1
|
Fouad MA, Salem SE, Hussein MM, Zekri ARN, Hafez HF, El Desouky ED, Shouman SA. Impact of Global DNA Methylation in Treatment Outcome of Colorectal Cancer Patients. Front Pharmacol 2018; 9:1173. [PMID: 30405408 PMCID: PMC6201055 DOI: 10.3389/fphar.2018.01173] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022] Open
Abstract
Background: Global DNA methylation has an impact in cancer pathogenesis and progression. This study aimed at investigating the impact of global DNA methylation in treatment outcome of Colorectal Cancer (CRC). Patients and Methods: Global DNA methylation was measured by LC/MS/MS in peripheral blood leucocytes of 102, 48, and 32 Egyptian CRC patients at baseline and after 3 and 6 months of Fluoropyrimidine (FP) therapy respectively, in addition to 32 normal healthy matched in age and sex. The genetic expressions of DNA methyl transferases (DNMTs) were determined and correlated with patients‘ survival using univariate and multivariate methods of analyses. Results: Egyptian CRC patients had significant global hypomethylation of 5mC level and 5mC % with overexpression of DNMT3A and DNMT3B. Significant higher 5mC levels were shown in patients > 45 years, male gender, T2 tumors, stage II, negative lymph nodes, and absence of metastasis. FP therapy significantly reduced DNA methylation particularly in the subgroups of patients with high DNA methylation level at baseline and good prognostic features. After 3 years of follow up, patients with 5mC % > 8.02% had significant poor overall survival (OS) while, significant better event-free survival (EFS) was found in patients with 5mC level > 0.55. High initial CEA level and presence of metastasis were significantly associated with hazards of disease progression and death. Conclusion: Global DNA methylation has a significant impact on the treatment outcome and survival of Egyptian CRC patients treated with FP- based therapy.
Collapse
Affiliation(s)
- Mariam A Fouad
- Pharmacology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Salem E Salem
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Marwa M Hussein
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Abdel Rahman N Zekri
- Virology and Immunology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Hafez F Hafez
- Pharmacology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Eman D El Desouky
- Department of Biostatistics and Epidemiology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Samia A Shouman
- Pharmacology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Zinellu A, Sotgiu E, Assaretti S, Sotgia S, Paliogiannis P, Pintus G, Mangoni AA, Carru C. Evaluation of Global Genomic DNA Methylation in Human Whole Blood by Capillary Electrophoresis UV Detection. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:4065892. [PMID: 29333318 PMCID: PMC5733158 DOI: 10.1155/2017/4065892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/16/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Alterations in global DNA methylation are implicated in various pathophysiological processes. The development of simple and quick, yet robust, methods to assess DNA methylation is required to facilitate its measurement and interpretation in clinical practice. We describe a highly sensitive and reproducible capillary electrophoresis method with UV detection for the separation and detection of cytosine and methylcytosine, after formic acid hydrolysis of DNA extracted from human whole blood. Hydrolysed samples were dried and resuspended with water and directly injected into the capillary without sample derivatization procedures. The use of a run buffer containing 50 mmol/L BIS-TRIS propane (BTP) phosphate buffer at pH 3.25 and 60 mmol/L sodium acetate buffer at pH 3.60 (4 : 1, v/v) allowed full analyte identification within 11 min. Precision tests indicated an elevated reproducibility with an interassay CV of 1.98% when starting from 2 μg of the extracted DNA. The method was successfully tested by measuring the DNA methylation degree both in healthy volunteers and in reference calf thymus DNA.
