1
|
Anderson DM, Kotnala A, Migas LG, Patterson NH, Tideman L, Cao D, Adhikari B, Messinger JD, Ach T, Tortorella S, Van de Plas R, Curcio CA, Schey KL. Lysolipids are prominent in subretinal drusenoid deposits, a high-risk phenotype in age-related macular degeneration. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1258734. [PMID: 38186747 PMCID: PMC10769005 DOI: 10.3389/fopht.2023.1258734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Introduction Age related macular degeneration (AMD) causes legal blindness worldwide, with few therapeutic targets in early disease and no treatments for 80% of cases. Extracellular deposits, including drusen and subretinal drusenoid deposits (SDD; also called reticular pseudodrusen), disrupt cone and rod photoreceptor functions and strongly confer risk for advanced disease. Due to the differential cholesterol composition of drusen and SDD, lipid transfer and cycling between photoreceptors and support cells are candidate dysregulated pathways leading to deposit formation. The current study explores this hypothesis through a comprehensive lipid compositional analysis of SDD. Methods Histology and transmission electron microscopy were used to characterize the morphology of SDD. Highly sensitive tools of imaging mass spectrometry (IMS) and nano liquid chromatography tandem mass spectrometry (nLC-MS/MS) in positive and negative ion modes were used to spatially map and identify SDD lipids, respectively. An interpretable supervised machine learning approach was utilized to compare the lipid composition of SDD to regions of uninvolved retina across 1873 IMS features and to automatically discern candidate markers for SDD. Immunohistochemistry (IHC) was used to localize secretory phospholipase A2 group 5 (PLA2G5). Results Among the 1873 detected features in IMS data, three lipid classes, including lysophosphatidylcholine (LysoPC), lysophosphatidylethanolamine (LysoPE) and lysophosphatidic acid (LysoPA) were observed nearly exclusively in SDD while presumed precursors, including phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidic acid (PA) lipids were detected in SDD and adjacent photoreceptor outer segments. Molecular signals specific to SDD were found in central retina and elsewhere. IHC results indicated abundant PLA2G5 in photoreceptors and retinal pigment epithelium (RPE). Discussion The abundance of lysolipids in SDD implicates lipid remodeling or degradation in deposit formation, consistent with ultrastructural evidence of electron dense lipid-containing structures distinct from photoreceptor outer segment disks and immunolocalization of secretory PLA2G5 in photoreceptors and RPE. Further studies are required to understand the role of lipid signals observed in and around SDD.
Collapse
Affiliation(s)
| | - Ankita Kotnala
- Department of Biochemistry, Vanderbilt University, Nashville TN
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham AL
| | - Lukasz G. Migas
- Delft Center for Systems and Control (DCSC), Delft University of Technology, Delft, Netherlands
| | | | - Léonore Tideman
- Delft Center for Systems and Control (DCSC), Delft University of Technology, Delft, Netherlands
| | - Dongfeng Cao
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham AL
| | - Bibek Adhikari
- Vision Science Graduate Program, University of Alabama at Birmingham, Birmingham AL
| | - Jeffrey D. Messinger
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham AL
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Sara Tortorella
- Molecular Horizon Srl, Via Montelino 30, 06084 Bettona, Perugia, Italy
| | - Raf Van de Plas
- Department of Biochemistry, Vanderbilt University, Nashville TN
- Delft Center for Systems and Control (DCSC), Delft University of Technology, Delft, Netherlands
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham AL
| | - Kevin L. Schey
- Department of Biochemistry, Vanderbilt University, Nashville TN
| |
Collapse
|
2
|
Boughton BA, Thomas ORB, Demarais NJ, Trede D, Swearer SE, Grey AC. Detection of small molecule concentration gradients in ocular tissues and humours. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4460. [PMID: 31654531 DOI: 10.1002/jms.4460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/02/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
The eye is an elegant organ consisting of a number of tissues and fluids with specialised functions that together allow it to effectively transmit and transduce light input to the brain for visual perception. One key determinant of this integrated function is the spatial relationship of ocular tissues. Biomolecular distributions within the main ocular tissues cornea, lens, and retina have been studied extensively in isolation, yet the potential for metabolic communication between ocular tissues via the ocular humours has been difficult to visualise. To address this limitation, the current study presents a method to map spatial distributions of metabolites and small molecules in whole eyes, including ocular humours. Using a tape-transfer system and freeze-drying, the spatial distribution of ocular small molecules was investigated in mouse, rat, fish (black bream), and rabbit eyes using negative ion mode MALDI imaging mass spectrometry. Full-scan imaging was used for discovery experiments, while MS/MS imaging for identification and localisation was also demonstrated. In all eyes, metabolites such as glutathione and phospholipids were localised in the main ocular tissues. In addition, in rodent eyes, major metabolites were distributed relatively uniformly in ocular humours. In contrast, both uniform and spatially defined ocular metabolite distributions were observed in the black bream eye. Tissue and ocular humour distributions were reproducible, as demonstrated by the three-dimensional analysis of a mouse eye, and able to be captured with high spatial resolution analysis. The presented method could be used to further investigate the role of inter-tissue metabolism in ocular health, and to support the development of therapeutics to treat major ocular diseases.
