1
|
Sukocheva OA, Neganova ME, Aleksandrova Y, Burcher JT, Chugunova E, Fan R, Tse E, Sethi G, Bishayee A, Liu J. Signaling controversy and future therapeutical perspectives of targeting sphingolipid network in cancer immune editing and resistance to tumor necrosis factor-α immunotherapy. Cell Commun Signal 2024; 22:251. [PMID: 38698424 PMCID: PMC11064425 DOI: 10.1186/s12964-024-01626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/21/2024] [Indexed: 05/05/2024] Open
Abstract
Anticancer immune surveillance and immunotherapies trigger activation of cytotoxic cytokine signaling, including tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) pathways. The pro-inflammatory cytokine TNF-α may be secreted by stromal cells, tumor-associated macrophages, and by cancer cells, indicating a prominent role in the tumor microenvironment (TME). However, tumors manage to adapt, escape immune surveillance, and ultimately develop resistance to the cytotoxic effects of TNF-α. The mechanisms by which cancer cells evade host immunity is a central topic of current cancer research. Resistance to TNF-α is mediated by diverse molecular mechanisms, such as mutation or downregulation of TNF/TRAIL receptors, as well as activation of anti-apoptotic enzymes and transcription factors. TNF-α signaling is also mediated by sphingosine kinases (SphK1 and SphK2), which are responsible for synthesis of the growth-stimulating phospholipid, sphingosine-1-phosphate (S1P). Multiple studies have demonstrated the crucial role of S1P and its transmembrane receptors (S1PR) in both the regulation of inflammatory responses and progression of cancer. Considering that the SphK/S1P/S1PR axis mediates cancer resistance, this sphingolipid signaling pathway is of mechanistic significance when considering immunotherapy-resistant malignancies. However, the exact mechanism by which sphingolipids contribute to the evasion of immune surveillance and abrogation of TNF-α-induced apoptosis remains largely unclear. This study reviews mechanisms of TNF-α-resistance in cancer cells, with emphasis on the pro-survival and immunomodulatory effects of sphingolipids. Inhibition of SphK/S1P-linked pro-survival branch may facilitate reactivation of the pro-apoptotic TNF superfamily effects, although the role of SphK/S1P inhibitors in the regulation of the TME and lymphocyte trafficking should be thoroughly assessed in future studies.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia.
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Jack T Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Elena Chugunova
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Ruitai Fan
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Junqi Liu
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Smith CD, Maines LW, Keller SN, Katz Ben-Yair V, Fathi R, Plasse TF, Levitt ML. Recent Progress in the Development of Opaganib for the Treatment of Covid-19. Drug Des Devel Ther 2022; 16:2199-2211. [PMID: 35855741 PMCID: PMC9288228 DOI: 10.2147/dddt.s367612] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/02/2022] [Indexed: 12/15/2022] Open
Abstract
The Covid-19 pandemic driven by the SARS-CoV-2 virus continues to exert extensive humanitarian and economic stress across the world. Although antivirals active against mild disease have been identified recently, new drugs to treat moderate and severe Covid-19 patients are needed. Sphingolipids regulate key pathologic processes, including viral proliferation and pathologic host inflammation. Opaganib (aka ABC294640) is a first-in-class clinical drug targeting sphingolipid metabolism for the treatment of cancer and inflammatory diseases. Recent work demonstrates that opaganib also has antiviral activity against several viruses including SARS-CoV-2. A recently completed multinational Phase 2/3 clinical trial of opaganib in patients hospitalized with Covid-19 demonstrated that opaganib can be safely administered to these patients, and more importantly, resulted in a 62% decrease in mortality in a large subpopulation of patients with moderately severe Covid-19. Furthermore, acceleration of the clearance of the virus was observed in opaganib-treated patients. Understanding the biochemical mechanism for the anti-SARS-CoV-2 activity of opaganib is essential for optimizing Covid-19 treatment protocols. Opaganib inhibits three key enzymes in sphingolipid metabolism: sphingosine kinase-2 (SK2); dihydroceramide desaturase (DES1); and glucosylceramide synthase (GCS). Herein, we describe a tripartite model by which opaganib suppresses infection and replication of SARS-CoV-2 by inhibiting SK2, DES1 and GCS. The potential impact of modulation of sphingolipid signaling on multi-organ dysfunction in Covid-19 patients is also discussed.
