1
|
Erel-Akbaba G, Akbaba H. Investigation of the potential therapeutic effect of cationic lipoplex mediated fibroblast growth factor-2 encoding plasmid DNA delivery on wound healing. ACTA ACUST UNITED AC 2021; 29:329-340. [PMID: 34491567 DOI: 10.1007/s40199-021-00410-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/04/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Developing an alternative and efficient therapy for wound healing has been an important research topic for pharmaceutical sciences. A straightforward but effective system for delivering fibroblast growth factor-2 (FGF-2) encoding plasmid DNA (pFGF-2) for wound healing therapy was aimed to develop in this study. METHODS In order to provide the delivery of pFGF-2, a delivery vector, namely, cationic lipid nanoparticle (cLN) was developed by the melt-emulsification process, complexed with pFGF-2 to form a lipoplex system and further characterized. The pFGF-2 binding and protecting ability of lipoplexes were evaluated. The cytotoxicity and transfection efficiency of the lipoplexes, FGF-2 expression levels, and in vitro wound healing ability have been investigated on the L929 fibroblast cell line. RESULTS The obtained lipoplex system has a particle size of 88.53 nm with a low PDI (0.185), and zeta potential values of 27.8 mV with a spherical shape. The ability of cLNs to bind pFGF-2 and protect against nucleases was demonstrated by gel retardation assay. Furthermore, the developed FGF-2 carrying lipoplexes system showed significant transfection and FGF-2 expression ability comparing naked plasmid. Finally, scratch assay revealed that the developed system is able to promote in vitro cell proliferation/migration in 48 h. CONCLUSION Promising results have been achieved with the use of lipoplexes carrying pFGF-2, and this approach could be considered as a potentially applicable concept for the future gene-based wound healing therapies.
Collapse
Affiliation(s)
- Gülşah Erel-Akbaba
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Izmir Katip Celebi University, 35620, Izmir, Turkey.
| | - Hasan Akbaba
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, 35100, Izmir, Turkey
| |
Collapse
|
2
|
Luo L, Zhang Y, Chen H, Hu F, Wang X, Xing Z, Albashari AA, Xiao J, He Y, Ye Q. Effects and mechanisms of basic fibroblast growth factor on the proliferation and regenerative profiles of cryopreserved dental pulp stem cells. Cell Prolif 2020; 54:e12969. [PMID: 33332682 PMCID: PMC7848956 DOI: 10.1111/cpr.12969] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Various factors could interfere the biological performance of DPSCs during post-thawed process. Yet, little has been known about optimization of the recovery medium for DPSCs. Thus, our study aimed to explore the effects of adding recombinant bFGF on DPSCs after 3-month cryopreservation as well as the underlying mechanisms. MATERIALS AND METHODS DPSCs were extracted from impacted third molars and purified by MACS. The properties of CD146+ DPSCs (P3) were identified by CCK-8 and flow cytometry. After cryopreservation for 3 months, recovered DPSCs (P4) were immediately supplied with a series of bFGF and analysed cellular proliferation by CCK-8. Then, the optimal dosage of bFGF was determined to further identify apoptosis and TRPC1 channel through Western blot. The succeeding passage (P5) from bFGF pre-treated DPSCs was cultivated in bFGF-free culture medium, cellular proliferation and stemness were verified, and pluripotency was analysed by neurogenic, osteogenic and adipogenic differentiation. RESULTS It is found that adding 20 ng/mL bFGF in culture medium could significantly promote the proliferation of freshly thawed DPSCs (P4) through suppressing apoptosis, activating ERK pathway and up-regulating TRPC1. Such proliferative superiority could be inherited to the succeeding passage (P5) from bFGF pre-stimulated DPSCs, meanwhile, stemness and pluripotency have not been compromised. CONCLUSIONS This study illustrated a safe and feasible cell culture technique to rapidly amplify post-thawed DPSCs with robust regenerative potency, which brightening the future of stem cells banking and tissue engineering.