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Elisabetta Sotgiu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Stefano Assaretti
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Salvatore Sotgia
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Gianfranco Pintus
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha 2713, Qatar
| | - Arduino A. Mangoni
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
3
|
Nilsen FM, Parrott BB, Bowden JA, Kassim BL, Somerville SE, Bryan TA, Bryan CE, Lange TR, Delaney JP, Brunell AM, Long SE, Guillette LJ. Global DNA methylation loss associated with mercury contamination and aging in the American alligator (Alligator mississippiensis). THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 545-546:389-97. [PMID: 26748003 PMCID: PMC4972023 DOI: 10.1016/j.scitotenv.2015.12.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/10/2015] [Accepted: 12/13/2015] [Indexed: 04/13/2023]
Abstract
Mercury is a widespread environmental contaminant with exposures eliciting a well-documented catalog of adverse effects. Yet, knowledge regarding the underlying mechanisms by which mercury exposures are translated into biological effects remains incomplete. DNA methylation is an epigenetic modification that is sensitive to environmental cues, and alterations in DNA methylation at the global level are associated with a variety of diseases. Using a liquid chromatography tandem mass spectrometry-based (LC-MS/MS) approach, global DNA methylation levels were measured in red blood cells of 144 wild American alligators (Alligator mississippiensis) from 6 sites with variable levels of mercury contamination across Florida's north-south axis. Variation in mercury concentrations measured in whole blood was highly associated with location, allowing the comparison of global DNA methylation levels across different "treatments" of mercury. Global DNA methylation in alligators across all locations was weakly associated with increased mercury exposure. However, a much more robust relationship was observed in those animals sampled from locations more highly contaminated with mercury. Also, similar to other vertebrates, global DNA methylation appears to decline with age in alligators. The relationship between age-associated loss of global DNA methylation and varying mercury exposures was examined to reveal a potential interaction. These findings demonstrate that global DNA methylation levels are associated with mercury exposure, and give insights into interactions between contaminants, aging, and epigenetics.
Collapse
Affiliation(s)
- Frances M Nilsen
- National Institute of Standards and Technology, Chemical Sciences Division, Environmental Chemical Sciences Group, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States; Medical University of South Carolina, Marine Biomedicine and Environmental Sciences, 221 Fort Johnson Road, Charleston, SC 29412, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States.
| | - Benjamin B Parrott
- Medical University of South Carolina, Marine Biomedicine and Environmental Sciences, 221 Fort Johnson Road, Charleston, SC 29412, United States; Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC 29403, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - John A Bowden
- National Institute of Standards and Technology, Chemical Sciences Division, Environmental Chemical Sciences Group, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - Brittany L Kassim
- National Institute of Standards and Technology, Chemical Sciences Division, Environmental Chemical Sciences Group, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - Stephen E Somerville
- Medical University of South Carolina, Marine Biomedicine and Environmental Sciences, 221 Fort Johnson Road, Charleston, SC 29412, United States; Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC 29403, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - Teresa A Bryan
- Medical University of South Carolina, Marine Biomedicine and Environmental Sciences, 221 Fort Johnson Road, Charleston, SC 29412, United States; Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC 29403, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - Colleen E Bryan
- National Institute of Standards and Technology, Chemical Sciences Division, Environmental Chemical Sciences Group, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - Ted R Lange
- Florida Fish and Wildlife Conservation Commission, 601 W. Woodward Ave, Eustis, FL 32726, United States
| | - J Patrick Delaney
- Deseret Ranches- 13754 Deseret Lane, St. Cloud, Florida 34773-9381, United States
| | - Arnold M Brunell
- Florida Fish and Wildlife Conservation Commission, 601 W. Woodward Ave, Eustis, FL 32726, United States
| | - Stephen E Long
- National Institute of Standards and Technology, Chemical Sciences Division, Environmental Chemical Sciences Group, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - Louis J Guillette
- Medical University of South Carolina, Marine Biomedicine and Environmental Sciences, 221 Fort Johnson Road, Charleston, SC 29412, United States; Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC 29403, United States; Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, United States
| |
Collapse
|
4
|