Collapse
Affiliation(s)
- Charles D Smith
- Apogee Biotechnology Corporation, Hummelstown, PA, USA
- Correspondence: Charles D Smith, Apogee Biotechnology Corporation, 1214 Research Blvd, Suite 2015, Hummelstown, PA, 17036, USA, Tel +1 843 814 9257, Email
| | - Lynn W Maines
- Apogee Biotechnology Corporation, Hummelstown, PA, USA
| | | | | | | | | | | |
Collapse
|
3
|
Bataller M, Sánchez-García A, Garcia-Mayea Y, Mir C, Rodriguez I, LLeonart ME. The Role of Sphingolipids Metabolism in Cancer Drug Resistance. Front Oncol 2022; 11:807636. [PMID: 35004331 PMCID: PMC8733468 DOI: 10.3389/fonc.2021.807636] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/07/2021] [Indexed: 12/25/2022] Open
Abstract
Drug resistance continues to be one of the major challenges to cure cancer. As research in this field evolves, it has been proposed that numerous bioactive molecules might be involved in the resistance of cancer cells to certain chemotherapeutics. One well-known group of lipids that play a major role in drug resistance are the sphingolipids. Sphingolipids are essential components of the lipid raft domains of the plasma membrane and this structural function is important for apoptosis and/or cell proliferation. Dysregulation of sphingolipids, including ceramide, sphingomyelin or sphingosine 1-phosphate, has been linked to drug resistance in different types of cancer, including breast, melanoma or colon cancer. Sphingolipid metabolism is complex, involving several lipid catabolism with the participation of key enzymes such as glucosylceramide synthase (GCS) and sphingosine kinase 1 (SPHK1). With an overview of the latest available data on this topic and its implications in cancer therapy, this review focuses on the main enzymes implicated in sphingolipids metabolism and their intermediate metabolites involved in cancer drug resistance.
Collapse
Affiliation(s)
- Marina Bataller
- Biomedical Research in Cancer Stem Cells Group, Vall d´Hebron Research Institute (VHIR), Barcelona, Spain
| | - Almudena Sánchez-García
- Biomedical Research in Cancer Stem Cells Group, Vall d´Hebron Research Institute (VHIR), Barcelona, Spain
| | - Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cells Group, Vall d´Hebron Research Institute (VHIR), Barcelona, Spain
| | - Cristina Mir
- Biomedical Research in Cancer Stem Cells Group, Vall d´Hebron Research Institute (VHIR), Barcelona, Spain
| | - Isabel Rodriguez
- Assistant Director of Nursing, Nursing Management Service Hospital Vall d'Hebron, Barcelona, Spain
| | - Matilde Esther LLeonart
- Biomedical Research in Cancer Stem Cells Group, Vall d´Hebron Research Institute (VHIR), Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology, CIBERONC, Madrid, Spain
| |
Collapse
|
4
|
Companioni O, Mir C, Garcia-Mayea Y, LLeonart ME. Targeting Sphingolipids for Cancer Therapy. Front Oncol 2021; 11:745092. [PMID: 34737957 PMCID: PMC8560795 DOI: 10.3389/fonc.2021.745092] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids are an extensive class of lipids with different functions in the cell, ranging from proliferation to cell death. Sphingolipids are modified in multiple cancers and are responsible for tumor proliferation, progression, and metastasis. Several inhibitors or activators of sphingolipid signaling, such as fenretinide, safingol, ABC294640, ceramide nanoliposomes (CNLs), SKI-II, α-galactosylceramide, fingolimod, and sonepcizumab, have been described. The objective of this review was to analyze the results from preclinical and clinical trials of these drugs for the treatment of cancer. Sphingolipid-targeting drugs have been tested alone or in combination with chemotherapy, exhibiting antitumor activity alone and in synergism with chemotherapy in vitro and in vivo. As a consequence of treatments, the most frequent mechanism of cell death is apoptosis, followed by autophagy. Aslthough all these drugs have produced good results in preclinical studies of multiple cancers, the outcomes of clinical trials have not been similar. The most effective drugs are fenretinide and α-galactosylceramide (α-GalCer). In contrast, minor adverse effects restricted to a few subjects and hepatic toxicity have been observed in clinical trials of ABC294640 and safingol, respectively. In the case of CNLs, SKI-II, fingolimod and sonepcizumab there are some limitations and absence of enough clinical studies to demonstrate a benefit. The effectiveness or lack of a major therapeutic effect of sphingolipid modulation by some drugs as a cancer therapy and other aspects related to their mechanism of action are discussed in this review.