Collapse
Affiliation(s)
- Lihua Luo
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yanni Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Hongyu Chen
- Department of Stomatology, Ningbo Women and Children Hospital, Ningbo, China
| | - Fengting Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyan Wang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Zhenjie Xing
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | | | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yan He
- Laboratory of Regenerative Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Qingsong Ye
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.,Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Zhang Q, Wang X, Cao S, Sun Y, He X, Jiang B, Yu Y, Duan J, Qiu F, Kang N. Berberine represses human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt signaling pathways. Biomed Pharmacother 2020; 128:110245. [PMID: 32454290 DOI: 10.1016/j.biopha.2020.110245] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/21/2022] Open
Abstract
Berberine, an isoquinoline alkaloid from Coptidis Rhizoma, has been characterized as a potential anticancer drug due to its good anti-tumor effects. However, the molecular mechanisms involved in anti-gastric cancer remain poorly understood. Herein, the role of berberine in gastric cancer suppression by inducing cytostatic autophagy in vitro and in vivo was first investigated. Results showed that berberine induced an obvious growth inhibitory effect on gastric cancer BGC-823 cells without toxicity to human peripheral blood mononuclear cells. Treatment with berberine triggered cell autophagy, as demonstrated by the punctuate distribution of monodansylcadaverine staining and GFP-LC3, as well as the LC3-II, Beclin-1 and p-ULK1 promotion, and p62 degradation. Inhibition of autophagy by 3-MA, CQ, Baf-A1 and BECN1 siRNA obviously increased cell viability of berberine-exposed gastric cancer cells, which confirmed the anti-cancer role of autophagy induced by berberine. Mechanistic studies showed that berberine inhibited mTOR, Akt and MAPK (ERK, JNK and p38) pathways thereby inducing autophagy. Inhibition of above pathways increases berberine induced autophagy and cytotoxicity. Interestingly, mTOR/p70S6K was inhibited by the MAPK but not Akt. Furthermore, inhibition of autophagy reversed berberine down-regulated mTOR, Akt and MAPK. In xenografts, the berberine induced autophagy leads to suppression of tumor proliferation with no side-effect, and western blotting displayed an apparent attenuation of p-mTOR, p-p70S6K, p-Akt, p-ERK, p-JNK and p-p38 in tumors from berberine treated mice. Briefly, these results indicated that berberine repressed human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt, and provided a molecular basis for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaobing Wang
- Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, Shenyang, China
| | - Shijie Cao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yujie Sun
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinya He
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Benke Jiang
- Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, Shenyang, China
| | - Yaqin Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingshi Duan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feng Qiu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ning Kang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
4
|
Effects of Transplanted Heparin-Poloxamer Hydrogel Combining Dental Pulp Stem Cells and bFGF on Spinal Cord Injury Repair. Stem Cells Int 2018; 2018:2398521. [PMID: 29765407 PMCID: PMC5892218 DOI: 10.1155/2018/2398521] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/30/2018] [Indexed: 12/16/2022] Open
Abstract
Spinal cord injury (SCI) is one of serious traumatic diseases of the central nervous system and has no effective treatment because of its complicated pathophysiology. Tissue engineering strategy which contains scaffolds, cells, and growth factors can provide a promising treatment for SCI. Hydrogel that has 3D network structure and biomimetic microenvironment can support cellular growth and embed biological macromolecules for sustaining release. Dental pulp stem cells (DPSCs), derived from cranial neural crest, possess mesenchymal stem cell (MSC) characteristics and have an ability to provide neuroprotective and neurotrophic properties for SCI treatment. Basic fibroblast growth factor (bFGF) is able to promote cell survival and proliferation and also has beneficial effect on neural regeneration and functional recovery after SCI. Herein, a thermosensitive heparin-poloxamer (HP) hydrogel containing DPSCs and bFGF was prepared, and the effects of HP-bFGF-DPSCs on neuron restoration after SCI were evaluated by functional recovery tests, western blotting, magnetic resonance imaging (MRI), histology evaluation, and immunohistochemistry. The results suggested that transplanted HP hydrogel containing DPSCs and bFGF had a significant impact on spinal cord repair and regeneration and may provide a promising strategy for neuron repair, functional recovery, and tissue regeneration after SCI.
