1
|
Kim C, Raja IS, Lee JM, Lee JH, Kang MS, Lee SH, Oh JW, Han DW. Recent Trends in Exhaled Breath Diagnosis Using an Artificial Olfactory System. BIOSENSORS 2021; 11:337. [PMID: 34562928 PMCID: PMC8467588 DOI: 10.3390/bios11090337] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Artificial olfactory systems are needed in various fields that require real-time monitoring, such as healthcare. This review introduces cases of detection of specific volatile organic compounds (VOCs) in a patient's exhaled breath and discusses trends in disease diagnosis technology development using artificial olfactory technology that analyzes exhaled human breath. We briefly introduce algorithms that classify patterns of odors (VOC profiles) and describe artificial olfactory systems based on nanosensors. On the basis of recently published research results, we describe the development trend of artificial olfactory systems based on the pattern-recognition gas sensor array technology and the prospects of application of this technology to disease diagnostic devices. Medical technologies that enable early monitoring of health conditions and early diagnosis of diseases are crucial in modern healthcare. By regularly monitoring health status, diseases can be prevented or treated at an early stage, thus increasing the human survival rate and reducing the overall treatment costs. This review introduces several promising technical fields with the aim of developing technologies that can monitor health conditions and diagnose diseases early by analyzing exhaled human breath in real time.
Collapse
Affiliation(s)
- Chuntae Kim
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Korea
| | | | - Jong-Min Lee
- School of Nano Convergence Technology, Hallym University, Chuncheon 24252, Korea
| | | | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea
| | - Seok Hyun Lee
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea
| | - Jin-Woo Oh
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Korea
- Department of Nanoenergy Engineering, Pusan National University, Busan 46241, Korea
| | - Dong-Wook Han
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Korea
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea
| |
Collapse
|
2
|
The electronic nose technology in clinical diagnosis: A systematic review. Porto Biomed J 2019; 4:e42. [PMID: 31930178 PMCID: PMC6924976 DOI: 10.1097/j.pbj.0000000000000042] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
Supplemental Digital Content is available in the text Background: Volatile organic compounds (VOC) are end products of human metabolism (normal and disease-associated) that can be mainly excreted in breath, urine, and feces. Therefore, VOC can be very useful as markers of diseases and helpful for clinicians since its sampling is noninvasive, inexpensive, and painless. Electronic noses, or eNoses, provide an easy and inexpensive way to analyze gas samples. Thus, this device may be used for diagnosis, monitoring or phenotyping diseases according to specific breathprints (breath profile). Objective: In this review, we summarize data showing the ability of eNose to be used as a noninvasive tool to improve diagnosis in clinical settings. Methods: A PRISMA-oriented search was performed in PubMed and Cochrane Library. Only studies performed in humans and published since 2000 were included. Results: A total of 48 original articles, 21 reviews, and 7 other documents were eligible and fully analyzed. The quality assessment of the selected studies was conducted according to the Standards for Reporting of Diagnostic Accuracy. Airway obstructive diseases were the most studied and Cyranose 320 was the most used eNose. Conclusions: Several case–control studies were performed to test this technology in diverse fields. More than a half of the selected studies showed good accuracy. However, there are some limitations regarding sampling methodology, analysis, reproducibility, and external validation that need to be standardized. Additionally, it is urgent to test this technology in intend-to-treat populations. Thus, it is possible to think in the contribution of VOC analysis by eNoses in a clinical setting.
