1
|
Loup B, André F, Leuenberger N, Marchand A, Barnabé A, Delcourt V, Garcia P, Popot MA, Bailly-Chouriberry L. New Transcriptomic Biomarkers for Detection of the Recombinant Human Erythropoietin (rHuEPO) MirCERA in Horses. Drug Test Anal 2024. [PMID: 39321850 DOI: 10.1002/dta.3812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Detection and monitoring of biomarkers related to doping is particularly suitable for the development of analytical strategies dedicated to indirect detection of banned substances. Previous studies in horses have already allowed the investigation of transcriptomic biomarkers in equine blood associated with reGH and rHuEPO administrations. Our most recent developments continue to focus on the discovery and monitoring of transcriptomic biomarkers for the control of ESAs, and a collaborative study with WADA-accredited doping control laboratories has recently been initiated to conduct a pilot study. In humans, three mRNAs (ALAS2, CA1, and SLC4A1) were previously observed to be differentially expressed after blood doping and were associated with immature red blood cells, the so-called circulating reticulocytes. In horses, circulating reticulocytes are rarely observed even after rHuEPO administration. With the improved primers that detect the equine orthologues of the human mRNAs from the ALAS2, CA1, and SLC4A1 genes, we can now report the first evidence of the detection of the three biomarkers in equine blood. In addition, an upregulation of the mRNA levels of the three genes was observed after analysis of blood samples collected from MirCERA-treated animals, with kinetics similar to those previously documented in humans. Our data suggest that ALAS2 and CA1 are promising indirect biomarkers for the detection of recombinant EPO abuse in horses, as observed in humans.
Collapse
Affiliation(s)
- Benoit Loup
- GIE LCH, Laboratoire des Courses Hippiques, Verrières-le-Buisson, France
| | - François André
- GIE LCH, Laboratoire des Courses Hippiques, Verrières-le-Buisson, France
| | - Nicolas Leuenberger
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Alexandre Marchand
- Laboratoire antidopage français (LADF), Université Paris-Saclay, Orsay, France
| | - Agnès Barnabé
- GIE LCH, Laboratoire des Courses Hippiques, Verrières-le-Buisson, France
| | - Vivian Delcourt
- GIE LCH, Laboratoire des Courses Hippiques, Verrières-le-Buisson, France
| | - Patrice Garcia
- GIE LCH, Laboratoire des Courses Hippiques, Verrières-le-Buisson, France
| | - Marie-Agnès Popot
- GIE LCH, Laboratoire des Courses Hippiques, Verrières-le-Buisson, France
| | | |
Collapse
|
3
|
Abstract
A series of dried blood spot (DBS) detection methods for doping agents have been developed in the last two decades. The DBS technique minimizes invasiveness and reduces storage and shipping costs. Recently, the World Anti-Doping Agency announced the use of DBS for the 2022 Beijing Winter Olympic Games and Paralympic Games owing to the advantages of the DBS application in routine doping control. Therefore the further development of detection methods for doping agents in DBS is important and urgent. This review summarizes five aspects of DBS application in doping analysis: sample collection, storage conditions, pretreatment, instrumentation and validation according to the Prohibited List issued by the World Anti-Doping Agency, and proposes some suggestions for future studies of DBS in doping analysis.
