1
|
Amano Y, Kitamura M, Takano H, Yanagisawa F, Tachi M, Suzuki Y, Kumita S, Takayama M. Cardiac MR Imaging of Hypertrophic Cardiomyopathy: Techniques, Findings, and Clinical Relevance. Magn Reson Med Sci 2018; 17:120-131. [PMID: 29343659 PMCID: PMC5891337 DOI: 10.2463/mrms.rev.2017-0145] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a relatively common myocardial genetic disease having a wide variety of symptoms and prognoses. The most serious complications of HCM are sudden cardiac death induced by ventricular arrhythmia or inappropriate changes in blood pressure, and heart failure. Cardiac MR imaging is a valuable imaging method for detecting HCM because of its accurate measurement of wall thickness and myocardial mass without limited view and the unique ability of late gadolinium enhancement (LGE) to identify myocardial fibrosis related to the prognosis of HCM. Tagging and T1 or T2 mapping MR imaging techniques have emerged as quantitative methods for the evaluation of disease severity. In this review, we introduce the MR imaging techniques applied to HCM and demonstrate the typical phenotypes and some morphological characteristics of HCM. In addition, we discuss the clinical relevance of MR imaging for risk stratification and management of HCM.
Collapse
Affiliation(s)
- Yasuo Amano
- Department of Radiology, Nihon University Hospital
| | | | | | - Fumi Yanagisawa
- Department of Radiology, Nihon University Hospital.,Department of Radiology, Nippon Medical School
| | | | | | | | | |
Collapse
|
2
|
Fibrosis quantification in Hypertensive Heart Disease with LVH and Non-LVH: Findings from T1 mapping and Contrast-free Cardiac Diffusion-weighted imaging. Sci Rep 2017; 7:559. [PMID: 28373647 PMCID: PMC5428770 DOI: 10.1038/s41598-017-00627-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 03/08/2017] [Indexed: 01/19/2023] Open
Abstract
This study assessed the extent of fibrosis and the relationship between the ADC value and systolic strain in hypertensive patients with left ventricular hypertrophy (HTN LVH) and hypertensive patients without LVH (HTN non-LVH) using cardiac diffusion-weighted imaging and T1 mapping. T1 mapping was performed in 13 HTN LVH (mean age, 56.23 ± 3.30 years), 17 HTN non-LVH (mean age, 56.41 ± 2.78 years), and 12 normal control subjects (mean age, 55.67 ± 3.08 years) with 3.0 T MRI using cardiac diffusion-weighted imaging and T1 mapping. HTN LVH subjects had higher native T1 (1233.12 ± 79.01) compared with controls (1133.88 ± 27.40) (p < 0.05). HTN LVH subjects had higher ECV (0.28 ± 0.03) compared with HTN non-LVH subjects (0.26 ± 0.02) or controls (0.24 ± 0.03) (p < 0.05). HTN LVH subjects had higher ADC (2.23 ± 0.34) compared with HTN non-LVH subjects (1.88 ± 0.27) or controls (1.61 ± 0.38), (p < 0.05). Positive associations were noted between LVMI and ADC (Spearman = 0.450, p < 0.05) and between LVMI and ECV (Spearman = 0.181, p < 0.05). ADC was also related to an increase in ECV (R2 = 0.210). Increased levels of ADC were associated with reduced peak systolic and early diastolic circumferential strain rates across all subjects. Contrast-free DW-CMR is an alternative sequence to ECV for the evaluation of fibrosis extent in HTN LVH and HTN non-LVH, while native T1 has limited value.
Collapse
|
3
|
Kim EK, Lee SC, Hwang JW, Chang SA, Park SJ, On YK, Park KM, Choe YH, Kim SM, Park SW, Oh JK. Differences in apical and non-apical types of hypertrophic cardiomyopathy: a prospective analysis of clinical, echocardiographic, and cardiac magnetic resonance findings and outcome from 350 patients. Eur Heart J Cardiovasc Imaging 2015; 17:678-86. [DOI: 10.1093/ehjci/jev192] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/08/2015] [Indexed: 12/14/2022] Open
|
5
|
Barranhas AD, Santos AASMDD, Coelho-Filho OR, Marchiori E, Rochitte CE, Nacif MS. Cardiac magnetic resonance imaging in clinical practice. Radiol Bras 2014. [DOI: 10.1590/s0100-39842014000100006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Objective To evaluate and describe indications, mainly diagnoses and cardiac magnetic resonance imaging findings observed in clinical practice. Materials and Methods Retrospective and descriptive study of cardiac magnetic resonance performed at a private hospital and clinic in the city of Niterói, RJ, Brazil, in the period from May 2007 to April 2011. Results The sample included a total of 1000 studies performed in patients with a mean age of 53.7 ± 16.2 years and predominance for male gender (57.2%). The majority of indications were related to assessment of myocardial perfusion at rest and under pharmacological stress (507/1000; 51%), with positive results in 36.2% of them. Suspected myocarditis was the second most frequent indication (140/1000; 14%), with positive results in 63.4% of cases. These two indications were followed by study of arrhythmias (116/1000; 12%), myocardial viability (69/1000; 7%) and evaluation of cardiomyopathies (47/1000; 5%). In a subanalysis, it was possible to identify that most patients were assessed on an outpatient basis (58.42%). Conclusion Cardiac magnetic resonance has been routinely performed in clinical practice, either on an outpatient or emergency/inpatient basis, and myocardial ischemia represented the main indication, followed by investigation of myocarditis, arrhythmogenic right ventricular dysplasia and myocardial viability.
