1
|
Jiang R, Ohkubo T, Sato T, Sakai N. Stress-Easing Effect of Diacyl Glyceryl Ethers on Anxiety-Related Behavior in Mice. Foods 2024; 13:3765. [PMID: 39682837 DOI: 10.3390/foods13233765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Stress and anxiety are significant psychological challenges in modern society, which have led to a rapidly growing market for functional foods, including those reported to relieve stress, as alternatives to psychoactive drugs. Among these, diacyl glyceryl ethers (DAGE) derived from deep-sea shark liver oil have gained attention for their strong antioxidant properties and potential mental health benefits. Building on preliminary evidence suggesting DAGE's efficacy in enhancing stress resilience and modulating biochemical pathways associated with reduced oxidative stress, the present study aimed to examine their effects on stress responses in two specific mouse strains. Each mouse was fed either a DAGE-infused diet or a control diet for three weeks. Their stress responses were evaluated using three behavioral tests: the elevated plus maze, open-field, and forced swimming tests. The DAGE-fed mice displayed lower stress responses than the control mice in the initial trial of each test. Specifically, DAGE-fed mice demonstrated increased time spent in the open arms in the elevated plus maze and more time spent in the center of the open field, suggesting reduced anxiety. Additionally, in the forced swimming test, DAGE-treated mice displayed reduced immobility times, indicating potential antidepressant effects on the mice. These findings suggest the potential of DAGE to bolster stress resilience in mice, emphasizing their promise for further studies in human stress management.
Collapse
Affiliation(s)
- Rong Jiang
- Department of Psychology, Graduate School of Arts and Letters, Tohoku University, Kawauchi 27-1, Aoba-ku, Sendai 980-8576, Miyagi, Japan
| | - Takeshi Ohkubo
- Faculty of Human Sciences, Department of Health and Nutrition, Sendai Shirayuri Women's College, Honda-cho 6-1, Izumi-ku, Sendai 981-3107, Miyagi, Japan
| | - Toshihiko Sato
- Department of Psychology and Humanities, College of Sociology, Edogawa University, Komagi 474, Nagareyama 270-0198, Chiba, Japan
| | - Nobuyuki Sakai
- Department of Psychology, Graduate School of Arts and Letters, Tohoku University, Kawauchi 27-1, Aoba-ku, Sendai 980-8576, Miyagi, Japan
| |
Collapse
|
2
|
Shin HS, Lee SH, Moon HJ, So YH, Lee HR, Lee EH, Jung EM. Exposure to polystyrene particles causes anxiety-, depression-like behavior and abnormal social behavior in mice. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131465. [PMID: 37130475 DOI: 10.1016/j.jhazmat.2023.131465] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
In the era of plastic use, organisms are constantly exposed to polystyrene particles (PS-Ps). PS-Ps accumulated in living organisms exert negative effects on the body, although studies evaluating their effects on brain development are scarce. In this study, the effects of PS-Ps on nervous system development were investigated using cultured primary cortical neurons and mice exposed to PS-Ps at different stages of brain development. The gene expression associated with brain development was downregulated in embryonic brains following PS-Ps exposure, and Gabra2 expression decreased in the embryonic and adult mice exposed to PS-Ps. Additionally, offspring of PS-Ps-treated dams exhibited signs of anxiety- and depression-like behavior, and abnormal social behavior. We propose that PS-Ps accumulation in the brain disrupts brain development and behavior in mice. This study provides novel information regarding PS-Ps toxicity and its harmful effects on neural development and behavior in mammals.