Cappetta M, Berdasco M, Hochmann J, Bonilla C, Sans M, Hidalgo PC, Artagaveytia N, Kittles R, Martínez M, Esteller M, Bertoni B. Effect of genetic ancestry on leukocyte global DNA methylation in cancer patients. BMC Cancer 2015; 15:434. [PMID: 26012346 PMCID: PMC4445803 DOI: 10.1186/s12885-015-1461-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 05/21/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The study of genetic variants alone is not enough to explain a complex disease like cancer. Alterations in DNA methylation patterns have been associated with different types of tumor. In order to detect markers of susceptibility for the development of cutaneous melanoma and breast cancer in the Uruguayan population, we integrated genetic and epigenetic information of patients and controls. METHODS We performed two case-control studies that included 49 individuals with sporadic cutaneous melanoma and 73 unaffected controls, and 179 women with sporadic breast cancer and 209 women controls. We determined the level of global leukocyte DNA methylation using relative quantification of 5mdC by HPLC, and we compared methylation levels between cases and controls with nonparametric statistical tests. Since the Uruguayan population is admixed and both melanoma and breast cancer have very high incidences in Uruguay compared to other populations, we examined whether individual ancestry influences global leucocyte DNA methylation status. We carried out a correlation analysis between the percentage of African, European and Native American individual ancestries, determined using 59 ancestry informative markers, and global DNA methylation in all participants. RESULTS We detected global DNA hypomethylation in leukocytes of melanoma and breast cancer patients compared with healthy controls (p < 0.001). Additionally, we found a negative correlation between African ancestry and global DNA methylation in cancer patients (p <0.005). CONCLUSIONS These results support the potential use of global DNA methylation as a biomarker for cancer risk. In addition, our findings suggest that the ancestral genome structure generated by the admixture process influences DNA methylation patterns, and underscore the importance of considering genetic ancestry as a modifying factor in epigenetic association studies in admixed populations such as Latino ones.
Collapse
Affiliation(s)
- Mónica Cappetta
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - María Berdasco
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de LLobregat, Barcelona, Catalonia, Spain.
| | - Jimena Hochmann
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Carolina Bonilla
- School of Social and Community Medicine, University of Bristol, Bristol, UK.
| | - Mónica Sans
- Departamento de Antropología Biológica, Facultad de Humanidades y Ciencias de la Educación, Universidad de la República, Montevideo, Uruguay.
| | - Pedro C Hidalgo
- Departamento de Antropología Biológica, Facultad de Humanidades y Ciencias de la Educación, Universidad de la República, Montevideo, Uruguay.
- Centro Universitario de Tacuarembó, Universidad de la República, Tacuarembó, Uruguay.
| | - Nora Artagaveytia
- Departamento Básico de Medicina, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Rick Kittles
- Department of Surgery and Public Health, University of Arizona, Tucson, USA.
| | - Miguel Martínez
- Cátedra de Dermatología, Hospital de Clínicas "Manuel Quintela", Universidad de la República, Montevideo, Uruguay.
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de LLobregat, Barcelona, Catalonia, Spain.
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Spain.
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| | - Bernardo Bertoni
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
5
|
Iglesias T, Espina M, Montes-Bayón M, Sierra LM, Blanco-González E. Anion exchange chromatography for the determination of 5-methyl-2'-deoxycytidine: application to cisplatin-sensitive and cisplatin-resistant ovarian cancer cell lines. Anal Bioanal Chem 2014; 407:2423-31. [PMID: 25142048 DOI: 10.1007/s00216-014-8070-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 12/30/2022]
Abstract
Epigenetic alterations are increasingly implicated in the initiation and progression of cancer. Genome-wide (global) hypomethylation seems to occur in early neoplasia and is a feature of genomic DNA derived from solid tumour tissues like ovarian cancer. Thus, analytical methods that provide sensitive and quantitative information about cytosine methylation in DNA are currently required. In this work, we compare two different anion-exchange columns for the separation of methylated cytosine from the other DNA nucleotides: a silica-based (Tracer Extrasil SAX) column and a polystyrene/divinyl benzene-based (Mono-Q™) column. Under the optimised conditions, linearity range, precision and detection limits of the developed high-performance liquid chromatography (HPLC) method were evaluated and compared using conventional ultraviolet (UV) absorbance detection at 270 nm. Good separation of the five target nucleotides, including 5-methyl-2'-deoxycytidine monophosphate (5mdCMP) and 2'-deoxycytidine monophosphate (dCMP) was achieved on the Mono-Q™ column with a gradient elution of ammonium acetate buffer (1 M, pH 6.9) at a flow rate of 1 mL min(-1). The coupling of this column to inductively coupled plasma mass spectrometry (ICP-MS) permitted also phosphorous ((31)P) specific detection of the nucleotides. Both detection systems offered adequate analytical performance characteristics, with detection limits of 30 and 40 μg L(-1) for 5mdCMP by HPLC-UV and HPLC-ICP-MS, respectively. However, the latter method allowed the determination of the global DNA methylation level (%) without the need for external calibration. Different genomic DNA samples were analysed including calf thymus DNA and DNA from two human cancer cell lines (adenocarcinoma epithelial A549 and ovarian carcinoma A2780) using the proposed strategy. In the line A2780, the cisplatin-sensitive and cisplatin-resistant variants were analysed, finding no significant differences in the methylation percentage after treatment with cisplatin.