Collapse
|
3
|
Nagappan PG, Subramaniam S, Wang DY. Olfaction as a soldier-- a review of the physiology and its present and future use in the military. Mil Med Res 2017; 4:9. [PMID: 28344819 PMCID: PMC5359863 DOI: 10.1186/s40779-017-0119-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 03/08/2017] [Indexed: 11/10/2022] Open
Abstract
Olfaction is one of our 5 main qualitative sensory abilities. In this review, we have examined the physiology of olfaction from the olfactory receptor to the brain. Through analyzing the physiology of olfaction, we have found that the biochemistry of olfactory nerve stimulation is unique from that of other similar pathways. Upon receiving large amounts of input from the olfactory nerve, the olfactory bulb, followed by several layers of centrifugal and centripetal processing in the brain, has to sort the information from the input as well as integrate it with other inputs from the brain to develop a coherent understanding of the input. We then examined the implications of olfaction in the military, the practical applications of electronic noses and problems associated with injury to olfaction that could affect compensation and combat worthiness of a soldier following injury. In the military, olfaction can allow the army to perform at its best through 4 main methods, namely ensuring olfaction is consistent with other dimensions of perception (ensuring optimal olfaction ability in all soldiers in combat), understanding the impact of different common combat environments on the sense of smell, utilizing odor as a defense mechanism and using olfactory aids when necessary. Electronic noses are olfactory aids that have a large potential in the military ranging from saving lives through the detection of explosives to potential methods for improving combustion efficiency. There are several problems associated with injury to olfaction that should be considered when deciding on compensation and combat worthiness of the soldier following an injury.
Collapse
Affiliation(s)
| | | | - De-Yun Wang
- Department of Otolaryngology, National University of Singapore, National University Health System, Singapore, Singapore.,Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228 Singapore
| |
Collapse
|
4
|
Shoffel-Havakuk H, Frumin I, Lahav Y, Haviv L, Sobel N, Halperin D. Increased number of volatile organic compounds over malignant glottic lesions. Laryngoscope 2015; 126:1606-11. [PMID: 26490745 DOI: 10.1002/lary.25733] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/12/2015] [Accepted: 09/15/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVES/HYPOTHESIS Electronic noses can identify diseases, including head and neck squamous cell carcinoma (SCC) by the fingerprint of volatile organic compounds (VOCs) in exhaled air. However, whether these VOCs originated from the malignant lesion itself remains unclear. The objective was to test for the presence and properties of VOCs directly over the vocal folds in malignant and benign lesions, as a potential tool for noninvasive screening. STUDY DESIGN Prospective observational case control study. METHODS Samples of mucus directly covering vocal fold lesions were analyzed using gas chromatography mass spectrometry for detection of VOCs, and evaluation of the properties and quantity of VOCs in the samples. Additionally, samples of oropharyngeal mucus were analyzed to exclude VOCs found also in the vicinity of the lesion. Benign and malignant lesion groups were compared using a nonparametric (Mann-Whitney) test. RESULTS We studied 14 patients, six with SCC and eight with benign pathology. We found an increased number of discrete VOC types in patients with SCC both above the lesion (SCC = 4.333 ± 2.5, benign = 0.875 ± 0.6; Z=3, P < .001) and directly above the lesion with exclusion of its vicinity (SCC = 3.167 ± 1.9, benign = 0.5 ± 0.5; Z = 2.8, P < .003). VOCs detected in SCCs but not in benign samples included the straight-chain fatty acids: butyric acid, pentanoic acid, hexanoic acid, and heptanoic acid. CONCLUSIONS Compared with benign vocal fold lesions, the environment of vocal folds in SCC is enriched with VOCs. These preliminary findings highlight a unique pattern that may contribute to the development of a future minimally invasive technology for screening vocal fold lesions for malignancy. LEVEL OF EVIDENCE NA Laryngoscope, 126:1606-1611, 2016.