Collapse
|
5
|
Gao F, Wang X, Li Z, Zhou A, Tiffany-Castiglioni E, Xie L, Qian Y. Identification of anti-tumor components from toad venom. Oncol Lett 2017; 14:15-22. [PMID: 28693129 PMCID: PMC5494832 DOI: 10.3892/ol.2017.6160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 12/02/2016] [Indexed: 11/25/2022] Open
Abstract
Secretion of granular glands from the skin of amphibians is a fascinating resource of active substances, particularly for cancer therapy in clinical practice of Traditional Chinese Medicine. A variety of anti-tumor peptides have been isolated from different toads and frogs; however, no anti-tumor peptides are reported in toad venom of Bufo gargarizans. Firstly, soluble fraction from fresh toad venom (FTV) was compared with that from dried toad venom (DTV), using HPLC analysis. It was revealed that FTV has a different HPLC chromatography compared with DTV. Soluble fraction of FTV is more toxic to SH-SY5Y cells than that of DTV, as evaluated by MTT assay. Secondly, it was identified that protein components from soluble fractions of FTV and DTV possess different patterns by SDS-PAGE analysis, and proteins from FTV are also more toxic than that from DTV. Thirdly, an immobilized basic fibroblast growth factor (bFGF) affinity column was used to isolate bFGF-binding components from soluble fraction of FTV, and it was identified that bFGF-binding components prohibited bFGF-dependent neurite growth of SH-SY5Y cells. Finally, it was identified that bFGF-binding components activated apoptosis via upregulation of caspase-3 and caspase-8 expression in SH-SY5Y cells. These data suggest that FTV contains active components that interact with bFGF and activate apoptosis in SH-SY5Y cells.
Collapse
Affiliation(s)
- Fei Gao
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Lin'An, Zhejiang 311300, P.R. China.,Nurturing Station for the State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'An, Zhejiang 311300, P.R. China
| | - Xiangjun Wang
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Lin'An, Zhejiang 311300, P.R. China
| | - Zhao Li
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Lin'An, Zhejiang 311300, P.R. China
| | - Aicun Zhou
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Lin'An, Zhejiang 311300, P.R. China
| | | | - Lijun Xie
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310052, P.R. China
| | - Yongchang Qian
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Lin'An, Zhejiang 311300, P.R. China.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
6
|
Gu X, Huang Z, Ren Z, Tang X, Xue R, Luo X, Peng S, Peng H, Lu B, Tian J, Zhang Y. Potent Inhibition of Nitric Oxide-Releasing Bifendate Derivatives against Drug-Resistant K562/A02 Cells in Vitro and in Vivo. J Med Chem 2017; 60:928-940. [PMID: 28068095 DOI: 10.1021/acs.jmedchem.6b01075] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Multidrug resistance is a major obstacle to successful chemotherapy for leukemia. In this study, a series of nitric oxide (NO)-releasing bifendate derivatives (7a-n) were synthesized. Biological evaluation indicated that the most active compound (7a) produced relatively high levels of NO and significantly inhibited the proliferation of drug-resistant K562/A02 cells in vitro and in vivo. In addition, 7a induced the mitochondrial tyrosine nitration and the intracellular accumulation of rhodamine 123 by inhibiting P-gp activity in K562/A02 cells. Furthermore, 7a remarkably down-regulated AKT, NF-κB, and ERK activation and HIF-1α expression in K562/A02 cells, which are associated with the tumor cell proliferation and drug resistance. Notably, the antitumor effects were dramatically attenuated by an NO scavenger or elimination of the NO-releasing capability of 7a, indicating that NO produced by 7a contributed to, at least partly, its cytotoxicity against drug-resistant K562/A02 cells. Overall, 7a may be a potential agent against drug-resistant myelogenous leukemia.
