1
|
Grasselli G, Arigò A, Palma P, Famiglini G, Cappiello A. Latest Developments in Direct and Non-Direct LC-MS Methods Based on Liquid Electron Ionization (LEI). Crit Rev Anal Chem 2024:1-18. [PMID: 39046707 DOI: 10.1080/10408347.2024.2381543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Mass spectrometry (MS) enables precise identification and quantification of molecules, particularly when combined with chromatography. The advent of atmospheric pressure ionization (API) techniques allowed the efficient coupling of liquid chromatography with MS (LC-MS), extending analyses to nonvolatile and thermolabile compounds. API techniques present limitations such as low informative capacity and reproducibility of mass spectra, increasing instrument complexity and costs. Other challenges include analyzing poorly polar molecules and matrix effects (ME), which negatively impact quantitative analyses, necessitating extensive sample purification or using expensive labeled standards. These limitations prompted the exploration of alternative solutions, leading to the development of the Liquid Electron Ionization (LEI) interface. The system has demonstrated excellent robustness and reproducibility. LEI has been employed to analyze various compounds, including pesticides, drugs of abuse, phenols, polycyclic aromatic hydrocarbons (PAHs), phthalates, and many others. Its versatility has been validated with single quadrupole, triple quadrupole, and QToF detectors, operating in electron ionization (EI) or chemical ionization (CI) modes and with both reverse phase liquid chromatography (RPLC) and normal phase liquid chromatography (NPLC). LEI has also been successfully integrated with the Microfluidic Open Interface (MOI), Membrane Introduction Mass Spectrometry (MIMS), and Microfluidic Water-Assisted Trap Focusing (M-WATF), broadening its application scope and consistently demonstrating promising results in terms of sensitivity and identification power. The most recent advancement is the development of Extractive-Liquid Sampling Electron Ionization-Mass Spectrometry (E-LEI-MS), a surface sampling and real-time analysis technique based on the LEI concept. This review article offers a comprehensive and up-to-date picture of the potential of LEI.
Collapse
Affiliation(s)
- Genny Grasselli
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Adriana Arigò
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Pierangela Palma
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Giorgio Famiglini
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Achille Cappiello
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
2
|
Ahmed K, Tauseef H, Ainuddin JA, Zafar M, Khan I, Salim A, Mirza MR, Mohiuddin OA. Assessment of the proteome profile of decellularized human amniotic membrane and its biocompatibility with umbilical cord-derived mesenchymal stem cells. J Biomed Mater Res A 2024; 112:1041-1056. [PMID: 38380793 DOI: 10.1002/jbm.a.37685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
Extracellular matrix-based bio-scaffolds are useful for tissue engineering as they retain the unique structural, mechanical, and physiological microenvironment of the tissue thus facilitating cellular attachment and matrix activities. However, considering its potential, a comprehensive understanding of the protein profile remains elusive. Herein, we evaluate the impact of decellularization on the human amniotic membrane (hAM) based on its proteome profile, physicochemical features, as well as the attachment, viability, and proliferation of umbilical cord-derived mesenchymal stem cells (hUC-MSC). Proteome profiles of decellularized hAM (D-hAM) were compared with hAM, and gene ontology (GO) enrichment analysis was performed. Proteomic data revealed that D-hAM retained a total of 249 proteins, predominantly comprised of extracellular matrix proteins including collagens (collagen I, collagen IV, collagen VI, collagen VII, and collagen XII), proteoglycans (biglycan, decorin, lumican, mimecan, and versican), glycoproteins (dermatopontin, fibrinogen, fibrillin, laminin, and vitronectin), and growth factors including transforming growth factor beta (TGF-β) and fibroblast growth factor (FGF) while eliminated most of the intracellular proteins. Scanning electron microscopy was used to analyze the epithelial and basal surfaces of D-hAM. The D-hAM displayed variability in fibril morphology and porosity as compared with hAM, showing loosely packed collagen fibers and prominent large pore areas on the basal side of D-hAM. Both sides of D-hAM supported the growth and proliferation of hUC-MSC. Comparative investigations, however, demonstrated that the basal side of D-hAM displayed higher hUC-MSC proliferation than the epithelial side. These findings highlight the importance of understanding the micro-environmental differences between the two sides of D-hAM while optimizing cell-based therapeutic applications.