Collapse
Affiliation(s)
- Osmel Companioni
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Mir
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Matilde E LLeonart
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Spanish Biomedical Research Network Center in Oncology, CIBERONC, Madrid, Spain
| |
Collapse
|
5
|
Liu CC, Veeraraghavan J, Tan Y, Kim JA, Wang X, Loo SK, Lee S, Hu Y, Wang XS. A Novel Neoplastic Fusion Transcript, RAD51AP1-DYRK4, Confers Sensitivity to the MEK Inhibitor Trametinib in Aggressive Breast Cancers. Clin Cancer Res 2021; 27:785-798. [PMID: 33172895 PMCID: PMC7934498 DOI: 10.1158/1078-0432.ccr-20-2769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/18/2020] [Accepted: 11/04/2020] [Indexed: 01/19/2023]
Abstract
PURPOSE Luminal B breast tumors are more aggressive estrogen receptor-positive (ER+) breast cancers characterized by aggressive clinical behavior and a high risk of metastatic dissemination. The underlying pathologic molecular events remain poorly understood with a paucity of actionable genetic drivers, which hinders the development of new treatment strategies. EXPERIMENTAL DESIGN We performed large-scale RNA sequencing analysis to identify chimerical transcripts preferentially expressed in luminal B breast cancer. The lead candidate was validated by reverse transcription PCR in breast cancer tissues. The effects of inducible ectopic expression or genetic silencing were assessed by phenotypic assays such as MTS, transwell, and transendothelial migration assays, and by clonogenic assays to assess MEK inhibitor sensitivity. Subcellular fractionation, Western blots, and immunoprecipitation were performed to characterize the protein products and elucidate the engaged mechanisms. RESULTS Here we report a novel tumor-specific chimeric transcript RAD51AP1-DYRK4 preferentially expressed in luminal B tumors. Analysis of 200 ER+ breast tumors detected RAD51AP1-DYRK4 overexpression in 19 tumors (9.5%), which is markedly enriched in the luminal B tumors (17.5%). Ectopic expression of RAD51AP1-DYRK4, but not wild-type RAD51AP1, leads to marked activation of MEK/ERK signaling, and endows increased cell motility and transendothelial migration. More importantly, RAD51AP1-DYRK4 appears to endow increased sensitivity to the MEK inhibitor trametinib through attenuating compensatory activation of HER2/PI3K/AKT under MEK inhibition. CONCLUSIONS This discovery sheds light on a new area of molecular pathobiology of luminal B tumors and implies potential new therapeutic opportunities for more aggressive breast tumors overexpressing this fusion.
Collapse
Affiliation(s)
- Chia-Chia Liu
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jamunarani Veeraraghavan
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Ying Tan
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Jin-Ah Kim
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Xian Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Suet Kee Loo
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sanghoon Lee
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yiheng Hu
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Xiao-Song Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania.
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
6
|
Hawkins CC, Ali T, Ramanadham S, Hjelmeland AB. Sphingolipid Metabolism in Glioblastoma and Metastatic Brain Tumors: A Review of Sphingomyelinases and Sphingosine-1-Phosphate. Biomolecules 2020; 10:E1357. [PMID: 32977496 PMCID: PMC7598277 DOI: 10.3390/biom10101357] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is a primary malignant brain tumor with a dismal prognosis, partially due to our inability to completely remove and kill all GBM cells. Rapid tumor recurrence contributes to a median survival of only 15 months with the current standard of care which includes maximal surgical resection, radiation, and temozolomide (TMZ), a blood-brain barrier (BBB) penetrant chemotherapy. Radiation and TMZ cause sphingomyelinases (SMase) to hydrolyze sphingomyelins to generate ceramides, which induce apoptosis. However, cells can evade apoptosis by converting ceramides to sphingosine-1-phosphate (S1P). S1P has been implicated in a wide range of cancers including GBM. Upregulation of S1P has been linked to the proliferation and invasion of GBM and other cancers that display a propensity for brain metastasis. To mediate their biological effects, SMases and S1P modulate signaling via phospholipase C (PLC) and phospholipase D (PLD). In addition, both SMase and S1P may alter the integrity of the BBB leading to infiltration of tumor-promoting immune populations. SMase activity has been associated with tumor evasion of the immune system, while S1P creates a gradient for trafficking of innate and adaptive immune cells. This review will explore the role of sphingolipid metabolism and pharmacological interventions in GBM and metastatic brain tumors with a focus on SMase and S1P.