Collapse
Affiliation(s)
- Hyun Seung Shin
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Seung Hyun Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Ha Jung Moon
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Yun Hee So
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Ha Ram Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Eun-Hee Lee
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Eui-Man Jung
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
3
|
Hou Y, Chen M, Wang C, Liu L, Mao H, Qu X, Shen X, Yu B, Liu S. Electroacupuncture Attenuates Anxiety-Like Behaviors in a Rat Model of Post-traumatic Stress Disorder: The Role of the Ventromedial Prefrontal Cortex. Front Neurosci 2021; 15:690159. [PMID: 34248490 PMCID: PMC8264195 DOI: 10.3389/fnins.2021.690159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Electroacupuncture (EA) is a promising clinical approach to treating posttraumatic stress disorder (PTSD), yet the mechanisms whereby EA can alleviate anxiety and other PTSD symptoms have yet to be clarified. In the present report, rats underwent EA for 14 consecutive days following modified single prolonged stress (MSPS) exposure. These animals were then evaluated in open field and elevated plus maze tests (OFT and EPM), while Fos immunohistochemical staining was performed to assess ventromedial prefrontal cortex (vmPFC) functional activation. In addition, an extracellular recording and stimulation system was used to analyze vmPFC inputs into the ventral tegmental area (VTA) in these rats. Temporary vmPFC inactivation was further performed to assess whether this was sufficient to reverse the anxiolytic effects of EA. Overall, rats that underwent EA treatment spent more time in the central region (OFT) and the open arm (EPM) relative to MSPS model animals (P < 0.05). These MSPS model animals also exhibited significantly fewer activated Fos-positive nuclei in the vmPFC following behavioral testing, while EA was associated with a significant relative increase in c-Fos expression in this region. The transient inactivation of the vmPFC was sufficient to reverse the effects of EA treatment on anxiety-like behaviors in MSPS model rats. MSPS and SEA rats exhibiting no differences in bursting activity between baseline and vmPFC stimulation, whereas bursting activity rose relative to baseline upon ventral mPFC stimulation in EA treated and control rats. Together, these findings indicate that the vmPFC and its inputs into the VTA are functionally linked to the anxiolytic activity of EA, implicating this pathway in the EA-mediated treatment of PTSD.
Collapse
Affiliation(s)
- Yuchao Hou
- Department of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meiyu Chen
- Department of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Can Wang
- Department of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lumin Liu
- Department of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huijuan Mao
- Department of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyi Qu
- Department of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueyong Shen
- Department of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bo Yu
- Department of Human Anatomy, School of Basic Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sheng Liu
- Department of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Smalheiser NR, Graetz EE, Yu Z, Wang J. Effect size, sample size and power of forced swim test assays in mice: Guidelines for investigators to optimize reproducibility. PLoS One 2021; 16:e0243668. [PMID: 33626103 PMCID: PMC7904226 DOI: 10.1371/journal.pone.0243668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/10/2021] [Indexed: 11/19/2022] Open
Abstract
A recent flood of publications has documented serious problems in scientific reproducibility, power, and reporting of biomedical articles, yet scientists persist in their usual practices. Why? We examined a popular and important preclinical assay, the Forced Swim Test (FST) in mice used to test putative antidepressants. Whether the mice were assayed in a naïve state vs. in a model of depression or stress, and whether the mice were given test agents vs. known antidepressants regarded as positive controls, the mean effect sizes seen in the experiments were indeed extremely large (1.5-2.5 in Cohen's d units); most of the experiments utilized 7-10 animals per group which did have adequate power to reliably detect effects of this magnitude. We propose that this may at least partially explain why investigators using the FST do not perceive intuitively that their experimental designs fall short-even though proper prospective design would require ~21-26 animals per group to detect, at a minimum, large effects (0.8 in Cohen's d units) when the true effect of a test agent is unknown. Our data provide explicit parameters and guidance for investigators seeking to carry out prospective power estimation for the FST. More generally, altering the real-life behavior of scientists in planning their experiments may require developing educational tools that allow them to actively visualize the inter-relationships among effect size, sample size, statistical power, and replicability in a direct and intuitive manner.
Collapse
Affiliation(s)
- Neil R. Smalheiser
- Department of Psychiatry, University of Illinois School of Medicine, Chicago, Illinois, United States of America
| | - Elena E. Graetz
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Zhou Yu
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jing Wang
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
5
|
Shin T, Hiraoka Y, Yamasaki T, Marth JD, Penninger JM, Kanai-Azuma M, Tanaka K, Kofuji S, Nishina H. MKK7 deficiency in mature neurons impairs parental behavior in mice. Genes Cells 2020; 26:5-17. [PMID: 33098150 PMCID: PMC7839552 DOI: 10.1111/gtc.12816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/28/2022]
Abstract
c‐Jun N‐terminal kinases (JNKs) are constitutively activated in mammalian brains and are indispensable for their development and neural functions. MKK7 is an upstream activator of all JNKs. However, whether the common JNK signaling pathway regulates the brain's control of social behavior remains unclear. Here, we show that female mice in which Mkk7 is deleted specifically in mature neurons (Mkk7flox/floxSyn‐Cre mice) give birth to a normal number of pups but fail to raise them due to a defect in pup retrieval. To explore the mechanism underlying this abnormality, we performed comprehensive behavioral tests. Mkk7flox/floxSyn‐Cre mice showed normal locomotor functions and cognitive ability but exhibited depression‐like behavior. cDNA microarray analysis of mutant brain revealed an altered gene expression pattern. Quantitative RT‐PCR analysis demonstrated that mRNA expression levels of genes related to neural signaling pathways and a calcium channel were significantly different from controls. In addition, loss of neural MKK7 had unexpected regulatory effects on gene expression patterns in oligodendrocytes. These findings indicate that MKK7 has an important role in regulating the gene expression patterns responsible for promoting normal social behavior and staving off depression.
