellular organisms and prokaryotes (e.g., serotonin, GABA, glutamate), are considered as a common shared language that enables interkingdom communication. With regards to its application, research in this area opens the way toward the possibility of the future use of neuroactive molecule-producing probiotics as therapeutic agents for the treatment of neurogastroenteric and/or psychiatric disorders.
Collapse
Affiliation(s)
- Roberto Mazzoli
- Laboratory of Biochemistry, Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino Torino, Italy
| | - Enrica Pessione
- Laboratory of Biochemistry, Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino Torino, Italy
| |
Collapse
|
6
|
Abstract
INTRODUCTION After the introduction of highly active antiretroviral treatment, the course of HIV infection turned into a chronic disease and most of HIV-positive patients will soon be over 50 years old. MATERIAL AND METHODS This paper reviews the multiple aspects that physicians have to face while taking care of HIV-positive ageing patients including the definitions of frailty and the prevalence and risk factors of concomitant diseases. From a therapeutic point of view pharmacokinetic changes and antiretroviral-specific toxicities associated with ageing are discussed; finally therapeutic approaches to frailty are reviewed both in HIV-positive and negative patients. CONCLUSION AND DISCUSSION We conclude by suggesting that the combined use of drugs with the least toxicity potential and the promotion of healthy behaviours (including appropriate nutrition and exercise) might be the best practice for ageing HIV-positive subjects.
Collapse
|
7
|
Pereira C, Ferreira NR, Rocha BS, Barbosa RM, Laranjinha J. The redox interplay between nitrite and nitric oxide: From the gut to the brain. Redox Biol 2013; 1:276-84. [PMID: 24024161 PMCID: PMC3757698 DOI: 10.1016/j.redox.2013.04.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 04/09/2013] [Indexed: 02/09/2023] Open
Abstract
The reversible redox conversion of nitrite and nitric oxide ((•)NO) in a physiological setting is now widely accepted. Nitrite has long been identified as a stable intermediate of (•)NO oxidation but several lines of evidence support the reduction of nitrite to nitric oxide in vivo. In the gut, this notion implies that nitrate from dietary sources fuels the longstanding production of nitrite in the oral cavity followed by univalent reduction to (•)NO in the stomach. Once formed, (•)NO boosts a network of reactions, including the production of higher nitrogen oxides that may have a physiological impact via the post-translational modification of proteins and lipids. Dietary compounds, such as polyphenols, and different prandial states (secreting specific gastric mediators) modulate the outcome of these reactions. The gut has unusual characteristics that modulate nitrite and (•)NO redox interplay: (1) wide range of pH (neutral vs acidic) and oxygen tension (c.a. 70 Torr in the stomach and nearly anoxic in the colon), (2) variable lumen content and (3) highly developed enteric nervous system (sensitive to (•)NO and dietary compounds, such as glutamate). The redox interplay of nitrite and (•)NO might also participate in the regulation of brain homeostasis upon neuronal glutamatergic stimulation in a process facilitated by ascorbate and a localized and transient decrease of oxygen tension. In a way reminiscent of that occurring in the stomach, a nitrite/(•)NO/ascorbate redox interplay in the brain at glutamatergic synapses, contributing to local (•)NO increase, may impact on (•)NO-mediated process. We here discuss the implications of the redox conversion of nitrite to (•)NO in the gut, how nitrite-derived (•)NO may signal from the digestive to the central nervous system, influencing brain function, as well as a putative ascorbate-driven nitrite/NO pathway occurring in the brain.
Collapse
Affiliation(s)
- Cassilda Pereira
- Department of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | | | | | | | | |
Collapse
|
8
|
Protein and amino acid supplementation in older humans. Amino Acids 2013; 44:1493-509. [DOI: 10.1007/s00726-013-1480-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 02/21/2013] [Indexed: 01/09/2023]
|
9
|
Uneyama H, Takeuchi K. New therapeutic strategy for amino acid medicine: preface. J Pharmacol Sci 2012; 118:129-30. [PMID: 22293295 DOI: 10.1254/jphs.11r07fm] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Hisayuki Uneyama
- Umami Wellness Research Group, Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Japan.
| | | |
Collapse
|