Collapse
Affiliation(s)
- Cyntanna C. Hawkins
- Department of Cell, Developmental, and Integrative Biology, University of Birmingham at Alabama, Birmingham, AL 35233, USA; (C.C.H.); (S.R.)
| | - Tomader Ali
- Research Department, Imperial College London Diabetes Centre, Abu Dhabi P.O. Box 48338, UAE;
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, University of Birmingham at Alabama, Birmingham, AL 35233, USA; (C.C.H.); (S.R.)
- Comprehensive Diabetes Center, University of Birmingham at Alabama, Birmingham, AL 35294, USA
| | - Anita B. Hjelmeland
- Department of Cell, Developmental, and Integrative Biology, University of Birmingham at Alabama, Birmingham, AL 35233, USA; (C.C.H.); (S.R.)
| |
Collapse
|
7
|
Magli E, Corvino A, Fiorino F, Frecentese F, Perissutti E, Saccone I, Santagada V, Caliendo G, Severino B. Design of Sphingosine Kinases Inhibitors: Challenges and Recent Developments. Curr Pharm Des 2020; 25:956-968. [PMID: 30947653 DOI: 10.2174/1381612825666190404115424] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/27/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Sphingosine kinases (SphKs) catalyze the phosphorylation of sphingosine to form the bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P). S1P is an important lipid mediator with a wide range of biological functions; it is also involved in a variety of diseases such as inflammatory diseases, Alzheimer's disease and cancer. METHODS This review reports the recent advancement in the research of SphKs inhibitors. Our purpose is also to provide a complete overview useful for underlining the features needed to select a specific pharmacological profile. DISCUSSION Two distinct mammalian SphK isoforms have been identified, SphK1 and SphK2. These isoforms are encoded by different genes and exhibit distinct subcellular localizations, biochemical properties and functions. SphK1 and SphK2 inhibition can be useful in different pathological conditions. CONCLUSION SphK1 and SphK2 have many common features but different and even opposite biological functions. For this reason, several research groups are interested in understanding the therapeutic usefulness of a selective or non-selective inhibitor of SphKs. Moreover, a compensatory mechanism for the two isoforms has been demonstrated, thus leading to the development of dual inhibitors.
Collapse
Affiliation(s)
- Elisa Magli
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Angela Corvino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Ferdinando Fiorino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Francesco Frecentese
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Elisa Perissutti
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Irene Saccone
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Vincenzo Santagada
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Giuseppe Caliendo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Beatrice Severino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
8
|
Druggable Sphingolipid Pathways: Experimental Models and Clinical Opportunities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:101-135. [PMID: 32894509 DOI: 10.1007/978-3-030-50621-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intensive research in the field of sphingolipids has revealed diverse roles in cell biological responses and human health and disease. This immense molecular family is primarily represented by the bioactive molecules ceramide, sphingosine, and sphingosine 1-phosphate (S1P). The flux of sphingolipid metabolism at both the subcellular and extracellular levels provides multiple opportunities for pharmacological intervention. The caveat is that perturbation of any single node of this highly regulated flux may have effects that propagate throughout the metabolic network in a dramatic and sometimes unexpected manner. Beginning with S1P, the receptors for which have thus far been the most clinically tractable pharmacological targets, this review will describe recent advances in therapeutic modulators targeting sphingolipids, their chaperones, transporters, and metabolic enzymes.
Collapse
|
9
|
Abstract
Sphingosine kinases (SK1 and SK2) are key, druggable targets within the sphingolipid metabolism pathway that promote tumor growth and pathologic inflammation. A variety of isozyme-selective and dual inhibitors of SK1 and SK2 have been described in the literature, and at least one compound has reached clinical testing in cancer patients. In this chapter, we will review the rationale for targeting SKs and summarize the preclinical and emerging clinical data for ABC294640 as the first-in-class selective inhibitor of SK2.