Collapse
Affiliation(s)
- Hagit Shoffel-Havakuk
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.,Department of Otolaryngology-Head and Neck Surgery, Kaplan Medical Center, Rehovot, Israel, affiliated with the Hebrew University Jerusalem, Israel
| | - Idan Frumin
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Yonatan Lahav
- Department of Otolaryngology-Head and Neck Surgery, Kaplan Medical Center, Rehovot, Israel, affiliated with the Hebrew University Jerusalem, Israel
| | - Lior Haviv
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Sobel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Doron Halperin
- Department of Otolaryngology-Head and Neck Surgery, Kaplan Medical Center, Rehovot, Israel, affiliated with the Hebrew University Jerusalem, Israel
| |
Collapse
|
5
|
Shafiek H, Fiorentino F, Merino JL, López C, Oliver A, Segura J, de Paul I, Sibila O, Agustí A, Cosío BG. Using the Electronic Nose to Identify Airway Infection during COPD Exacerbations. PLoS One 2015; 10:e0135199. [PMID: 26353114 PMCID: PMC4564204 DOI: 10.1371/journal.pone.0135199] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/18/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The electronic nose (e-nose) detects volatile organic compounds (VOCs) in exhaled air. We hypothesized that the exhaled VOCs print is different in stable vs. exacerbated patients with chronic obstructive pulmonary disease (COPD), particularly if the latter is associated with airway bacterial infection, and that the e-nose can distinguish them. METHODS Smell-prints of the bacteria most commonly involved in exacerbations of COPD (ECOPD) were identified in vitro. Subsequently, we tested our hypothesis in 93 patients with ECOPD, 19 of them with pneumonia, 50 with stable COPD and 30 healthy controls in a cross-sectional case-controlled study. Secondly, ECOPD patients were re-studied after 2 months if clinically stable. Exhaled air was collected within a Tedlar bag and processed by a Cynarose 320 e-nose. Breath-prints were analyzed by Linear Discriminant Analysis (LDA) with "One Out" technique and Sensor logic Relations (SLR). Sputum samples were collected for culture. RESULTS ECOPD with evidence of infection were significantly distinguishable from non-infected ECOPD (p = 0.018), with better accuracy when ECOPD was associated to pneumonia. The same patients with ECOPD were significantly distinguishable from stable COPD during follow-up (p = 0.018), unless the patient was colonized. Additionally, breath-prints from COPD patients were significantly distinguished from healthy controls. Various bacteria species were identified in culture but the e-nose was unable to identify accurately the bacteria smell-print in infected patients. CONCLUSION E-nose can identify ECOPD, especially if associated with airway bacterial infection or pneumonia.
Collapse
Affiliation(s)
- Hanaa Shafiek
- Department of Respiratory Medicine, Hospital Universitario Son Espases. IdISPa. Palma de Mallorca, Spain
- Department of Chest Diseases, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Federico Fiorentino
- Department of Respiratory Medicine, Hospital Universitario Son Espases. IdISPa. Palma de Mallorca, Spain
| | - Jose Luis Merino
- Electronic Systems Group, University of the Balearic Islands (GSE-UIB), Palma de Mallorca, Spain
| | - Carla López
- Department of Microbiology, Hospital Universitario Son Espases. IdISPa. Palma de Mallorca, Spain
| | - Antonio Oliver
- Department of Microbiology, Hospital Universitario Son Espases. IdISPa. Palma de Mallorca, Spain
| | - Jaume Segura
- Electronic Systems Group, University of the Balearic Islands (GSE-UIB), Palma de Mallorca, Spain
| | - Ivan de Paul
- Electronic Systems Group, University of the Balearic Islands (GSE-UIB), Palma de Mallorca, Spain
| | - Oriol Sibila
- Department of Respiratory Medicine, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Alvar Agustí
- Thorax Institute, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Borja G Cosío
- Department of Respiratory Medicine, Hospital Universitario Son Espases. IdISPa. Palma de Mallorca, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- * E-mail:
| |
Collapse
|
6
|
Fung AO, Mykhaylova N. Analysis of Airborne Biomarkers for Point-of-Care Diagnostics. ACTA ACUST UNITED AC 2014; 19:225-47. [PMID: 24464813 DOI: 10.1177/2211068213517119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Indexed: 12/30/2022]
Abstract
Treatable diseases continue to exact a heavy burden worldwide despite powerful advances in treatment. Diagnostics play crucial roles in the detection, management, and ultimate prevention of these diseases by guiding the allocation of precious medical resources. Motivated by globalization and evolving disease, and enabled by advances in molecular pathology, the scientific community has produced an explosion of research on miniaturized integrated biosensor platforms for disease detection. Low-cost, automated tests promise accessibility in low-resource settings by loosening constraints around infrastructure and usability. To address the challenges raised by invasive and intrusive sample collection, researchers are exploring alternative biomarkers in various specimens. Specifically, patient-generated airborne biomarkers suit minimally invasive collection and automated analysis. Disease biomarkers are known to exist in aerosols and volatile compounds in breath, odor, and headspace, media that can be exploited for field-ready diagnostics. This article reviews global disease priorities and the characteristics of low-resource settings. It surveys existing technologies for the analysis of bioaerosols and volatile organic compounds, and emerging technologies that could enable their translation to the point of care. Engineering advances promise to enable appropriate diagnostics by detecting chemical and microbial markers. Nonetheless, further innovation and cost reduction are needed for these technologies to broadly affect global health.