Collapse
Affiliation(s)
- Kainat Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Haadia Tauseef
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | | - Muneeza Zafar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Munazza Raza Mirza
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Omair Anwar Mohiuddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
3
|
Pade LR, Lombard-Banek C, Li J, Nemes P. Dilute to Enrich for Deeper Proteomics: A Yolk-Depleted Carrier for Limited Populations of Embryonic (Frog) Cells. J Proteome Res 2024; 23:692-703. [PMID: 37994825 PMCID: PMC10872351 DOI: 10.1021/acs.jproteome.3c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Abundant proteins challenge deep mass spectrometry (MS) analysis of the proteome. Yolk, the source of food in many developing vertebrate embryos, complicates chemical separation and interferes with detection. We report here a strategy that enhances bottom-up proteomics in yolk-laden specimens by diluting the interferences using a yolk-depleted carrier (YODEC) proteome via isobaric multiplexing quantification. This method was tested on embryos of the South African Clawed Frog (Xenopus laevis), where a >90% yolk proteome content challenges deep proteomics. As a proof of concept, we isolated neural and epidermal fated cell clones from the embryo by dissection or fluorescence-activated cell sorting. Compared with the standard multiplexing carrier approach, YODEC more than doubled the detectable X. laevis proteome, identifying 5,218 proteins from D11 cell clones dissected from the embryo. Ca. ∼80% of the proteins were quantified without dropouts in any of the analytical channels. YODEC with high-pH fractionation quantified 3,133 proteins from ∼8,000 V11 cells that were sorted from ca. 2 embryos (1.5 μg total, or 150 ng yolk-free proteome), marking a 15-fold improvement in proteome coverage vs the standard proteomics approach. About 60% of these proteins were only quantifiable by YODEC, including molecular adaptors, transporters, translation, and transcription factors. While this study was tailored to limited populations of Xenopus cells, we anticipate the approach of "dilute to enrich" using a depleted carrier proteome to be adaptable to other biological models in which abundant proteins challenge deep MS proteomics.
Collapse
Affiliation(s)
- Leena R. Pade
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD, 20742
| | - Camille Lombard-Banek
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD, 20742
| | - Jie Li
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD, 20742
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD, 20742
| |
Collapse
|
4
|
Ryan KA, Bruening ML. Online protein digestion in membranes between capillary electrophoresis and mass spectrometry. Analyst 2023; 148:1611-1619. [PMID: 36912593 DOI: 10.1039/d3an00106g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
This research employs pepsin-containing membranes to digest proteins online after a capillary electrophoresis (CE) separation and prior to tandem mass spectrometry. Proteolysis after the separation allows the peptides from a given protein to enter the mass spectrometer in a single plug. Thus, migration time can serve as an additional criterion for confirming the identification of a peptide. The membrane resides in a sheath-flow electrospray ionization (ESI) source to enable digestion immediately before spray into the mass spectrometer, thus limiting separation of the digested peptides. Using the same membrane, digestion occurred reproducibly during 20 consecutive CE analyses performed over a 10 h period. Additionally, after separating a mixture of six unreduced proteins with CE, online digestion facilitated protein identification with at least 2 identifiable peptides for all the proteins. Sequence coverages were >75% for myoglobin and carbonic anhydrase II but much lower for proteins containing disulfide bonds. Development of methods for efficient separation of reduced proteins or identification of cross-linked peptides should enhance sequence coverages for proteins with disulfide bonds. Migration times for the peptides identified from a specific protein differed by <∼30 s, which allows for rejection of some spurious peptide identifications.
Collapse
Affiliation(s)
- Kendall A Ryan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Merlin L Bruening
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA. .,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
5
|
McNulty DE, Sikorski TW, Annan RS. Identification and Analysis of Protein Phosphorylation by Mass Spectrometry. ANALYSIS OF PROTEIN POST‐TRANSLATIONAL MODIFICATIONS BY MASS SPECTROMETRY 2016:17-87. [DOI: 10.1002/9781119250906.ch2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Vehmas AP, Muth-Pawlak D, Huhtinen K, Saloniemi-Heinonen T, Jaakkola K, Laajala TD, Kaprio H, Suvitie PA, Aittokallio T, Siitari H, Perheentupa A, Poutanen M, Corthals GL. Ovarian endometriosis signatures established through discovery and directed mass spectrometry analysis. J Proteome Res 2014; 13:4983-94. [PMID: 25099244 DOI: 10.1021/pr500384n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
New molecular information on potential therapeutic targets or tools for noninvasive diagnosis for endometriosis are important for patient care and treatment. However, surprisingly few efforts have described endometriosis at the protein level. In this work we enumerate the proteins in patient endometrium and ovarian endometrioma by extensive and comprehensive analysis of minute amounts of cryosectioned tissues in a three-tiered mass spectrometric approach. Quantitative comparison of the tissues revealed 214 differentially expressed proteins in ovarian endometrioma and endometrium. These proteins are reported here as a resource of SRM (selected reaction monitoring) assays that are unique, standardized, and openly available. Pathway analysis of the proteome measurements revealed a potential role for Transforming growth factor β-1 in ovarian endometriosis development. Subsequent mRNA microarray analysis further revealed clear ovarian endometrioma specificity for a subset of these proteins, which was also supported by further in silico studies. In this process two important proteins emerged, Calponin-1 and EMILIN-1, that were additionally confirmed in ovarian endometrioma tissues by immunohistochemistry and Western blotting. This study provides the most comprehensive molecular description of ovarian endometriosis to date and researchers with new molecular methods and tools for high throughput patient screening using the SRM assays.