Collapse
Affiliation(s)
- Tadashi Shin
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuichi Hiraoka
- Department of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tokiwa Yamasaki
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Jamey D Marth
- Center for Nanomedicine, Department of Molecular, Cellular and Developmental Biology, SBP Medical Discovery Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.,Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Masami Kanai-Azuma
- Department of Experimental Animal Model for Human Disease, Center for Experimental Animals, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kohichi Tanaka
- Department of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Satoshi Kofuji
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
6
|
Sun Y, Cao J, Xu C, Liu X, Wang Z, Zhao H. Rostromedial tegmental nucleus-substantia nigra pars compacta circuit mediates aversive and despair behavior in mice. Exp Neurol 2020; 333:113433. [PMID: 32791155 DOI: 10.1016/j.expneurol.2020.113433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/28/2022]
Abstract
GABAergic neurons in the rostromedial tegmental nucleus (RMTg) receive major input from the lateral habenula (LHb), which conveys negative reward and motivation related information, and project intensively to midbrain dopamine neurons, including those in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). The RMTg-VTA circuit has been shown to be linked to the affective behavior, but the role of the RMTg-SNc circuit in aversion and depression has not been well understood. This study demonstrated that exciting or inhibiting VgatRMTg-SNc neurons was sufficient to increase or decrease immobility time in the forced swim test (FST), respectively. Furthermore, exciting the VgatRMTg-SNc pathway caused aversive behavior. Ninety percent of the SNc putative dopamine neurons were inhibited in extracellular recordings. Furthermore, inhibiting the VgatRMTg-SNc pathway reversed behavioral despair in chronic restraint stress (CRS) depression model mice. Manipulations of the pathway did not affect the hedonic value of the reward in the sucrose-preference test (SPT) or general motor function. In conclusion, these results indicate that the VgatRMTg-SNc pathway regulates aversive and despair behavior, which suggests that the RMTg may mediate the role of LHb in negative behaviors through regulating the activity of SNc neurons.
Collapse
Affiliation(s)
- Yanfei Sun
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China.
| | - Jing Cao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Chunpeng Xu
- Shijiazhuang Fifth Hospital, Shijiazhuang 050000, PR China
| | - Xiaofeng Liu
- Neuroscience Research Center, First Hospital of Jilin University, Changchun 130021, PR China
| | - Zicheng Wang
- Norman Bethune Health Science Center of Jilin University, Changchun 130021, PR China
| | - Hua Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China; Neuroscience Research Center, First Hospital of Jilin University, Changchun 130021, PR China.
| |
Collapse
|
7
|
Witkin JM, Smith JL, Golani LK, Brooks EA, Martin AE. Involvement of muscarinic receptor mechanisms in antidepressant drug action. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 89:311-356. [PMID: 32616212 DOI: 10.1016/bs.apha.2020.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Conventional antidepressants typically require weeks of daily dosing to achieve full antidepressant response in antidepressant responders. A newly evolving group of compounds can engender more rapid response times in depressed patients. These drugs include the newly approved antidepressant (S)-ketamine (esketamine, Spravato). A seminal study by Furey and Drevets in 2006 showed antidepressant response in patients after only a few doses with the antimuscarinic drug scopolamine. Several clinical reports have generally confirmed scopolamine as a rapid-acting antidepressant. The data with scopolamine are consistent with the adrenergic/cholinergic hypothesis of mania/depression derived from clinical reports originating in the 1970s from Janowsky and colleagues. Additional support for a role for muscarinic receptors in mood disorders comes from the greater efficacy of conventional antidepressants that have relatively high levels of muscarinic receptor blocking actions (e.g., the tricyclic antidepressant amitriptyline vs the selective serotonin reuptake inhibitor fluoxetine). There appears to be appreciable overlap in the mechanisms of action of scopolamine and other rapid-acting antidepressants (ketamine) or putative rapid-acting agents (mGlu2/3 receptor antagonists) although gaps exist in the experimental literature. Current hypotheses regarding the mechanisms underlying the rapid antidepressant response to scopolamine posit an M1 receptor subtype-initiated cascade of biological events that involve the amplification of AMPA receptors. Consequent impact on brain-derived neurotrophic factor and mTor signaling pathways result in the induction of dendritic spines that enable augmented functional connectivity in brain areas regulating mood. Two major goals for research in this area focus on finding ways in which scopolamine might best be utilized for depressed patients and the discovery of alternative compounds that improve upon the efficacy and safety of scopolamine.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Witkin Consulting Group, Carmel, IN, United States; Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN, United States; Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, United States.