Collapse
|
7
|
Leunis N, Boumans ML, Kremer B, Din S, Stobberingh E, Kessels AGH, Kross KW. Application of an electronic nose in the diagnosis of head and neck cancer. Laryngoscope 2013; 124:1377-81. [PMID: 24142627 DOI: 10.1002/lary.24463] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/28/2013] [Accepted: 10/07/2013] [Indexed: 11/12/2022]
Abstract
OBJECTIVES/HYPOTHESIS Electronic nose (E-nose) technology has various applications such as the monitoring of air quality and the detection of explosive and chemical agents. We studied the diagnostic accuracy of volatile organic compounds (VOC) pattern analysis in exhaled breath by means of an E-nose in patients with head and neck squamous cell carcinoma (HNSCC). STUDY DESIGN Cohort study. Exhaled breath samples from patients with HNSCC were analyzed by using an E-Nose. METHODS Thirty-six patients diagnosed with HNSCC exhaled into a 5-litre Tedlar bag. The control group consisted of 23 patients visiting the outpatient clinic for other (benign) conditions. Air samples were analyzed using an E-nose. RESULTS Logistic regression showed a significant difference (P < 0.05) in VOC resistance patterns between patients diagnosed with HNSCC and the control group, with a sensitivity of 90% and a corresponding specificity of 80%. CONCLUSIONS E-nose application holds a promising potential for application in the diagnosis of HNSCC due to its rapid, simple, and noninvasive nature. LEVEL OF EVIDENCE 3b.
Collapse
Affiliation(s)
- Nicoline Leunis
- Department of Otolaryngology-Head and Neck Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
8
|
Chen S, Wang Y, Choi S. Applications and Technology of Electronic Nose for Clinical Diagnosis. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojab.2013.22005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Thorn RMS, Greenman J. Microbial volatile compounds in health and disease conditions. J Breath Res 2012; 6:024001. [PMID: 22556190 PMCID: PMC7106765 DOI: 10.1088/1752-7155/6/2/024001] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 04/12/2012] [Indexed: 12/24/2022]
Abstract
Microbial cultures and/or microbial associated diseases often have a characteristic smell. Volatile organic compounds (VOCs) are produced by all microorganisms as part of their normal metabolism. The types and classes of VOC produced is wide, including fatty acids and their derivatives (e.g. hydrocarbons, aliphatic alcohols and ketones), aromatic compounds, nitrogen containing compounds, and volatile sulfur compounds. A diversity of ecological niches exist in the human body which can support a polymicrobial community, with the exact VOC profile of a given anatomical site being dependent on that produced by both the host component and the microbial species present. The detection of VOCs is of interest to various disciplines, hence numerous analytical approaches have been developed to accurately characterize and measure VOCs in the laboratory, often from patient derived samples. Using these technological advancements it is evident that VOCs are indicative of both health and disease states. Many of these techniques are still largely confined to the research laboratory, but it is envisaged that in future bedside 'VOC profiling' will enable rapid characterization of microbial associated disease, providing vital information to healthcare practitioners.