Collapse
Affiliation(s)
- Tamara Iglesias
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, C/ Julián Clavería 8, 33006, Oviedo, Spain
| | | | | | | | | |
Collapse
|
6
|
Hu J, Ma H, Zhang W, Yu Z, Sheng G, Fu J. Effects of benzene and its metabolites on global DNA methylation in human normal hepatic L02 cells. ENVIRONMENTAL TOXICOLOGY 2014; 29:108-16. [PMID: 21953684 DOI: 10.1002/tox.20777] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 08/25/2011] [Accepted: 08/31/2011] [Indexed: 05/18/2023]
Abstract
Benzene is an important industrial chemical that is also widely present in cigarette smoke, automobile exhaust, and gasoline. It is reported that benzene can cause hematopoietic disorders and has been recognized as a human carcinogen. However, the mechanisms by which it increases the risk of carcinogenesis are only partially understood. Aberrant DNA methylation is a major epigenetic mechanism associated with the toxicity of carcinogens. To understand the carcinogenic capacity of benzene, experiments were designed to investigate whether exposure to benzene and its metabolites would change the global DNA methylation status in human normal hepatic L02 cells and then to evaluate whether the changes would be induced by variation of DNA methyltransferase (DNMT) activity in HaeIII DNMT-mediated methylation assay in vitro. Our results showed that hydroquinone and 1,4-benzoquinone could induce global DNA hypomethylation with statistically significant difference from control (p < 0.05), but no significant global DNA methylation changes were observed in L02 cells with benzene, phenol, and 1,2,4-trihydroxybenzene exposure. Benzene metabolites could not influence HaeIII DNMT activity except that 1,4-benzoquinone shows significantly inhibiting effect on enzymatic methylation reaction at concentrations of 5 μM (p < 0.05). These results suggest that benzene metabolites, hydroquinone, and 1,4-benzoquinone can disrupt global DNA methylation, and the potential epigenetic mechanism by which that global DNA hypomethylation induced by 1,4-benzoquinone may work through the inhibiting effects of DNMT activity at 10 μM (p < 0.05).