Collapse
Affiliation(s)
- Berin A Boughton
- Metabolomics Australia, University of Melbourne, Melbourne, Australia
| | - Oliver R B Thomas
- School of BioSciences, University of Melbourne, Melbourne, Australia
| | - Nicholas J Demarais
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Stephen E Swearer
- School of BioSciences, University of Melbourne, Melbourne, Australia
| | - Angus C Grey
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Demarais NJ, Donaldson PJ, Grey AC. Age-related spatial differences of human lens UV filters revealed by negative ion mode MALDI imaging mass spectrometry. Exp Eye Res 2019; 184:146-151. [PMID: 31004573 DOI: 10.1016/j.exer.2019.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 01/01/2023]
Abstract
Tryptophan-derived UV filters are predominantly found in the lenses of primates and humans. While protective against UV radiation, aging alters the complement and spatial distributions of human lens UV filters, and a role for UV filters has been suggested in age-related cataract formation. To establish how the spatial distributions of UV filters change in normal human lens aging, matrix assisted laser desorption/ionisation-imaging mass spectrometry (MALDI-IMS) was utilised to map the locations and relative abundance of multiple UV filters simultaneously. Frozen human lenses were cryosectioned axially, and the 20 μm-thick sections coated with MALDI matrix via robotic sprayer and analysed using negative ion mode MALDI-Fourier transform-ion cyclotron resonance MS. While signal for many UV filters was detected throughout the lenses, signal intensity was generally highest in the central (embryonic) nucleus and decreased uniformly in outer (foetal, juvenile, adult) nuclear and cortical regions, and many UV filter signals declined with age. In contrast, two antioxidant-conjugated UV filters (Cys-3-OHKG and GSH-3-OHKG) were restricted to the lens nucleus and their relative signal increased with increasing lens age. The enhanced spatial resolution of MALDI-IMS over manual trephine dissection techniques and its multiplex capability allowed the spatial relationships between lens UV filters to be established and explored in relation to aging. Together these results confirmed that the complement of UV filters in each lens is dynamic and undergoes significant age-related changes. In the future, this information could be used to compare with other lens biomolecule changes to better understand the lens aging process and age-related cataract formation.
Collapse
Affiliation(s)
- Nicholas J Demarais
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Angus C Grey
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
4
|
Luberto C, Haley JD, Del Poeta M. Imaging with mass spectrometry, the next frontier in sphingolipid research? A discussion on where we stand and the possibilities ahead. Chem Phys Lipids 2019; 219:1-14. [PMID: 30641043 DOI: 10.1016/j.chemphyslip.2019.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 12/17/2022]
Abstract
In the last ten years, mass spectrometry (MS) has become the favored analytical technique for sphingolipid (SPL) analysis and measurements. Indeed MS has the unique ability to both acquire sensitive and quantitative measurements and to resolve the molecular complexity characteristic of SPL molecules, both across the different SPL families and within the same SPL family. Currently, two complementary MS-based approaches are used for lipid research: analysis of lipid extracts, mainly by infusion electrospray ionization (ESI), and mass spectrometry imaging (MSI) from a sample surface (i.e. intact tissue sections, cells, model membranes, thin layer chromatography plates) (Fig. 1). The first allows for sensitive and quantitative information about total lipid molecular species from a given specimen from which lipids have been extracted and chromatographically separated prior to the analysis; the second, albeit generally less quantitative and less specific in the identification of molecular species due to the complexity of the sample, allows for spatial information of lipid molecules from biological specimens. In the field of SPL research, MS analysis of lipid extracts from biological samples has been commonly utilized to implicate the role of these lipids in specific biological functions. On the other hand, the utilization of MSI in SPL research represents a more recent development that has started to provide interesting descriptive observations regarding the distribution of specific classes of SPLs within tissues. Thus, it is the aim of this review to discuss how MSI technology has been employed to extend the study of SPL metabolism and the type of information that has been obtained from model membranes, single cells and tissues. We envision this discussion as a complementary compendium to the excellent technical reviews recently published about the specifics of MSI technologies, including their application to SPL analysis (Fuchs et al., 2010; Berry et al., 2011; Ellis et al., 2013; Eberlin et al., 2011; Kraft and Klitzing, 2014).