Collapse
Affiliation(s)
- Robin Michael Statham Thorn
- Centre for Research in Biomedicine, Department of Applied Sciences, University of the West of England, Bristol, Frenchay Campus, Coldharbour Lane, BS16 1QY, UK
| | - John Greenman
- Centre for Research in Biomedicine, Department of Applied Sciences, University of the West of England, Bristol, Frenchay Campus, Coldharbour Lane, BS16 1QY, UK
| |
Collapse
|
10
|
Hattesohl ADM, Jörres RA, Dressel H, Schmid S, Vogelmeier C, Greulich T, Noeske S, Bals R, Koczulla AR. Discrimination between COPD patients with and without alpha 1-antitrypsin deficiency using an electronic nose. Respirology 2012; 16:1258-64. [PMID: 21883674 DOI: 10.1111/j.1440-1843.2011.02047.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND OBJECTIVE To compare the volatile organic compound patterns of patients with COPD with and without alpha 1-antitrypsin (AAT) deficiency using electronic nose technology. METHODS Exhaled breath condensate and pure exhaled breath of patients with COPD with (n=10) and without (n=23) AAT deficiency and healthy controls (n=10) were analysed. The effect of human recombinant AAT on the volatile organic compound profile of 11 AAT-deficient patients was also examined. Exhaled breath condensate and pure exhaled breath were measured using the Cyranose 320. Smell prints were analysed by linear discriminant analysis (LDA) using Mahalanobis distance (MD) and cross-validation values (CVVs). RESULTS Smell prints of patients with AAT-deficiency were different from those with COPD in exhaled breath condensate (LDA: P<0.0001, sensitivity of 1.00, specificity of 1.00, CVV 82.0%, MD 2.37) and in pure exhaled breath (LDA: P<0.0001, sensitivity of 1.00, specificity of 1.00, CVV 58.3%, MD 2.27). Smell prints of AAT-deficient patients before and after human recombinant AAT augmentation were different (LDA: P=0.001, sensitivity of 1.00, specificity of 1.00, CVV 53.3%, MD 1.79). CONCLUSIONS An electronic nose can detect differences in smell prints of COPD patients with and without AAT deficiency. Augmentation therapy changes the volatile organic compound pattern. The electronic nose may be helpful in the diagnosis of AAT deficiency.
Collapse
Affiliation(s)
- Akira D M Hattesohl
- Department for Internal Medicine, Division for Pulmonary Diseases, Philipps University Marburg, Marburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bikov A, Lazar Z, Schandl K, Antus B, Losonczy G, Horvath I. Exercise changes volatiles in exhaled breath assessed by an electronic nose. ACTA ACUST UNITED AC 2011; 98:321-8. [DOI: 10.1556/aphysiol.98.2011.3.9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Oh EH, Song HS, Park TH. Recent advances in electronic and bioelectronic noses and their biomedical applications. Enzyme Microb Technol 2011; 48:427-37. [PMID: 22113013 DOI: 10.1016/j.enzmictec.2011.04.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 04/01/2011] [Indexed: 01/28/2023]
Abstract
Significant effort has been made in the development of an artificial nose system for various applications. Advances in sensor technology have facilitated the development of high-performance electronic and bioelectronic noses. Numerous articles describe the advantages of artificial nose systems for biomedical applications. Recent advances in the development of electronic and bioelectronic noses and their biomedical applications are reviewed in this article.
Collapse
Affiliation(s)
- Eun Hae Oh
- Interdisciplinary Program of Bioengineering, Seoul National University, Seoul, Republic of Korea
| | | | | |
Collapse
|
13
|
Wilson AD, Baietto M. Advances in electronic-nose technologies developed for biomedical applications. SENSORS (BASEL, SWITZERLAND) 2011; 11:1105-76. [PMID: 22346620 PMCID: PMC3274093 DOI: 10.3390/s110101105] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/08/2010] [Accepted: 12/10/2010] [Indexed: 12/20/2022]
Abstract
The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and recent biomedical research findings and developments of electronic-nose sensor technologies, and to identify current and future potential e-nose applications that will continue to advance the effectiveness and efficiency of biomedical treatments and healthcare services for many years. An abundance of electronic-nose applications has been developed for a variety of healthcare sectors including diagnostics, immunology, pathology, patient recovery, pharmacology, physical therapy, physiology, preventative medicine, remote healthcare, and wound and graft healing. Specific biomedical e-nose applications range from uses in biochemical testing, blood-compatibility evaluations, disease diagnoses, and drug delivery to monitoring of metabolic levels, organ dysfunctions, and patient conditions through telemedicine. This paper summarizes the major electronic-nose technologies developed for healthcare and biomedical applications since the late 1980s when electronic aroma detection technologies were first recognized to be potentially useful in providing effective solutions to problems in the healthcare industry.