Collapse
Affiliation(s)
- Junjie Hu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Graduate School of the Chinese Academy of Science, Beijing, China
| | | | | | | | | | | |
Collapse
|
7
|
Hu CW, Lee H, Chen JL, Li YJ, Chao MR. Optimization of global DNA methylation measurement by LC-MS/MS and its application in lung cancer patients. Anal Bioanal Chem 2013; 405:8859-69. [PMID: 23978937 DOI: 10.1007/s00216-013-7305-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/10/2013] [Accepted: 08/13/2013] [Indexed: 01/03/2023]
Abstract
Global analyses of DNA methylation contribute important insights into biology and the wide-ranging role of DNA methylation. We describe the use of online solid-phase extraction and isotope-dilution liquid chromatography/tandem mass spectrometry (LC-MS/MS) for the simultaneous measurement of 5-methyl-2'-deoxycytidine (5-medC) and 2'-deoxycytidine (dC) in DNA. With the incorporation of isotope internal standards and online enrichment techniques, the detection limit of this method was estimated to be as low as 0.065 pg which enables human global DNA methylation detection using only picogram amounts of DNA. This method was applied to assess the optimal amounts of enzymes required for DNA digestion regarding an accurate global DNA methylation determination and completeness of digestion and to determine global methylation in human tumor adjacent lung tissue of 79 lung cancer patients. We further determined methylated (N7-methylguanine (N7-meG), O (6)-methylguanine (O (6)-meG), and N3-methyladenine (N3-meA)) and oxidized DNA lesions (8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG)) in lung cancer patients by LC-MS/MS. Optimization experiments revealed that dC was liberated from DNA much more readily than 5-medC by nuclease P1 and alkaline phosphatase (AP) in DNA, which could lead to an error in the global DNA methylation measurement following digestion with insufficient enzymes. Nuclease P1 showed more differential activity for 5-medC and dC than AP. Global DNA methylation levels in adenocarcinoma and squamous cell carcinoma patients were similar in the range of 3.16-4.01 %. Global DNA methylation levels were not affected by smoking and gender and were not correlated with N7-meG or 8-oxodG in lung cancer patients. Levels of O (6)-meG and N3-meA were however found to be undetectable in all lung tissue samples.
Collapse
Affiliation(s)
- Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | | | | | | | | |
Collapse
|
8
|
Ferrone A, Pesce M, Franceschelli S, Speranza L, De Lutiis MA, Grilli A, Felaco M, Patruno A. Analysis of genomic methylation level using micellar electrokinetic chromatography with UV detection. Electrophoresis 2013; 34:2275-80. [PMID: 23712818 DOI: 10.1002/elps.201300091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/19/2013] [Accepted: 04/26/2013] [Indexed: 11/11/2022]
Abstract
Analytical methods for quantification of 5'-methylcytosine in genomes are important tools to investigate epigenetic changes in gene expression during development, differentiation, aging, or cancer. Here, we report a novel genomic methylation content assay based on enzymatic hydrolysis of DNA and MEKC separation of 5'-deoxyribonucleoside monophosphates (dNMP) using the cationic surfactant CTAB as pseudostationary phase. Calf Thymus DNA was used during method development to determine electrophoretic parameters and electrolyte composition for a complete separation between 2'-deoxycytosine-5'-monophosphate and 2'-deoxy-5'-methylcytosine 5'-monophosphate (d5mCMP). Methylated and not methylated oligonucleotides were used to confirm the identity of each peak and evaluate analytical parameters of the method. The LOD of the method was found to be 12.5 pmol/μL for d5mCMP.
Collapse
Affiliation(s)
- Alessio Ferrone
- Department of Medicine and Science of Aging, University G. D'Annunzio, Chieti, Italy
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Ma H, Zheng L, Li Y, Pan S, Hu J, Yu Z, Zhang G, Sheng G, Fu J. Triclosan reduces the levels of global DNA methylation in HepG2 cells. CHEMOSPHERE 2013; 90:1023-9. [PMID: 22939515 DOI: 10.1016/j.chemosphere.2012.07.063] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 07/09/2012] [Accepted: 07/26/2012] [Indexed: 05/23/2023]
Abstract
Triclosan (TCS), an antibacterial agent, is widely used in a variety of personal care and industrial products. TCS is associated with the development of liver tumors in rodents and has become a concern to environmental and human health. This study is aimed at investigating whether TCS could modulate the levels of global DNA methylation (GDM) in human hepatocytes. We found that treatment with different doses (1.25-10 μM) of TCS did not affect HepG2 cell viability, but significantly reduced the levels of GDM in HepG2 cells, and inhibited DNMT1 activity. Furthermore, treatment with TCS significantly inhibited the methylated DNA-binding domain 2 (MBD2), MBD3, and MeCP2 mRNA transcription. In addition, treatment with TCS promoted the accumulation of 8-hydroxy-2-deoxyguanosine (8-OHdG) in a dose-dependent manner, which was abrogated by treatment with an antioxidant, N-acetylcysteine (NAC). Collectively, our data indicated that TCS reduced the levels of GDM and down-regulated the MBD2, MBD3, and MeCP2 gene expression by increasing 8-OHdG levels and inhibiting the DNMT1 activity in HepG2 cells.