Collapse
Affiliation(s)
- Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, United States.
| | - John D Haley
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States; Division of Infectious Diseases, Stony Brook University, Stony Brook, NY, United States; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, United States; Veterans Administrations Medical Center, Northport, NY, United States
| |
Collapse
|
5
|
Chen Y, Jester JV, Anderson DM, Marchitti SA, Schey KL, Thompson DC, Vasiliou V. Corneal haze phenotype in Aldh3a1 -null mice: In vivo confocal microscopy and tissue imaging mass spectrometry. Chem Biol Interact 2017; 276:9-14. [DOI: 10.1016/j.cbi.2016.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/30/2016] [Accepted: 12/22/2016] [Indexed: 12/16/2022]
|
6
|
Nye-Wood MG, Spraggins JM, Caprioli RM, Schey KL, Donaldson PJ, Grey AC. Spatial distributions of glutathione and its endogenous conjugates in normal bovine lens and a model of lens aging. Exp Eye Res 2016; 154:70-78. [PMID: 27838309 DOI: 10.1016/j.exer.2016.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/25/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
Abstract
Glutathione (GSH) is the archetypal antioxidant, and plays a central role in the protection of the ocular lens from cataract formation. High levels of GSH are maintained in the transparent lens, but with advancing age, GSH levels fall in the lens nucleus relative to outer cortical cells, thereby exposing the nucleus of the lens to the damaging effects of oxygen radicals, which ultimately leads to age-related nuclear (ARN) cataract. Under normal conditions, GSH also forms endogenous conjugates to detoxify the lens of reactive cellular metabolites and to maintain cell homeostasis. Due to the intrinsic gradient of lens fibre cell age, the lens contains distinct regions with different metabolic requirements for GSH. To investigate the impact of fibre cell and lens aging on the varied roles that GSH plays in the lens, we have utilised high mass resolution MALDI mass spectrometry profiling and imaging analysis of lens tissue sections. High Dynamic Range (HDR)-MALDI FTICR mass spectrometry was used as an initial screening method to detect regional differences in lens metabolites from normal bovine lenses and in those subjected to hyperbaric oxygen as a model of lens aging. Subsequent MALDI imaging analysis was used to spatially map GSH and its endogenous conjugates throughout all lenses. Accurate mass measurement by MALDI FTICR analysis and LC-MS/MS mass spectrometry of lens region homogenates were subsequently used to identify endogenous GSH conjugates. While the distribution and relative abundance of GSH-related metabolic intermediates involved in detoxification pathways remained relatively unchanged upon HBO treatment, those involved in its antioxidant function were altered under conditions of oxidative stress. For example, reduced glutathione levels were decreased in the lens cortex while oxidised glutathione levels were elevated in the lens outer cortex upon HBO treatment. Interestingly, cysteineglutathione disulfide, was detected in the inner cortex of the normal lens, but was greatly decreased in the HBO-treated lenses. These results contribute to our understanding of the multiple roles that GSH plays in maintenance of lens transparency and in the age-related metabolic changes that lead to lens cataract formation.
Collapse
Affiliation(s)
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Centre, Vanderbilt University, Nashville, TN, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Richard M Caprioli
- Mass Spectrometry Research Centre, Vanderbilt University, Nashville, TN, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Kevin L Schey
- Mass Spectrometry Research Centre, Vanderbilt University, Nashville, TN, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, USA; Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, TN, USA
| | - Paul J Donaldson
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Angus C Grey
- School of Medical Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|