Collapse
Affiliation(s)
- Alphus D. Wilson
- Southern Hardwoods Laboratory, Center for Bottomland Hardwoods Research, Southern Research Station, USDA Forest Service, 432 Stoneville Road, Stoneville, MS 38776, USA
| | - Manuela Baietto
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy; E-Mail:
| |
Collapse
|
14
|
The future of early disease detection? Applications of electronic nose technology in otolaryngology. The Journal of Laryngology & Otology 2010; 124:823-7. [PMID: 20519037 DOI: 10.1017/s002221511000112x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Recent advances in electronic nose technology, and successful clinical applications, are facilitating the development of new methods for rapid, bedside diagnosis of disease. There is a real clinical need for such new diagnostic tools in otolaryngology. MATERIALS AND METHODS We present a critical review of recent advances in electronic nose technology and current applications in otolaryngology. RESULTS The literature reports evidence of accurate diagnosis of common otolaryngological conditions such as sinusitis (acute and chronic), chronic suppurative otitis media, otitis externa and nasal vestibulitis. A significant recent development is the successful identification of biofilm-producing versus non-biofilm-producing pseudomonas and staphylococcus species. CONCLUSION Electronic nose technology holds significant potential for enabling rapid, non-invasive, bedside diagnosis of otolaryngological disease.
Collapse
|
15
|
Wilson AD, Baietto M. Applications and advances in electronic-nose technologies. SENSORS (BASEL, SWITZERLAND) 2009; 9:5099-148. [PMID: 22346690 PMCID: PMC3274163 DOI: 10.3390/s90705099] [Citation(s) in RCA: 437] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 06/11/2009] [Accepted: 06/25/2009] [Indexed: 01/06/2023]
Abstract
Electronic-nose devices have received considerable attention in the field of sensor technology during the past twenty years, largely due to the discovery of numerous applications derived from research in diverse fields of applied sciences. Recent applications of electronic nose technologies have come through advances in sensor design, material improvements, software innovations and progress in microcircuitry design and systems integration. The invention of many new e-nose sensor types and arrays, based on different detection principles and mechanisms, is closely correlated with the expansion of new applications. Electronic noses have provided a plethora of benefits to a variety of commercial industries, including the agricultural, biomedical, cosmetics, environmental, food, manufacturing, military, pharmaceutical, regulatory, and various scientific research fields. Advances have improved product attributes, uniformity, and consistency as a result of increases in quality control capabilities afforded by electronic-nose monitoring of all phases of industrial manufacturing processes. This paper is a review of the major electronic-nose technologies, developed since this specialized field was born and became prominent in the mid 1980s, and a summarization of some of the more important and useful applications that have been of greatest benefit to man.
Collapse
Affiliation(s)
- Alphus D. Wilson
- Southern Hardwoods Laboratory, Center for Bottomland Hardwoods Research, Southern Research Station, USDA Forest Service, P.O. Box 227, Stoneville, Mississippi, 38776, USA
| | - Manuela Baietto
- Department of Crop Science, University of Milan,Via Celoria 2, 20133, Milan, Italy; E-Mail:
| |
Collapse
|
16
|
Kateb B, Ryan MA, Homer ML, Lara LM, Yin Y, Higa K, Chen MY. Sniffing out cancer using the JPL electronic nose: a pilot study of a novel approach to detection and differentiation of brain cancer. Neuroimage 2009; 47 Suppl 2:T5-9. [PMID: 19362154 DOI: 10.1016/j.neuroimage.2009.04.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 04/01/2009] [Accepted: 04/02/2009] [Indexed: 11/29/2022] Open
Abstract
UNLABELLED A proof-of-concept study was done to determine whether an electronic nose developed for air quality monitoring at the Jet Propulsion Laboratory (JPL) could be used to distinguish between the odors of organ and tumor tissues, with an eye to using such a device as one of several modes in multi-modal imaging and tumor differentiation during surgery. HYPOTHESIS We hypothesized that the JPL electronic nose (ENose) would be able to distinguish between the odors of various organ and tumor tissues. MATERIALS AND METHODS The odor signatures, or array response, of two organs, chicken heart and chicken liver, and cultured glioblastoma and melanoma tumor cell lines were recorded using the JPL Electronic Nose. The overall array responses were compared to determine whether they were sufficiently different to allow the organs and cell lines to be identified by their array responses. RESULTS The ENose was able to distinguish between the two types of organ tissue and between the two types of tumor cell lines. The variation in array response for the organ tissues was 19% and between the two types of cultured cell lines was 22%. CONCLUSION This study shows that it is possible to use an electronic nose to distinguish between two types of tumor cells and between two types of organ tissue. As we conducted the experiment with a sensor array built for air quality monitoring rather than for medical purposes, it may be possible to select an array that is optimized to distinguish between different types of cells and organ tissues. Further focused studies are needed to investigate the odor signatures of different cells as well as cellular proliferation, growth, differentiation and infiltration.