Collapse
Affiliation(s)
| | | | | | - Edson Marchiori
- Universidade Federal Fluminense, Brazil; Universidade Federal do Rio de Janeiro, Brazil
| | | | | |
Collapse
|
6
|
Edema and fibrosis imaging by cardiovascular magnetic resonance: how can the experience of Cardiology be best utilized in rheumatological practice? Semin Arthritis Rheum 2014; 44:76-85. [PMID: 24582213 DOI: 10.1016/j.semarthrit.2014.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/19/2013] [Accepted: 01/17/2014] [Indexed: 12/19/2022]
Abstract
OBJECTIVES CMR, a non-invasive, non-radiating technique can detect myocardial oedema and fibrosis. METHOD CMR imaging, using T2-weighted and T1-weighted gadolinium enhanced images, has been successfully used in Cardiology to detect myocarditis, myocardial infarction and various cardiomyopathies. RESULTS Transmitting this experience from Cardiology into Rheumatology may be of important value because: (a) heart involvement with atypical clinical presentation is common in autoimmune connective tissue diseases (CTDs). (b) CMR can reliably and reproducibly detect early myocardial tissue changes. (c) CMR can identify disease acuity and detect various patterns of heart involvement in CTDs, including myocarditis, myocardial infarction and diffuse vasculitis. (d) CMR can assess heart lesion severity and aid therapeutic decisions in CTDs. CONCLUSION The CMR experience, transferred from Cardiology into Rheumatology, may facilitate early and accurate diagnosis of heart involvement in these diseases and potentially targeted heart treatment.
Collapse
|
7
|
Amano Y, Takeda M, Tachi M, Kitamura M, Kumita S. Myocardial fibrosis evaluated by look-locker and late gadolinium enhancement magnetic resonance imaging in apical hypertrophic cardiomyopathy: Association with ventricular tachyarrhythmia and risk factors. J Magn Reson Imaging 2013; 40:407-12. [DOI: 10.1002/jmri.24357] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 07/31/2013] [Indexed: 01/21/2023] Open
Affiliation(s)
- Yasuo Amano
- Department of Radiology; Nippon Medical School; Tokyo Japan
| | - Minako Takeda
- Department of Radiology; Nippon Medical School; Tokyo Japan
| | - Masaki Tachi
- Department of Radiology; Nippon Medical School; Tokyo Japan
| | | | | |
Collapse
|
8
|
Amano Y, Tachi M, Tani H, Mizuno K, Kobayashi Y, Kumita S. T2-weighted cardiac magnetic resonance imaging of edema in myocardial diseases. ScientificWorldJournal 2012; 2012:194069. [PMID: 22973170 PMCID: PMC3438740 DOI: 10.1100/2012/194069] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 07/29/2012] [Indexed: 11/26/2022] Open
Abstract
The purpose of this paper is to describe imaging techniques and findings of T2-weighted magnetic resonance imaging (MRI) of edema in myocardial diseases. T2-weighted cardiac MRI is acquired by combining acceleration techniques with motion and signal suppression techniques. The MRI findings should be interpreted based on coronary artery supply, intramural distribution, and comparison with delayed-enhancement MRI. In acute myocardial diseases, such as acute myocardial infarction and myocarditis, the edema is larger than myocardial scarring, whereas the edema can be smaller than the scarring in some types of nonischemic cardiomyopathy, including hypertrophic cardiomyopathy. T2-weighted MRI of edema identifies myocardial edema associated with ischemia, inflammation, vasculitis, or intervention in the myocardium and provides information complementary to delayed-enhancement MRI.