Collapse
|
10
|
Xie V, Tong D, Wallington-Beddoe CT, Bradstock KF, Bendall LJ. Sphingosine kinase 2 supports the development of BCR/ABL-independent acute lymphoblastic leukemia in mice. Biomark Res 2018; 6:6. [PMID: 29441205 PMCID: PMC5800079 DOI: 10.1186/s40364-018-0120-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/30/2018] [Indexed: 01/05/2023] Open
Abstract
Background Sphingosine kinase (SphK) 2 has been implicated in the development of a range of cancers and inhibitors of this enzyme are currently in clinical trial. We have previously demonstrated a role for SphK2 in the development of acute lymphoblastic leukemia (ALL). Methods In this and our previous study we use mouse models: in the previous study the disease was driven by the proto-oncogene BCR/ABL1, while in this study cancer risk was elevated by deletion of the tumor suppressor ARF. Results Mice lacking ARF and SphK2 had a significantly reduced incidence of ALL compared mice with wild type SphK2. Conclusions These results show that the role of SphK2 in ALL development is not limited to BCR/ABL1 driven disease extending the potential use of inhibitors of this enzyme to ALL patients whose disease have driver mutations other than BCR/ABL1.
Collapse
Affiliation(s)
- Vicki Xie
- 1Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
| | - Daochen Tong
- 1Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
| | - Craig T Wallington-Beddoe
- 1Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia.,3Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia.,4College of Medicine and Public Health, Flinders University, Adelaide, Australia.,5School of Medicine, University of Adelaide, Adelaide, Australia
| | - Ken F Bradstock
- 2Haematology Department, Westmead Hospital, Westmead, NSW Australia
| | - Linda J Bendall
- 1Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
| |
Collapse
|
11
|
Sukocheva OA. Expansion of Sphingosine Kinase and Sphingosine-1-Phosphate Receptor Function in Normal and Cancer Cells: From Membrane Restructuring to Mediation of Estrogen Signaling and Stem Cell Programming. Int J Mol Sci 2018; 19:ijms19020420. [PMID: 29385066 PMCID: PMC5855642 DOI: 10.3390/ijms19020420] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/21/2018] [Accepted: 01/24/2018] [Indexed: 02/05/2023] Open
Abstract
Sphingolipids, sphingolipid metabolizing enzymes, and their receptors network are being recognized as part of the signaling mechanisms, which govern breast cancer cell growth, migration, and survival during chemotherapy treatment. Approximately 70% of breast cancers are estrogen receptor (ER) positive and, thus, rely on estrogen signaling. Estrogen activates an intracellular network composed of many cytoplasmic and nuclear mediators. Some estrogen effects can be mediated by sphingolipids. Estrogen activates sphingosine kinase 1 (SphK1) and amplifies the intracellular concentration of sphingosine-1-phosphate (S1P) in breast cancer cells during stimulation of proliferation and survival. Specifically, Estrogen activates S1P receptors (S1PR) and induces growth factor receptor transactivation. SphK, S1P, and S1PR expression are causally associated with endocrine resistance and progression to advanced tumor stages in ER-positive breast cancers in vivo. Recently, the network of SphK/S1PR was shown to promote the development of ER-negative cancers and breast cancer stem cells, as well as stimulating angiogenesis. Novel findings confirm and broaden our knowledge about the cross-talk between sphingolipids and estrogen network in normal and malignant cells. Current S1PRs therapeutic inhibition was indicated as a promising chemotherapy approach in non-responsive and advanced malignancies. Considering that sphingolipid signaling has a prominent role in terminally differentiated cells, the impact should be considered when designing specific SphK/S1PR inhibitors. This study analyzes the dynamic of the transformation of sphingolipid axis during a transition from normal to pathological condition on the level of the whole organism. The sphingolipid-based mediation and facilitation of global effects of estrogen were critically accented as a bridging mechanism that should be explored in cancer prevention.