Collapse
Affiliation(s)
- Xiaoke Gu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University , Xuzhou 221004, People's Republic of China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Zhiguang Ren
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine , Tianjin 300050, People's Republic of China
| | - Xiaobo Tang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Rongfang Xue
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Xiaojun Luo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Sixun Peng
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Hui Peng
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine , Tianjin 300050, People's Republic of China
| | - Bin Lu
- Institute of Biophysics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical College , Wenzhou 325035, People's Republic of China
| | - Jide Tian
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles , Los Angeles, California 90095, United States
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| |
Collapse
|
7
|
|
8
|
Abstract
Oridonin has attracted considerable attention in the last decade because of its anti-cancer pharmacological properties. This ent-kaurane diterpenoid, isolated from the Chinese herb Rabdosia rubescens and some related species, has
demonstrated great potential in the treatment profile of many diseases by exerting anti-tumor, anti-inflammatory, pro-apoptotic, and neurological effects. Unfortunately, the mechanisms via which oridonin exerts these effects remain poorly understood. This review provides an overview of the multifunctional effects of oridonin as well as the reasons for its potential for investigations in the treatment of many diseases other than cancer.
Collapse
Affiliation(s)
- Brice Ayissi Owona
- Division of Immunopathology of the Nervous System, Institute of Pathology and Neuropathology, University of Tübingen, Calwer Street 3, Tübingen, Germany,
| | | |
Collapse
|
9
|
Liu Z, Ouyang L, Peng H, Zhang WZ. Oridonin: targeting programmed cell death pathways as an anti-tumour agent. Cell Prolif 2013; 45:499-507. [PMID: 23106297 DOI: 10.1111/j.1365-2184.2012.00849.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Oridonin, an active diterpenoid isolated from traditional Chinese herbal medicine, has drawn rising attention for its remarkable apoptosis- and autophagy-inducing activity and relevant molecular mechanisms in cancer therapy. Apoptosis is a well known type of cell death, whereas autophagy can play either pro-survival or pro-death roles in cancer cells. Accumulating evidence has recently revealed relationships between apoptosis and autophagy induced by oridonin; however, molecular mechanisms behind them remain to be discovered. In this review, we focus on highlighting updated research on oridonin-induced cell death signalling pathways implicated in apoptosis and autophagy, in many types of cancer. In addition, we further discuss cross-talk between apoptosis and autophagy induced by oridonin, in cancer. Taken together, these findings open new perspectives for further exploring oridonin as a potential anti-tumour agent targeting apoptosis and autophagy, in future anti-cancer therapeutics.
Collapse
Affiliation(s)
- Z Liu
- Department of Hepato-biliary Surgery, General Hospital of PLA, Beijing, China
| | | | | | | |
Collapse
|
10
|
Liu Y, Shi QF, Qi M, Tashiro SI, Onodera S, Ikejima T. Interruption of Hepatocyte Growth Factor Signaling Augmented Oridonin-Induced Death in Human Non-small Cell Lung Cancer A549 Cells via c-Met-Nuclear Factor-κB-Cyclooxygenase-2 and c-Met-Bcl-2-Caspase-3 Pathways. Biol Pharm Bull 2012; 35:1150-8. [DOI: 10.1248/bpb.b12-00197] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ying Liu
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University
| | - Qi-Feng Shi
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University
| | - Min Qi
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University
| | - Shin-Ichi Tashiro
- Department of Clinical and Biomedical Sciences, Showa Pharmaceutical University
| | - Satoshi Onodera
- Department of Clinical and Biomedical Sciences, Showa Pharmaceutical University
| | - Takashi Ikejima
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University
| |
Collapse
|
11
|
