1
|
Kawaka F. Characterization of symbiotic and nitrogen fixing bacteria. AMB Express 2022; 12:99. [PMID: 35907164 PMCID: PMC9339069 DOI: 10.1186/s13568-022-01441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
Symbiotic nitrogen fixing bacteria comprise of diverse species associated with the root nodules of leguminous plants. Using an appropriate taxonomic method to confirm the identity of superior and elite strains to fix nitrogen in legume crops can improve sustainable global food and nutrition security. The current review describes taxonomic methods preferred and commonly used to characterize symbiotic bacteria in the rhizosphere. Peer reviewed, published and unpublished articles on techniques used for detection, classification and identification of symbiotic bacteria were evaluated by exploring their advantages and limitations. The findings showed that phenotypic and cultural techniques are still affordable and remain the primary basis of species classification despite their challenges. Development of new, robust and informative taxonomic techniques has really improved characterization and identification of symbiotic bacteria and discovery of novel and new species that are effective in biological nitrogen fixation (BNF) in diverse conditions and environments.
Collapse
Affiliation(s)
- Fanuel Kawaka
- Department of Biological Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O. Box 210-40601, Bondo, Kenya.
| |
Collapse
|
2
|
Jia RZ, Zhang RJ, Wei Q, Chen WF, Cho IK, Chen WX, Li QX. Identification and Classification of Rhizobia by Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry. ACTA ACUST UNITED AC 2015; 8:98-107. [PMID: 26500417 PMCID: PMC4616259 DOI: 10.4172/jpb.1000357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mass spectrometry (MS) has been widely used for specific, sensitive and rapid analysis of proteins and has shown a high potential for bacterial identification and characterization. Type strains of four species of rhizobia and Escherichia coli DH5α were employed as reference bacteria to optimize various parameters for identification and classification of species of rhizobia by matrix-assisted laser desorption/ionization time-of-flight MS (MALDI TOF MS). The parameters optimized included culture medium states (liquid or solid), bacterial growth phases, colony storage temperature and duration, and protein data processing to enhance the bacterial identification resolution, accuracy and reliability. The medium state had little effects on the mass spectra of protein profiles. A suitable sampling time was between the exponential phase and the stationary phase. Consistent protein mass spectral profiles were observed for E. coli colonies pre-grown for 14 days and rhizobia for 21 days at 4°C or 21°C. A dendrogram of 75 rhizobial strains of 4 genera was constructed based on MALDI TOF mass spectra and the topological patterns agreed well with those in the 16S rDNA phylogenetic tree. The potential of developing a mass spectral database for all rhizobia species was assessed with blind samples. The entire process from sample preparation to accurate identification and classification of species required approximately one hour.
Collapse
Affiliation(s)
- Rui Zong Jia
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA ; State Key Laboratory of Agro biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China ; State Key Biotechnology Laboratory for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, Hainan, 571101, China
| | - Rong Juan Zhang
- State Key Laboratory of Agro biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China ; Dongying Municipal Bureau of Agriculture, Dongying, Shandong, 257091, China
| | - Qing Wei
- State Key Laboratory of Agro biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China ; State Key Biotechnology Laboratory for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, Hainan, 571101, China
| | - Wen Feng Chen
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA ; State Key Laboratory of Agro biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Il Kyu Cho
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Wen Xin Chen
- State Key Laboratory of Agro biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
3
|
Mandal SM, Migliolo L, Franco OL. The use of MALDI-TOF-MS and in silico studies for determination of antimicrobial peptides' affinity to bacterial cells. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1939-1948. [PMID: 22926961 DOI: 10.1007/s13361-012-0453-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/28/2012] [Accepted: 07/18/2012] [Indexed: 06/01/2023]
Abstract
Several methods have been proposed for determining the binding affinity of antimicrobial peptides (AMPs) to bacterial cells. Here the utilization of MALDI-TOF-MS was proposed as a reliable and efficient method for high throughput AMP screening. The major advantage of the technique consists of finding AMPs that are selective and specific to a wide range of Gram-negative and -positive bacteria, providing a simple reliable screening tool to determine the potential candidates for broad spectrum antimicrobial drugs. As a prototype, amp-1 and -2 were used, showing highest activity toward Gram-negative and -positive membranes respectively. In addition, in silico molecular docking studies with both peptides were carried out for the membranes. In silico results indicated that both peptides presented affinity for DPPG and DPPE phospholipids, constructed in order to emulate an in vivo membrane bilayer. As a result, amp-1 showed a higher complementary surface for Gram-negative while amp-2 showed higher affinity to Gram-positive membranes, corroborating MS analyses. In summary, results here obtained suggested that in vitro methodology using MALDI-TOF-MS in addition to theoretical studies may be able to improve AMP screening quality.
Collapse
Affiliation(s)
- Santi M Mandal
- Mass Spectrometry and Proteomics Laboratory Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, WB, India
| | | | | |
Collapse
|
4
|
Šedo O, Sedláček I, Zdráhal Z. Sample preparation methods for MALDI-MS profiling of bacteria. MASS SPECTROMETRY REVIEWS 2011; 30:417-434. [PMID: 21500244 DOI: 10.1002/mas.20287] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 11/15/2009] [Accepted: 11/15/2009] [Indexed: 05/30/2023]
Abstract
Direct matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) bacterial cell or lysate analysis appears to meet all the criteria required for a rapid and reliable analytical microorganism identification and taxonomical classification tool. Few-minute analytical procedure providing information extending up to sub-species level underlines the potential of the MALDI-MS profiling in comparison with other methods employed in the field. However, the quality of MALDI-MS profiles and consequently the performance of the method are influenced by numerous factors, which involve particular steps of the sample preparation procedure. This review is aimed at advances in development and optimization of the MALDI-MS profiling methodology. Approaches improving the quality of the MALDI-MS profiles and universal feasibility of the method are discussed.
Collapse
Affiliation(s)
- Ondrej Šedo
- Department of Functional Genomics and Proteomics, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | | |
Collapse
|