Collapse
Affiliation(s)
- Olga A Sukocheva
- College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park, SA 5042, Australia.
| |
Collapse
|
12
|
García-Aranda M, Redondo M. Protein Kinase Targets in Breast Cancer. Int J Mol Sci 2017; 18:ijms18122543. [PMID: 29186886 PMCID: PMC5751146 DOI: 10.3390/ijms18122543] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 01/10/2023] Open
Abstract
With 1.67 million new cases and 522,000 deaths in the year 2012, breast cancer is the most common type of diagnosed malignancy and the second leading cause of cancer death in women around the world. Despite the success of screening programs and the development of adjuvant therapies, a significant percentage of breast cancer patients will suffer a metastatic disease that, to this day, remains incurable and justifies the research of new therapies to improve their life expectancy. Among the new therapies that have been developed in recent years, the emergence of targeted therapies has been a milestone in the fight against cancer. Over the past decade, many studies have shown a causal role of protein kinase dysregulations or mutations in different human diseases, including cancer. Along these lines, cancer research has demonstrated a key role of many protein kinases during human tumorigenesis and cancer progression, turning these molecules into valid candidates for new targeted therapies. The subsequent discovery and introduction in 2001 of the kinase inhibitor imatinib, as a targeted treatment for chronic myelogenous leukemia, revolutionized cancer genetic pathways research, and lead to the development of multiple small-molecule kinase inhibitors against various malignancies, including breast cancer. In this review, we analyze studies published to date about novel small-molecule kinase inhibitors and evaluate if they would be useful to develop new treatment strategies for breast cancer patients.
Collapse
Affiliation(s)
- Marilina García-Aranda
- Biochemistry Department, Hospital Costa del Sol, Carretera de Cádiz km, 187, 29600 Marbella, Málaga, Spain.
| | - Maximino Redondo
- Biochemistry Department, Hospital Costa del Sol, Carretera de Cádiz km, 187, 29600 Marbella, Málaga, Spain.
- Biochemistry Department, Facultad de Medicina de la Universidad de Málaga, Bulevar Louis Pasteur 32, 29010 Málaga, Spain.
| |
Collapse
|
13
|
Britten CD, Garrett-Mayer E, Chin SH, Shirai K, Ogretmen B, Bentz TA, Brisendine A, Anderton K, Cusack SL, Maines LW, Zhuang Y, Smith CD, Thomas MB. A Phase I Study of ABC294640, a First-in-Class Sphingosine Kinase-2 Inhibitor, in Patients with Advanced Solid Tumors. Clin Cancer Res 2017; 23:4642-4650. [PMID: 28420720 DOI: 10.1158/1078-0432.ccr-16-2363] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/11/2016] [Accepted: 04/11/2017] [Indexed: 01/17/2023]
Abstract
Purpose: Sphingosine kinases (SK1 and SK2) regulate tumor growth by generating the mitogenic and proinflammatory lipid sphingosine 1-phosphate (S1P). This phase I study investigated the safety, pharmacokinetics, pharmacodynamics, and antitumor activity of ABC294640, a first-in-class orally available inhibitor of SK2.Experimental Design: Escalating doses of ABC294640 were administered orally to patients with advanced solid tumors in sequential cohorts at the following dose levels: 250 mg qd, 250 mg bid, 500 mg bid, and 750 mg bid, continuously in cycles of 28 days. Serial blood samples were obtained to measure ABC294640 concentrations and sphingolipid profiles.Results: Twenty-two patients were enrolled, and 21 received ABC294640. The most common drug-related toxicities were nausea, vomiting, and fatigue. Among the 4 patients at 750 mg bid, one had dose-limiting grade 3 nausea and vomiting, and 2 were unable to complete cycle 1 due to diverse drug-related toxicities. The 500 mg bid dose level was established as the recommended phase II dose. ABC294640 administration resulted in decreases in S1P levels over the first 12 hours, with return to baseline at 24 hours. The best response was a partial response in a patient with cholangiocarcinoma at 250 mg qd, and stable disease was observed in 6 patients with various solid tumors across dose levels.Conclusions: At 500 mg bid, ABC294640 is well tolerated and achieves biologically relevant plasma concentrations. Changes in plasma sphingolipid levels may provide a useful pharmacodynamic biomarker for ABC294640. Clin Cancer Res; 23(16); 4642-50. ©2017 AACR.