| | - Jodi L Smith
- Peyton Manning Children's Hospital, Ascension St. Vincent, Indianapolis, IN, United States
| | - Lalit K Golani
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | | | | |
Collapse
|
8
|
Temporal effect of electroacupuncture on anxiety-like behaviors and c-Fos expression in the anterior cingulate cortex in a rat model of post-traumatic stress disorder. Neurosci Lett 2019; 711:134432. [PMID: 31419458 DOI: 10.1016/j.neulet.2019.134432] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 08/07/2019] [Accepted: 08/13/2019] [Indexed: 12/31/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disease which leads to a series of anxiety-like behaviors. In this study, we investigated the temporal effects of electroacupuncture (EA) at acupoint ST36 on anxiety-like behaviors and the expression of c-Fos in the anterior cingulate cortex (ACC) in a rat model of PTSD. PTSD was induced by a single prolonged stress procedure comprising three stages: restraint for 2 h, forced swim for 20 min, and pentobarbital sodium anesthesia. EA at acupoint ST36 was performed from 7:00-9:00 once a day for 7 consecutive days. Open field test (OFT) and elevated plus maze (EPM) test were used to assess the success of the model and evaluate anxiety-like behaviors. Immunohistochemistry was used to detect Fos-positive nuclei in the ACC. We observed that EA performed from 7:00-9:00 was associated with significantly more time spent in the center area during the OFT and in the open arm during the EPM, as well as lower corticosterone response compared with that of regular EA (P < 0.05). PTSD rats expressed significantly less c-Fos in the ACC. Timed EA significantly increased c-Fos expression in the ACC. The effect of timed EA acting on PTSD rats was linked to altered neuronal activation in the ACC. Compared to regular EA, timed EA exhibited superior therapeutic effects by attenuating anxiety-like behaviors in PTSD rats. These results emphasize the association between temporal parameters of EA manipulation and acupuncture effects. Timed acupuncture therapy may be a novel therapeutic application in the treatment of PTSD.
Collapse
|
9
|
Individual variability in female and male mice in a test-retest protocol of the forced swim test. J Pharmacol Toxicol Methods 2019; 95:12-15. [DOI: 10.1016/j.vascn.2018.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/17/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022]
|
10
|
Oh JY, Kim YK, Kim SN, Lee B, Jang JH, Kwon S, Park HJ. Acupuncture modulates stress response by the mTOR signaling pathway in a rat post-traumatic stress disorder model. Sci Rep 2018; 8:11864. [PMID: 30089868 PMCID: PMC6082850 DOI: 10.1038/s41598-018-30337-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 07/25/2018] [Indexed: 01/02/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disease that can form following exposure to a traumatic event. Acupuncture has been proposed as a beneficial treatment for PTSD, but the underlying mechanisms remain unclear. The present study investigated whether acupuncture improves depression- and anxiety-like behaviors induced using a single prolonged stress (SPS) as a PTSD rat model. In addition, we investigated whether the effects were mediated by increased mTOR activity and its downstream signaling components, which contribute to protein synthesis required for synaptic plasticity in the hippocampus. We found that acupuncture at HT8 significantly alleviated both depression- and anxiety-like behaviors induced by SPS in rats, as assessed by the forced swimming, elevated plus maze, and open field tests; this alleviation was blocked by rapamycin. The effects of acupuncture were equivalent to those exerted by fluoxetine. Acupuncture regulated protein translation in the mTOR signaling pathway and enhanced the activation of synaptic proteins, PSD95, Syn1, and GluR1 in the hippocampus. These results suggest that acupuncture exerts antidepressant and anxiolytic effects on PTSD-related symptoms by increasing protein synthesis required for synaptic plasticity via the mTOR pathway in the hippocampus. Acupuncture may be a promising treatment for patients with PTSD and play a role as an alternative PTSD treatment.