Collapse
Affiliation(s)
- Anni P Vehmas
- Turku Centre for Biotechnology, ‡Department of Physiology, Institute of Biomedicine, ⊥Department of Mathematics and Statistics, and ¶Turku Center for Disease Modeling, University of Turku , Turku, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Barkla BJ, Vera-Estrella R, Pantoja O. Progress and challenges for abiotic stress proteomics of crop plants. Proteomics 2014; 13:1801-15. [PMID: 23512887 DOI: 10.1002/pmic.201200401] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 12/12/2022]
Abstract
Plants are continually challenged to recognize and respond to adverse changes in their environment to avoid detrimental effects on growth and development. Understanding the mechanisms that crop plants employ to resist and tolerate abiotic stress is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in crop plant abiotic stress tolerance has increased dramatically in the past few years as evidenced by the large amount of publications in this area. This is attributed to advances in various technology platforms associated with MS-based techniques as well as the accessibility of proteomics units to a wider plant research community. This review summarizes the work which has been reported for major crop plants and evaluates the findings in context of the approaches that are widely employed with the aim to encourage broadening the strategies used to increase coverage of the proteome.
Collapse
Affiliation(s)
- Bronwyn J Barkla
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| | | | | |
Collapse
|
8
|
Guo Z, Song E, Ma S, Wang X, Gao S, Shao C, Hu S, Jia L, Tian R, Xu T, Gao Y. Proteomics strategy to identify substrates of LNX, a PDZ domain-containing E3 ubiquitin ligase. J Proteome Res 2012; 11:4847-62. [PMID: 22889411 DOI: 10.1021/pr300674c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ubiquitin ligases (E3s) confer specificity to ubiquitination by recognizing target substrates. However, the substrates of most E3s have not been extensively discovered, and new methods are needed to efficiently and comprehensively identify these substrates. Mostly, E3s specifically recognize substrates via their protein interaction domains. We developed a novel integrated strategy to identify substrates of E3s containing protein interaction domains on a proteomic scale. The binding properties of the protein interaction domains were characterized by screening a random peptide library using a yeast two-hybrid system. Artificial degrons, consisting of a preferential ubiquitination sequence and particular interaction domain-binding motifs, were tested as potential substrates by in vitro ubiquitination assays. Using this strategy, not only substrates but also nonsubstrate regulators can be discovered. The detailed substrate recognition mechanisms, which are useful for drug discovery, can also be characterized. We used the Ligand of Numb protein X (LNX) family of E3s, a group of PDZ domain-containing RING-type E3 ubiquitin ligases, to demonstrate the feasibility of this strategy. Many potential substrates of LNX E3s were identified. Eight of the nine selected candidates were ubiquitinated in vitro, and two novel endogenous substrates, PDZ-binding kinase (PBK) and breakpoint cluster region protein (BCR), were confirmed in vivo. We further revealed that the LNX1-mediated ubiquitination and degradation of PBK inhibited cell proliferation and enhanced sensitivity to doxorubicin-induced apoptosis. The substrate recognition mechanism of LNX E3s was also characterized; this process involves the recognition of substrates via their specific PDZ domains by binding to the C-termini of the target proteins. This strategy can potentially be extended to a variety of E3s that contain protein interaction domain(s), thereby serving as a powerful tool for the comprehensive identification of their substrates on a proteomic scale.