Collapse
Affiliation(s)
- Carolyn D Britten
- Division of Hematology/Oncology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Elizabeth Garrett-Mayer
- Department of Population Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Steven H Chin
- Division of Hematology/Oncology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Keisuke Shirai
- Division of Hematology/Oncology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Besim Ogretmen
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Tricia A Bentz
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Alan Brisendine
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Kate Anderton
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Susan L Cusack
- Apogee Biotechnology Corporation, Hummelstown, Pennsylvania
| | - Lynn W Maines
- Apogee Biotechnology Corporation, Hummelstown, Pennsylvania
| | - Yan Zhuang
- Apogee Biotechnology Corporation, Hummelstown, Pennsylvania
| | - Charles D Smith
- Apogee Biotechnology Corporation, Hummelstown, Pennsylvania.
| | - Melanie B Thomas
- Division of Hematology/Oncology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
14
|
Pitman MR, Costabile M, Pitson SM. Recent advances in the development of sphingosine kinase inhibitors. Cell Signal 2016; 28:1349-1363. [DOI: 10.1016/j.cellsig.2016.06.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 12/11/2022]
|
15
|
Vogt D, Stark H. Therapeutic Strategies and Pharmacological Tools Influencing S1P Signaling and Metabolism. Med Res Rev 2016; 37:3-51. [PMID: 27480072 DOI: 10.1002/med.21402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/01/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023]
Abstract
During the last two decades the study of the sphingolipid anabolic, catabolic, and signaling pathways has attracted enormous interest. Especially the introduction of fingolimod into market as first p.o. therapeutic for the treatment of multiple sclerosis has boosted this effect. Although the complex regulation of sphingosine-1-phosphate (S1P) and other catabolic and anabolic sphingosine-related compounds is not fully understood, the influence on different (patho)physiological states from inflammation to cytotoxicity as well as the availability of versatile pharmacological tools that represent new approaches to study these states are described. Here, we have summarized various aspects concerning the many faces of sphingolipid function modulation by different pharmacological tools up to clinical candidates. Due to the immense heterogeneity of physiological or pharmacological actions and complex cross regulations, it is difficult to predict their role in upcoming therapeutic approaches. Currently, inflammatory, immunological, and/or antitumor aspects are discussed.
Collapse
Affiliation(s)
- Dominik Vogt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438, Frankfurt, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
16
|
Venant H, Rahmaniyan M, Jones EE, Lu P, Lilly MB, Garrett-Mayer E, Drake RR, Kraveka JM, Smith CD, Voelkel-Johnson C. The Sphingosine Kinase 2 Inhibitor ABC294640 Reduces the Growth of Prostate Cancer Cells and Results in Accumulation of Dihydroceramides In Vitro and In Vivo. Mol Cancer Ther 2015; 14:2744-52. [PMID: 26494858 DOI: 10.1158/1535-7163.mct-15-0279] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 10/06/2015] [Indexed: 02/05/2023]
Abstract
Despite recent advances in the development of novel therapies against castration-resistant prostate cancer, the advanced form of the disease remains a major treatment challenge. Aberrant sphingolipid signaling through sphingosine kinases and their product, sphingosine-1-phosphate, can promote proliferation, drug resistance, angiogenesis, and inflammation. The sphingosine kinase 2 inhibitor ABC294640 is undergoing clinical testing in cancer patients, and in this study we investigated the effects this first-in-class inhibitor in castration-resistant prostate cancer. In vitro, ABC294640 decreased prostate cancer cell viability as well as the expression of c-Myc and the androgen receptor, while lysosomal acidification increased. ABC294640 also induced a greater than 3-fold increase in dihydroceramides that inversely correlated with inhibition of dihydroceramide desaturase (DEGS) activity. Expression of sphingosine kinase 2 was dispensable for the ABC294640-mediated increase in dihydroceramides. In vivo, ABC294640 diminished the growth rate of TRAMP-C2 xenografts in syngeneic hosts and elevated dihydroceramides within tumors as visualized by MALDI imaging mass spectroscopy. The plasma of ABC294640-treated mice contained significantly higher levels of C16- and C24:1-ceramides (but not dihydro-C16-ceramide) compared with vehicle-treated mice. In summary, our results suggest that ABC294640 may reduce the proliferative capacity of castration-resistant prostate cancer cells through inhibition of both sphingosine kinase 2 and dihydroceramide desaturase, thereby providing a foundation for future exploration of this small-molecule inhibitor for the treatment of advanced disease.