Collapse
|
4
|
Moreira F, Carmo H, Guedes de Pinho P, Bastos MDL. Doping detection in animals: A review of analytical methodologies published from 1990 to 2019. Drug Test Anal 2021; 13:474-504. [PMID: 33440053 DOI: 10.1002/dta.2999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/10/2020] [Accepted: 01/08/2021] [Indexed: 01/09/2023]
Abstract
Despite the impressive innate physical abilities of horses, camels, greyhounds, or pigeons, doping agents might be administered to these animals to improve their performance. To control these illegal practices, anti-doping analytical methodologies have been developed. This review compiles the analytical methods that have been published for the detection of prohibited substances administered to animals involved in sports over 30 years. Relevant papers meeting the search criteria that discussed analytical methods aiming to detect and/or quantify doping substances in animal biological matrices published from 1990 to 2019 were considered. A total of 317 studies were included, of which 298 were related to horses, demonstrating significant advances toward the development of doping detection methods for equine sports. However, analytical methods for the detection of doping agents in sports involving other species are lacking. Due to enhanced accuracy and specificity, chromatographic analysis coupled to mass spectrometry detection is preferred over immunoassays. Regarding biological matrices, blood and urine remain the first choice, although alternative biological matrices, such as hair and feces, have been considered. With the increasing number and type of drugs used as doping agents, the analytes addressed in the published papers are diverse. It is very important to continue to detect and quantify these drugs, recognizing those that are most frequently used, in order to punish the abusers, protect animals' health, and ensure a healthier and genuine competition.
Collapse
Affiliation(s)
- Fernando Moreira
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Departamento de Medicina Legal e Ciências Forenses, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Área Técnico-Científica de Farmácia, Escola Superior de Saúde, Instituto Politécnico do Porto, Porto, Portugal
| | - Helena Carmo
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Paula Guedes de Pinho
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
6
|
Thevis M, Machnik M, Schenk I, Krug O, Piper T, Schänzer W, Düe M, Bondesson U, Hedeland M. Nickel in equine sports drug testing - pilot study results on urinary nickel concentrations. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:982-984. [PMID: 26969941 DOI: 10.1002/rcm.7528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/01/2016] [Indexed: 06/05/2023]
Abstract
RATIONALE The issue of illicit performance enhancement spans human and animal sport in presumably equal measure, with prohibited substances and methods of doping conveying both ways. Due to the proven capability of unbound ionic cobalt (Co(2) (+) ) to stimulate erythropoiesis in humans, both human and equine anti-doping regulations have listed cobalt as a banned substance, and in particular in horse drug testing, thresholds for cobalt concentrations applying to plasma and urine have been suggested or established. Recent reports about the finding of substantial amounts of undeclared nickel in arguably licit performance- and recovery-supporting products raised the question whether the ionic species of this transition metal (Ni(2) (+) ), which exhibits similar prolyl hydroxylase inhibiting properties to Co(2) (+) , has been considered as a substitute for cobalt in doping regimens. METHODS Therefore, a pilot study with 200 routine post-competition doping control horse urine samples collected from animals participating in equestrian, gallop, and trotting in Europe was conducted to provide a first dataset on equine urinary Ni(2) (+) concentrations. All specimens were analyzed by conventional inductively coupled plasma mass spectrometry (ICP-MS) to yield quantitative data for soluble nickel. RESULTS Concentrations ranging from below the assay's limit of quantification (LOQ, 0.5 ng/mL) up to 33.4 ng/mL with a mean value (± standard deviation) of 6.1 (±5.1) ng/mL were determined for the total nickel content. CONCLUSIONS In horses, nickel is considered a micronutrient and feed supplements containing nickel are available; hence, follow-up studies are deemed warranted to consolidate potential future threshold levels concerning urine and blood nickel concentrations in horses using larger sets of samples for both matrices and to provide in-depth insights by conducting elimination studies with soluble Ni(2) (+) -salt species. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- M Thevis
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
- European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne/Bonn, Germany
| | - M Machnik
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - I Schenk
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - O Krug
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
- European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne/Bonn, Germany
| | - T Piper
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - W Schänzer
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - M Düe
- Deutsche Reiterliche Vereinigung e.V. (FN), 48231, Warendorf, Germany
| | - U Bondesson
- Division of Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75123, Uppsala, Sweden
- National Veterinary Institute (SVA), Department of Chemistry, Environment and Feed Hygiene, SE-751 89, Uppsala, Sweden
| | - M Hedeland
- Division of Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75123, Uppsala, Sweden
- National Veterinary Institute (SVA), Department of Chemistry, Environment and Feed Hygiene, SE-751 89, Uppsala, Sweden
| |
Collapse
|