Collapse
Affiliation(s)
- Zhengguang Guo
- National Key Laboratory of Medical Molecular Biology, Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bantscheff M, Lemeer S, Savitski MM, Kuster B. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem 2012; 404:939-65. [PMID: 22772140 DOI: 10.1007/s00216-012-6203-4] [Citation(s) in RCA: 561] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/06/2012] [Accepted: 06/15/2012] [Indexed: 02/08/2023]
Abstract
Mass-spectrometry-based proteomics is continuing to make major contributions to the discovery of fundamental biological processes and, more recently, has also developed into an assay platform capable of measuring hundreds to thousands of proteins in any biological system. The field has progressed at an amazing rate over the past five years in terms of technology as well as the breadth and depth of applications in all areas of the life sciences. Some of the technical approaches that were at an experimental stage back then are considered the gold standard today, and the community is learning to come to grips with the volume and complexity of the data generated. The revolution in DNA/RNA sequencing technology extends the reach of proteomic research to practically any species, and the notion that mass spectrometry has the potential to eventually retire the western blot is no longer in the realm of science fiction. In this review, we focus on the major technical and conceptual developments since 2007 and illustrate these by important recent applications.
Collapse
|
10
|
iTRAQ identification of candidate serum biomarkers associated with metastatic progression of human prostate cancer. PLoS One 2012; 7:e30885. [PMID: 22355332 PMCID: PMC3280251 DOI: 10.1371/journal.pone.0030885] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 12/27/2011] [Indexed: 12/26/2022] Open
Abstract
A major challenge in the management of patients with prostate cancer is identifying those individuals at risk of developing metastatic disease, as in most cases the disease will remain indolent. We analyzed pooled serum samples from 4 groups of patients (n = 5 samples/group), collected prospectively and actively monitored for a minimum of 5 yrs. Patients groups were (i) histological diagnosis of benign prostatic hyperplasia with no evidence of cancer 'BPH', (ii) localised cancer with no evidence of progression, 'non-progressing' (iii) localised cancer with evidence of biochemical progression, 'progressing', and (iv) bone metastasis at presentation 'metastatic'. Pooled samples were immuno-depleted of the 14 most highly abundant proteins and analysed using a 4-plex iTRAQ approach. Overall 122 proteins were identified and relatively quantified. Comparisons of progressing versus non-progressing groups identified the significant differential expression of 25 proteins (p<0.001). Comparisons of metastatic versus progressing groups identified the significant differential expression of 23 proteins. Mapping the differentially expressed proteins onto the prostate cancer progression pathway revealed the dysregulated expression of individual proteins, pairs of proteins and 'panels' of proteins to be associated with particular stages of disease development and progression. The median immunostaining intensity of eukaryotic translation elongation factor 1 alpha 1 (eEF1A1), one of the candidates identified, was significantly higher in osteoblasts in close proximity to metastatic tumour cells compared with osteoblasts in control bone (p = 0.0353, Mann Whitney U). Our proteomic approach has identified leads for potentially useful serum biomarkers associated with the metastatic progression of prostate cancer. The panels identified, including eEF1A1 warrant further investigation and validation.
Collapse
|
11
|
Redeker V. Mass spectrometry analysis of C-terminal posttranslational modifications of tubulins. Methods Cell Biol 2010; 95:77-103. [PMID: 20466131 DOI: 10.1016/s0091-679x(10)95006-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In mammalian brain and ciliary axonemes from ciliates, alpha- and beta-tubulins exhibit an extraordinary heterogeneity due to a combination of multigene family expression and numerous posttranslational modifications (PTMs). The combination of several PTMs located in the C-terminal tail of tubulins plays a major role in this important polymorphism of tubulin: polyglutamylation, polyglycylation, detyrosination, tyrosination, removal of the penultimate glutamate residue, and phosphorylation. In order to document the relationship and functions of these PTMs, we have developed a tubulin C-terminal Peptide Mass Fingerprinting (PMF) method. Using simplified microtubule proteins and tubulin C-terminal peptides purifications, direct matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) analysis can generate a complete picture of all tubulin isotype-specific C-terminal peptides together with their respective PTMs. This chapter will illustrate the capability of this approach to compare tubulin isoform compositions and document the changes in PTMs between samples with different tubulin assembly properties or consecutively to inactivation of modification sites or modification enzymes. Complementary MS-based approaches useful to document the structure of the highly heterogeneous posttranslational polymodifications will also be presented.