Drafahl KA, McAndrew CW, Meyer AN, Haas M, Donoghue DJ. The receptor tyrosine kinase FGFR4 negatively regulates NF-kappaB signaling. PLoS One 2010; 5:e14412. [PMID: 21203561 PMCID: PMC3008709 DOI: 10.1371/journal.pone.0014412] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 11/24/2010] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND NFκB signaling is of paramount importance in the regulation of apoptosis, proliferation, and inflammatory responses during human development and homeostasis, as well as in many human cancers. Receptor Tyrosine Kinases (RTKs), including the Fibroblast Growth Factor Receptors (FGFRs) are also important in development and disease. However, a direct relationship between growth factor signaling pathways and NFκB activation has not been previously described, although FGFs have been known to antagonize TNFα-induced apoptosis. METHODOLOGY/PRINCIPAL FINDINGS Here, we demonstrate an interaction between FGFR4 and IKKβ (Inhibitor of NFκB Kinase β subunit), an essential component in the NFκB pathway. This novel interaction was identified utilizing a yeast two-hybrid screen [1] and confirmed by coimmunoprecipitation and mass spectrometry analysis. We demonstrate tyrosine phosphorylation of IKKβ in the presence of activated FGFR4, but not kinase-dead FGFR4. Following stimulation by TNFα (Tumor Necrosis Factor α) to activate NFκB pathways, FGFR4 activation results in significant inhibition of NFκB signaling as measured by decreased nuclear NFκB localization, by reduced NFκB transcriptional activation in electophoretic mobility shift assays, and by inhibition of IKKβ kinase activity towards the substrate GST-IκBα in in vitro assays. FGF19 stimulation of endogenous FGFR4 in TNFα-treated DU145 prostate cancer cells also leads to a decrease in IKKβ activity, concomitant reduction in NFκB nuclear localization, and reduced apoptosis. Microarray analysis demonstrates that FGF19 + TNFα treatment of DU145 cells, in comparison with TNFα alone, favors proliferative genes while downregulating genes involved in apoptotic responses and NFκB signaling. CONCLUSIONS/SIGNIFICANCE These results identify a compelling link between FGFR4 signaling and the NFκB pathway, and reveal that FGFR4 activation leads to a negative effect on NFκB signaling including an inhibitory effect on proapoptotic signaling. We anticipate that this interaction between an RTK and a component of NFκB signaling will not be limited to FGFR4 alone.
Collapse
Affiliation(s)
- Kristine A. Drafahl
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Christopher W. McAndrew
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - April N. Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Martin Haas
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Daniel J. Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Abstract
Heparan sulphate proteoglycans (HSPGs) consist of a core protein and several heparan sulphate (HS) side chains covalently linked. HS also binds a great deal of growth factors, chemokines, cytokines and enzymes to the extracellular matrix and cell surface. Heparanase can specially cleave HS side chains from HSPGs. There are a lot of conflicting reports about the role of heparanase in hepatocellular carcinoma (HCC). Heparanase is involved in hepatitis B virus infection and hepatitis C virus infection, the activation of signal pathways, metastasis and apoptosis of HCC. Heparanase is synthesized as an inactive precursor within late endosomes and lysosomes. Then heparanase undergoes proteolytic cleavage to form an active enzyme in lysosomes. Active heparanase translocates to the nucleus, cell surface or extracellular matrix. Different locations of heparanase may exert different activities on tumor progression. Furthermore, enzymatic activities and non-enzymatic activities of heparanase may play different roles during HCC development. The expression level of heparanase may also contribute to the discrepant effects of heparanase. Growth promoting as well as growth inhibiting sequences are contained within the tumor cell surface heparan sulfate. Degrading different HSPGs by heparanase may play different roles in HCC. Systemic studies examining the processing, expression, localization and function of heparanase should shed a light on the role of heparanase in HCC.
Collapse
|
13
|
Cavalcanti BC, Bezerra DP, Magalhães HIF, Moraes MO, Lima MAS, Silveira ER, Câmara CAG, Rao VS, Pessoa C, Costa-Lotufo LV. Kauren-19-oic acid induces DNA damage followed by apoptosis in human leukemia cells. J Appl Toxicol 2009; 29:560-8. [DOI: 10.1002/jat.1439] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Activation of extracellular signal-regulated kinase in MDBK cells infected with bovine viral diarrhea virus. Arch Virol 2009; 154:1499-503. [PMID: 19609634 DOI: 10.1007/s00705-009-0453-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 06/29/2009] [Indexed: 10/20/2022]
Abstract
Our efforts to identify the cellular signaling cascades triggered by bovine viral diarrhea virus (BVDV) infection in MDBK cells revealed marked activation of extracellular signal-regulated kinase 1/2 (ERK). Enhanced phosphorylation of ERK was detected following infection with cytopathogenic (cp) BVDV, but not with noncytopathogenic BVDV. It appears that cp BVDV-induced ERK phosphorylation is caused by oxidative stress, because ERK phosphorylation was inducible by treatment with hydrogen peroxide or serum deprivation and was attenuated by addition of antioxidants. These results indicate that BVDV infection influences the ERK signaling pathway via oxidative stress, depending on the biotype.