Collapse
Affiliation(s)
- Ju-Young Oh
- Acupuncture and Meridian Science Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.,Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea.,BK21 PLUS Korean Medicine Science Center, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea
| | - Yu-Kang Kim
- Acupuncture and Meridian Science Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.,Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea.,BK21 PLUS Korean Medicine Science Center, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea
| | - Seung-Nam Kim
- College of Korean Medicine, Dongguk University, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Bombi Lee
- Acupuncture and Meridian Science Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jae-Hwan Jang
- Acupuncture and Meridian Science Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.,Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea.,BK21 PLUS Korean Medicine Science Center, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea
| | - Sunoh Kwon
- Korean Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Hi-Joon Park
- Acupuncture and Meridian Science Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea. .,Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea. .,BK21 PLUS Korean Medicine Science Center, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
11
|
Headrick JP, Peart JN, Budiono BP, Shum DH, Neumann DL, Stapelberg NJ. The heartbreak of depression: ‘Psycho-cardiac’ coupling in myocardial infarction. J Mol Cell Cardiol 2017; 106:14-28. [PMID: 28366738 DOI: 10.1016/j.yjmcc.2017.03.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 12/25/2022]
|
12
|
Yin X, Guven N, Dietis N. Stress-based animal models of depression: Do we actually know what we are doing? Brain Res 2016; 1652:30-42. [DOI: 10.1016/j.brainres.2016.09.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 09/03/2016] [Accepted: 09/19/2016] [Indexed: 01/10/2023]
|
13
|
Enginar N, Yamantürk-Çelik P, Nurten A, Güney DB. Learning and memory in the forced swimming test: effects of antidepressants having varying degrees of anticholinergic activity. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:739-45. [DOI: 10.1007/s00210-016-1236-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/22/2016] [Indexed: 12/13/2022]
|
14
|
Zanier-Gomes PH, de Abreu Silva TE, Zanetti GC, Benati ÉR, Pinheiro NM, Murta BMT, Crema VO. Depressive behavior induced by social isolation of predisposed female rats. Physiol Behav 2015. [PMID: 26209499 DOI: 10.1016/j.physbeh.2015.07.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Depression is a mood disorder that is more prevalent in women and has been closely associated with chronic stress. Many models of depression have been suggested that consider different forms of stress. In fact, stress is present in the life of every human being, but only a few develop depression. Accordingly, it seems wrong to consider all stressed animals to be depressed, emphasizing the importance of predisposition for this mood disorder. Based on this finding, we evaluated a predisposition to depressive behavior of female rats on the forced swim test (FST), and the more immobile the animal was during the FST, the more predisposed to depression it was considered to be. Then, animals were subjected to the stress of social isolation for 21 days and were re-evaluated by the FST. The Predisposed/Isolated rats presented higher immobility times. Once all the rats had prior experience in the FST, we calculated an Index of Increase by Isolation, confirming the previous results. Based on this result, we considered the Predisposed/Isolated group as presenting depressive behavior ('Depressed') and the Nonpredisposed/Nonisolated group as the control group ('Nondepressed'). The animals were distributed into 4 new groups: Nondepressed/Vehicle, Nondepressed/Amitriptyline, Depressed/Vehicle, Depressed/Amitriptyline. After 21 days of treatment, only the Depressed/Vehicle group differed from the other 3 groups, demonstrating the efficacy of amitriptyline in treating the depressive behavior of the Depressed animals, validating the model. This study shows that conducting an FST prior to any manipulation can predict predisposition to depressive behavior in female rats and that the social isolation of predisposed animals for 21 days is effective in inducing depressive behavior. This behavior can be considered real depressive behavior because it takes into account predisposition, chronic mild stress, and the prevalent gender.
Collapse
Affiliation(s)
| | | | | | | | - Nanci Mendes Pinheiro
- Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | | | - Virgínia Oliveira Crema
- Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
15
|
Álvarez-Suárez P, Banqueri M, Vilella M, Méndez M, Arias JL. The effect of recording interval length on behavioral assessment using the forced swimming test. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.rips.2015.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Miyawaki K, Araki H, Yoshimura H. Disruption of running activity rhythm following restricted feeding in female mice: Preventive effects of antidepressants. J Pharmacol Sci 2015; 127:382-90. [PMID: 25837938 DOI: 10.1016/j.jphs.2015.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/12/2015] [Accepted: 02/22/2015] [Indexed: 11/24/2022] Open
Abstract
Biological rhythms are critical in the etiology of mood disorders; therefore, effective mood disorder treatments should address rhythm disturbances. Among the variables synchronized with the light-dark cycle, spontaneous activity in rodents is useful for investigating circadian rhythms. However, previous studies have focused only on the increase of wheel-running activity under restricted feeding conditions, while little information is available on circadian rhythm of running activity. In this study, chronometrical analysis was used to assess whether circadian rhythms during wheel-running are altered by restricted feeding and affected by antidepressant drugs. Wheel revolutions were automatically recorded and analyzed using cosinor-rhythmometry in 8-week old ICR albino mice. When feeding was restricted to 1 h per day (21:00-22:00), wheel-running rhythms were reliably disrupted. Female mice exhibited marked alterations in the pattern and extent of wheel-running beginning on day 1. Subchronic treatment with imipramine or paroxetine, as well as tandospirone and (-)-DOI, prevented wheel-running rhythm disruption. Thus, altering the circadian activity rhythms of female mice on a 1-h feeding schedule may be useful for investigating disturbances in biological rhythms.