Collapse
Affiliation(s)
- Virginie Redeker
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
12
|
Sun W, Chen Y, Li F, Zhang L, Yang R, Zhang Z, Zheng D, Gao Y. Dynamic urinary proteomic analysis reveals stable proteins to be potential biomarkers. Proteomics Clin Appl 2009; 3:370-82. [DOI: 10.1002/prca.200800061] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Indexed: 01/31/2023]
|
13
|
Sun W, Zhang L, Yang R, Shao C, Zhang Z, Gao Y. Improving peptide identification using an empirical peptide retention time database. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:109-118. [PMID: 19065623 DOI: 10.1002/rcm.3851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Peptide retention time (RT) is independent of tandem mass spectrometry (MS/MS) parameters and can be combined with MS/MS information to enhance peptide identification. In this paper, we utilized peptide empirical RT and MS/MS for peptide identification. This new approach resulted in the construction of an Empirical Peptide Retention Time Database (EPRTD) based on peptides showing a false-positive rate (FPR) <or=1%, detected in several liquid chromatography (LC)/MS/MS analyses. In subsequent experiments, the RT of peptides with FPR >1% was compared with empirical data derived from the EPRTD. If the experimental RT was within a specified time range of the empirical value, the corresponding MS/MS spectra were accepted as positive. Application of the EPRTD approach to simple samples (known protein mixtures) and complex samples (human urinary proteome) revealed that this method could significantly enhance peptide identification without compromising the associated confidence levels. Further analysis indicated that the EPRTD approach could improve low-abundance peptides and with the expansion of the EPRTD the number of peptide identifications will be increased. This approach is suitable for large-scale clinical proteomics research, in which tens of LC/MS/MS analyses are run for different samples with similar components.
Collapse
Affiliation(s)
- Wei Sun
- Proteomics Research Center, Department of Physiology and Pathophysiology, School of Basic Medicine Peking Union Medical College, Beijing, PR China
| | | | | | | | | | | |
Collapse
|
14
|
Astorga-Wells J, Tryggvason S, Vollmer S, Alvelius G, Palmberg C, Jörnvall H. Membrane protein identifications by mass spectrometry using electrocapture-based separation as part of a two-dimensional fractionation system. Anal Biochem 2008; 381:33-42. [DOI: 10.1016/j.ab.2008.06.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 06/16/2008] [Accepted: 06/17/2008] [Indexed: 11/29/2022]
|
15
|
Abstract
Recent technological developments in proteomic analysis are bringing us new insights into the molecular classification of tumours. Although proteomic analysis in cancer profiling is still under development both in terms of the instruments used and the data analytical tools, this method has great potential advantages for the analysis of biospecimens of many types. Direct measurement of abnormally expressed or modified proteins in the tumour tissue and/or patient blood may be an effective approach for discovering new biomarkers. Proteomics has the significant advantage of being able to discern not only changes in expression levels but also in post-translational modifications. Thus, the proteomics approach to protein profiling and biomarker discovery uncovers biomarkers from a different viewpoint than microarray analysis. This review summarizes the range of proteomics technologies employed for cancer profiling, and how they have been used to derive new classification models for human lung cancer.
Collapse
Affiliation(s)
- Takefumi Kikuchi
- Vanderbilt Ingram Cancer Center, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
16
|
Sun W, Gao S, Wang L, Chen Y, Wu S, Wang X, Zheng D, Gao Y. Microwave-assisted protein preparation and enzymatic digestion in proteomics. Mol Cell Proteomics 2005; 5:769-76. [PMID: 16339992 DOI: 10.1074/mcp.t500022-mcp200] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The combinations of gel electrophoresis or LC and mass spectrometry are two popular approaches for large scale protein identification. However, the throughput of both approaches is limited by the speed of the protein digestion process. Present research into fast protein enzymatic digestion has been focused mainly on known proteins, and it is unclear whether these results can be extrapolated to complex protein mixtures. In this study microwave technology was used to develop a fast protein preparation and enzymatic digestion method for protein mixtures. The protein mixtures in solution or in gel were prepared and digested by microwave-assisted protein enzymatic digestion, which rapidly produces peptide fragments. The peptide fragments were further analyzed by capillary LC and ESI-ion trap-MS or MALDI-TOF-MS. The technique was optimized using bovine serum albumin and then applied to human urinary proteins and yeast lysate. The method enabled preparation and digestion of protein mixtures in solution (human urinary proteins) or in gel (yeast lysate) in 6 or 25 min, respectively. Equivalent (in-solution) or better (in-gel) digestion efficiency was obtained using microwave-assisted protein enzymatic digestion compared with the standard overnight digestion method. This new application of microwave technology to protein mixture preparation and enzymatic digestion will hasten the application of proteomic techniques to biological and clinical research.
Collapse
Affiliation(s)
- Wei Sun
- Proteomics Research Center and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College/Chinese Academy of Medical Sciences, Beijing 100005, China.
| | | | | | | | | | | | | | | |
Collapse
|