Collapse
|
15
|
Wu JN, Huang J, Yang J, Tashiro SI, Onodera S, Ikejima T. Caspase inhibition augmented oridonin-induced cell death in murine fibrosarcoma l929 by enhancing reactive oxygen species generation. J Pharmacol Sci 2008; 108:32-9. [PMID: 18818479 DOI: 10.1254/jphs.fp0072079] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oridonin, a diterpenoid isolated from Rabdosia rubescences, has been reported to have antitumor effects. In this study, the growth-inhibitory activity of oridonin for L929 cells was exerted in a time-and dose-dependent manner. After treatment with oridonin for 24 h, L929 cells underwent both apoptosis and necrosis as measured by an lactate dehydrogenase (LDH) activity-based assay. A rapid generation of reactive oxygen species (ROS) was triggered by oridonin, and subsequently up-regulation of phospho-p53 (ser 15) expression and an increased expression ratio of Bax/Bcl-2 was observed. Furthermore, there was a significant fall in mitochondrial membrane potential (MMP) and increase in caspase-3 activity after exposure to oridonin for 24 h. Surprisingly, the pan-caspase inhibitor z-VAD-fmk and caspase3 inhibitor z-DEVD-fmk rendered L929 cells more sensitive to oridonin, rather than preventing oridonin-induced cell death. Oridonin and z-VAD-fmk co-treatment not only resulted in an even higher ROS production, but also made a more significant reduction in the MMP. Pretreatment of ROS scavenger N-acetylcysteine (NAC) led to a complete inhibition of oridonin-induced cell death, intracellular ROS generation, and MMP collapse. NAC treatment also reversed the potentiation of cell death by the pan-caspase inhibitor z-VAD-fmk. Taken together, these observations showed that oridonin-induced cell death in L929 cells involved intracellular ROS generation, activation of phospho-p53 (ser 15), and up-regulation of the Bax/Bcl-2 ratio; and the augmented cell death by z-VAD-fmk was dependent on an increased ROS production.
Collapse
Affiliation(s)
- Jin-Nan Wu
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China
| | | | | | | | | | | |
Collapse
|
16
|
Cheng Y, Qiu F, Huang J, Tashiro SI, Onodera S, Ikejima T. Apoptosis-suppressing and autophagy-promoting effects of calpain on oridonin-induced L929 cell death. Arch Biochem Biophys 2008; 475:148-55. [PMID: 18468506 DOI: 10.1016/j.abb.2008.04.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 04/05/2008] [Accepted: 04/23/2008] [Indexed: 11/19/2022]
Abstract
Calpain, calcium-dependent cysteine protease, is reported here to impose the crucial influence on oridonin-induced L929 cell apoptosis and autophagy. We found that inhibition of calpain increased oridonin-induced Bax activation, cytochrome c release and PARP cleavage, indicating that calpain plays an anti-apoptotic role in oridonin-induced L929 cell apoptosis. To explore this potential anti-apoptotic mechanism, we inhibited calpain and proteasome activity in oridonin-induced L929 cell apoptosis, and discovered that the inducible IkappaBalpha proteolysis was partially blocked by the inhibition of either calpain or proteasome, but completely blocked by the inhibition of both. It demonstrated that calpain and proteasome were two distinct pathways participating in IkappaBalpha degradation. To further study the role of calpain in oridonin-induced L929 cell autophagy, we discovered that calpain inhibitor decreased oridonin-induced autophagy, as well as Beclin 1 activation and the conversion from LC3-I to LC3-II. Moreover, Inhibition of autophagy by 3-MA increased oridonin-induced apoptosis. In conclusion, besides suppressing apoptosis, calpain promotes autophagy in oridonin-induced L929 cell death, and inhibition of autophagy might contribute to up-regulation of apoptosis.
Collapse
Affiliation(s)
- Yan Cheng
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Wenhua Road 103#, Shenyang 110016, China.
| | | | | | | | | | | |
Collapse
|