Collapse
Affiliation(s)
- Kazumi Miyawaki
- Department of Clinical Pharmacy, Ehime University Graduate School of Medicine, Shitsukawa, Toon-city, Ehime 791-0295, Japan.
| | - Hiroaki Araki
- Department of Clinical Pharmacy, Ehime University Graduate School of Medicine, Shitsukawa, Toon-city, Ehime 791-0295, Japan
| | - Hiroyuki Yoshimura
- Behavioral Pharmacology Laboratory, Research Institute for Alternative Medicine, Hinokuchi, Toon-city, Ehime 791-0202, Japan
| |
Collapse
|
17
|
Witkin JM, Overshiner C, Li X, Catlow JT, Wishart GN, Schober DA, Heinz BA, Nikolayev A, Tolstikov VV, Anderson WH, Higgs RE, Kuo MS, Felder CC. M1 and m2 muscarinic receptor subtypes regulate antidepressant-like effects of the rapidly acting antidepressant scopolamine. J Pharmacol Exp Ther 2014; 351:448-56. [PMID: 25187432 DOI: 10.1124/jpet.114.216804] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Scopolamine produces rapid and significant symptom improvement in patients with depression, and most notably in patients who do not respond to current antidepressant treatments. Scopolamine is a nonselective muscarinic acetylcholine receptor antagonist, and it is not known which one or more of the five receptor subtypes in the muscarinic family are mediating these therapeutic effects. We used the mouse forced-swim test, an antidepressant detecting assay, in wild-type and transgenic mice in which each muscarinic receptor subtype had been genetically deleted to define the relevant receptor subtypes. Only the M1 and M2 knockout (KO) mice had a blunted response to scopolamine in the forced-swim assay. In contrast, the effects of the tricyclic antidepressant imipramine were not significantly altered by gene deletion of any of the five muscarinic receptors. The muscarinic antagonists biperiden, pirenzepine, and VU0255035 (N-[3-oxo-3-[4-(4-pyridinyl)-1-piper azinyl]propyl]-2,1,3-benzothiadiazole-4-sulfonamide) with selectivity for M1 over M2 receptors also demonstrated activity in the forced-swim test, which was attenuated in M1 but not M2 receptor KO mice. An antagonist with selectivity of M2 over M1 receptors (SCH226206 [(2-amino-3-methyl-phenyl)-[4-[4-[[4-(3 chlorophenyl)sulfonylphenyl]methyl]-1-piperidyl]-1-piperidyl]methanone]) was also active in the forced-swim assay, and the effects were deleted in M2 (-/-) mice. Brain exposure and locomotor activity in the KO mice demonstrated that these behavioral effects of scopolamine are pharmacodynamic in nature. These data establish muscarinic M1 and M2 receptors as sufficient to generate behavioral effects consistent with an antidepressant phenotype and therefore as potential targets in the antidepressant effects of scopolamine.
Collapse
Affiliation(s)
- J M Witkin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana; and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom
| | - C Overshiner
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana; and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom
| | - X Li
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana; and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom
| | - J T Catlow
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana; and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom
| | - G N Wishart
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana; and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom
| | - D A Schober
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana; and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom
| | - B A Heinz
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana; and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom
| | - A Nikolayev
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana; and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom
| | - V V Tolstikov
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana; and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom
| | - W H Anderson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana; and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom
| | - R E Higgs
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana; and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom
| | - M-S Kuo
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana; and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom
| | - C C Felder
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana; and Lilly Research Laboratories, Eli Lilly and Company, Windlesham, Surrey, United Kingdom
| |
Collapse
|