Collapse
Affiliation(s)
- Babak Kateb
- International Brain Mapping and Intraoperative Surgical Planning Society (IBMISPS.org), USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Pioggia G, Ferro M, Francesco FD, Ahluwalia A, De Rossi D. Assessment of bioinspired models for pattern recognition in biomimetic systems. BIOINSPIRATION & BIOMIMETICS 2008; 3:016004. [PMID: 18364563 DOI: 10.1088/1748-3182/3/1/016004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The increasing complexity of the artificial implementations of biological systems, such as the so-called electronic noses (e-noses) and tongues (e-tongues), poses issues in sensory feature extraction and fusion, drift compensation and pattern recognition, especially when high reliability is required. In particular, in order to achieve effective results, the pattern recognition system must be carefully designed. In order to investigate a novel biomimetic approach for the pattern recognition module of such systems, the classification capabilities of an artificial model inspired by the mammalian cortex, a cortical-based artificial neural network (CANN), are compared with several artificial neural networks present in the e-nose and e-tongue literature, a multilayer perceptron (MLP), a Kohonen self-organizing map (KSOM) and a fuzzy Kohonen self-organizing map (FKSOM). Each network was tested with large datasets coming from a conducting polymer-sensor-based e-nose and a composite array-based e-tongue. The comparison of results showed that the CANN model is able to strongly enhance the performances of both systems.
Collapse
Affiliation(s)
- G Pioggia
- Interdepartmental Research Center E Piaggio, University of Pisa, Italy.
| | | | | | | | | |
Collapse
|
18
|
Application of Electronic Noses for Disease Diagnosis and Food Spoilage Detection. SENSORS 2006. [DOI: 10.3390/s6111428] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Abstract
PURPOSE OF REVIEW Patients with advanced head and neck cancer are being treated with chemo-radiotherapy, and life is being prolonged, with or without persistent disease, for longer than was previously. Hypercalcaemia may present in patients with advanced or disseminated head and neck cancer, and, as such, these patients may present to a larger variety of clinicians for advice concerning their symptoms and illness. Modes of presentation of hypercalcaemia and treatment strategies are reviewed. RECENT FINDINGS There were previously few large series of head and neck cancer patients diagnosed with hypercalcaemia, which may or may not have been related to their cancer being treated. Investigations, by way of blood/serum calcium level, may identify such patients. Patients with cancer-related hypercalcaemia have a poor prognosis, but many may respond temporarily to treatment when offered, with an improvement of their quality of life and death. SUMMARY Hypercalcaemia should and must be considered in all patients who have or possibly have a diagnosis of a head and neck cancer and who present unwell with symptoms of fatigue, lethargy and somnolence. Investigation must include serum calcium (corrected for serum albumin binding) and parathyroid hormone level. Patients may be treated by a combination of rehydration and bisulphonate therapy until the serum calcium is reduced to a level below 3 mmol/l. The majority of patients diagnosed with hypercalcaemia due to head and neck malignancy die of their diseases in the short term, but some may enjoy a prolongation of life with reasonable quality if diagnosed and treated aggressively.
Collapse
Affiliation(s)
- Patrick J Bradley
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital, Nottingham, UK.
| |
Collapse
|