Collapse
Affiliation(s)
- Yasuo Amano
- Department of Radiology, Nippon Medical School, 1-1-5 Senadagi, Bunkyo-ku, Tokyo 113-8603, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Kim KH, Kim HK, Hwang IC, Lee SP, Park EA, Lee W, Kim YJ, Park JH, Sohn DW. Myocardial scarring on cardiovascular magnetic resonance in asymptomatic or minimally symptomatic patients with "pure" apical hypertrophic cardiomyopathy. J Cardiovasc Magn Reson 2012; 14:52. [PMID: 22839526 PMCID: PMC3419125 DOI: 10.1186/1532-429x-14-52] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 07/10/2012] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) enables state-of-the-art in vivo evaluations of myocardial fibrosis. Although LGE patterns have been well described in asymmetrical septal hypertrophy, conflicting results have been reported regarding the characteristics of LGE in apical hypertrophic cardiomyopathy (ApHCM). This study was undertaken to determine 1) the frequency and distribution of LGE and 2) its prognostic implication in ApHCM. METHODS Forty patients with asymptomatic or minimally symptomatic pure ApHCM (age, 60.2 ± 10.4 years, 31 men) were prospectively enrolled. LGE images were acquired using the inversion recovery segmented spoiled-gradient echo and phase-sensitive inversion recovery sequence, and analyzed using a 17-segment model. Summing the planimetered LGE areas in all short axis slices yielded the total volume of late enhancement, which was subsequently presented as a proportion of total LV myocardium (% LGE). RESULTS Mean maximal apical wall thickness was 17.9±2.3 mm, and mean left ventricular (LV) ejection fraction was 67.7 ± 8.0%. All but one patient presented with electrocardiographic negative T wave inversion in anterolateral leads, with a mean maximum negative T wave of 7.2 ± 4.7 mm. Nine patients (22.5%) had giant negative T waves, defined as the amplitude of ≥ 10 mm, in electrocardiogram. LGE was detected in 130 segments of 30 patients (75.0%), occupying 4.9 ± 5.5% of LV myocardium. LGE was mainly detected at the junction between left and right ventricles in 12 (30%) and at the apex in 28 (70%), although LGE-positive areas were widely distributed, and not limited to the apex. Focal LGE at the non-hypertrophic LV segments was found in some ApHCM patients, even without LGE of hypertrophied apical segments. Over the 2-year follow-up, there was no one achieving the study end-point, defined as all-cause death, sudden cardiac death and hospitalization for heart failure. CONCLUSIONS LGE was frequently observed not only in the thickened apex of the heart but also in other LV segments, irrespective of the presence or absence of hypertrophy. The simple presence of LGE on CMR was not representative of adverse prognosis in this population.
Collapse
Affiliation(s)
- Kyung-Hee Kim
- Division of Cardiology, Department of Internal Medicine, Cardiovascular Center, Seoul National University College of Medicine, Seoul National University Hospital, 28 Yongon-dong, Chongno-gu, Seoul, 110-744, South Korea
| | - Hyung-Kwan Kim
- Division of Cardiology, Department of Internal Medicine, Cardiovascular Center, Seoul National University College of Medicine, Seoul National University Hospital, 28 Yongon-dong, Chongno-gu, Seoul, 110-744, South Korea
| | - In-Chang Hwang
- Division of Cardiology, Department of Internal Medicine, Cardiovascular Center, Seoul National University College of Medicine, Seoul National University Hospital, 28 Yongon-dong, Chongno-gu, Seoul, 110-744, South Korea
| | - Seung-Pyo Lee
- Division of Cardiology, Department of Internal Medicine, Cardiovascular Center, Seoul National University College of Medicine, Seoul National University Hospital, 28 Yongon-dong, Chongno-gu, Seoul, 110-744, South Korea
| | - Eun-Ah Park
- Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, 28 Yongon-dong, Chongno-gu, Seoul, 110-744, South Korea
| | - Whal Lee
- Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, 28 Yongon-dong, Chongno-gu, Seoul, 110-744, South Korea
| | - Yong-Jin Kim
- Division of Cardiology, Department of Internal Medicine, Cardiovascular Center, Seoul National University College of Medicine, Seoul National University Hospital, 28 Yongon-dong, Chongno-gu, Seoul, 110-744, South Korea
| | - Jae-Hyung Park
- Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, 28 Yongon-dong, Chongno-gu, Seoul, 110-744, South Korea
| | - Dae-Won Sohn
- Division of Cardiology, Department of Internal Medicine, Cardiovascular Center, Seoul National University College of Medicine, Seoul National University Hospital, 28 Yongon-dong, Chongno-gu, Seoul, 110-744, South Korea
| |
Collapse
|