Collapse
Affiliation(s)
- Huimin Ma
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Analysis of global DNA methylation by hydrophilic interaction ultra high-pressure liquid chromatography tandem mass spectrometry. Anal Biochem 2011; 413:164-70. [DOI: 10.1016/j.ab.2011.01.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 11/21/2022]
|
11
|
Wang X, Suo Y, Yin R, Shen H, Wang H. Ultra-performance liquid chromatography/tandem mass spectrometry for accurate quantification of global DNA methylation in human sperms. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:1647-52. [PMID: 21536504 DOI: 10.1016/j.jchromb.2011.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 03/29/2011] [Accepted: 04/03/2011] [Indexed: 11/26/2022]
Abstract
Aberrant DNA methylation in human sperms has been proposed to be a possible mechanism associated with male infertility. We developed an ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) method for rapid, sensitive, and specific detection of global DNA methylation level in human sperms. Multiple-reaction monitoring (MRM) mode was used in MS/MS detection for accurate quantification of DNA methylation. The intra-day and inter-day precision values of this method were within 1.50-5.70%. By using 2-deoxyguanosine as an internal standard, UPLC-MS/MS method was applied for the detection of global DNA methylation levels in three cultured cell lines. DNA methyltransferases inhibitor 5-aza-2'-deoxycytidine can significantly reduce global DNA methylation levels in treated cell lines, showing the reliability of our method. We further examined global DNA methylation levels in human sperms, and found that global methylation values varied from 3.79% to 4.65%. The average global DNA methylation level of sperm samples washed only by PBS (4.03%) was relatively lower than that of sperm samples in which abnormal and dead sperm cells were removed by density gradient centrifugation (4.25%), indicating the possible aberrant DNA methylation level in abnormal sperm cells. Clinical application of UPLC-MS/MS method in global DNA methylation detection of human sperms will be useful in human sperm quality evaluation and the study of epigenetic mechanisms responsible for male infertility.
Collapse
Affiliation(s)
- Xiaoli Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
12
|
Yang I, Fortin MC, Richardson JR, Buckley B. Fused-core silica column ultra-performance liquid chromatography-ion trap tandem mass spectrometry for determination of global DNA methylation status. Anal Biochem 2010; 409:138-43. [PMID: 20950581 DOI: 10.1016/j.ab.2010.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 10/08/2010] [Indexed: 10/19/2022]
Abstract
Epigenetic modifications, such as DNA methylation, play key roles in transcriptional regulation of gene expression. More recently, global DNA methylation levels have been documented to be altered in several diseases, including cancer, and as the result of exposure to environmental toxicants. Based on the potential use of global DNA methylation status as a biomarker of disease status and exposure to environmental toxicants, we sought to develop a rapid, sensitive, and precise analytical method for the quantitative measurement of global DNA methylation status using ultra-performance liquid chromatography with detection by ion trap tandem mass spectrometry. Using a fused-core silica column, 2'-deoxyguanosine (2dG) and 5-methyl-2'-deoxycytidine (5mdC) were resolved in less than 1 min with detection limits of 0.54 and 1.47 fmol for 5mdC and 2dG, respectively. The accuracy of detection was 95% or higher, and the day-to-day coefficient of variation was found to be 3.8%. The method was validated by quantification of global DNA methylation status following treatment of cells with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine, which reduced DNA methylation from 3.1% in control cells to 1.1% in treated cells. The sensitivity and high throughput of this method rend it suitable for large-scale analysis of epidemiological and clinical DNA samples.
Collapse
Affiliation(s)
- Ill Yang
- Environmental and Occupational Health Sciences Institute, A Joint Institute of Rutgers University and the University of Medicine and Dentistry of New Jersey (UMDNJ), Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|