Collapse
Affiliation(s)
- Heather Venant
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Mehrdad Rahmaniyan
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - E Ellen Jones
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - Ping Lu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Michael B Lilly
- Department of Hematology and Oncology, Medical University of South Carolina, Charleston, South Carolina
| | - Elizabeth Garrett-Mayer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Richard R Drake
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - Jacqueline M Kraveka
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | | | - Christina Voelkel-Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
17
|
TGFβ-Mediated induction of SphK1 as a potential determinant in human MDA-MB-231 breast cancer cell bone metastasis. BONEKEY REPORTS 2015; 4:719. [PMID: 26157579 DOI: 10.1038/bonekey.2015.88] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 05/08/2015] [Indexed: 12/17/2022]
Abstract
Mechanistic understanding of the preferential homing of circulating tumor cells to bone and their perturbation on bone metabolism within the tumor-bone microenvironment remains poorly understood. Alteration in both transforming growth factor β (TGFβ) signaling and sphingolipid metabolism results in the promotion of tumor growth and metastasis. Previous studies using MDA-MB-231 human breast cancer-derived cell lines of variable metastatic potential were queried for changes in sphingolipid metabolism genes to explore correlations between TGFβ dependence and bone metastatic behavior. Of these genes, only sphingosine kinase-1 (SPHK1) was identified to be significantly increased following TGFβ treatment. Induction of SPHK1 expression correlated to the degree of metastatic capacity in these MDA-MB-231-derived cell lines. We demonstrate that TGFβ mediates the regulation of SPHK1 gene expression, protein kinase activity and is critical to MDA-MB-231 cell viability. Furthermore, a bioinformatic analysis of human breast cancer gene expression supports SPHK1 as a hallmark TGFβ target gene that also bears the genetic fingerprint of the basal-like/triple-negative breast cancer molecular subtype. These data suggest a potential new signaling axis between TGFβ/SphK1 that may have a role in the development, prognosis or the clinical phenotype associated with tumor-bone metastasis.
Collapse
|
18
|
Alshaker H, Krell J, Frampton AE, Waxman J, Blyuss O, Zaikin A, Winkler M, Stebbing J, Yagüe E, Pchejetski D. Leptin induces upregulation of sphingosine kinase 1 in oestrogen receptor-negative breast cancer via Src family kinase-mediated, janus kinase 2-independent pathway. Breast Cancer Res 2014; 16:426. [PMID: 25482303 PMCID: PMC4303110 DOI: 10.1186/s13058-014-0426-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 08/11/2014] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Obesity is a known risk factor for breast cancer. Sphingosine kinase 1 (SK1) is an oncogenic lipid kinase that is overexpressed in breast tumours and linked with poor prognosis, however, its role in obesity-driven breast cancer was never elucidated. METHODS Human primary and secondary breast cancer tissues were analysed for SK1 and leptin receptor expression using quantitative real-time polymerase chain reaction (qRT-PCR) assay. Leptin-induced signalling was analysed in human oestrogen receptor (ER)-positive and negative breast cancer cells using Western blotting, qRT-PCR and radiolabelling assays. RESULTS Our findings show for the first time that human primary breast tumours and associated lymph node metastases exhibit a strong correlation between SK1 and leptin receptor expression (Pearson R = 0.78 and R = 0.77, respectively, P <0.001). Both these genes are elevated in metastases of ER-negative patients and show a significant increase in patients with higher body mass index (BMI). Leptin induces SK1 expression and activation in ER-negative breast cancer cell lines MDAMB-231 and BT-549, but not in ER-positive cell lines. Pharmacological inhibition and gene knockdown showed that leptin-induced SK1 activity and expression are mediated by activation of extracellular signal-regulated kinases 1/2 (ERK1/2) and Src family kinase (SFK) pathways, but not by the major pathways downstream of leptin receptor (LEPR) - janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3). Src-homology 2 domain-containing phosphatase 2 (SHP2) appeared to be key to SK1 activation, and may function as an adaptor protein between SFKs and LEPR. Importantly, leptin-induced breast cancer cell proliferation was abrogated by SK1-specific small interfering RNA (siRNA). CONCLUSIONS Overall, our findings demonstrate a novel SFK/ERK1/2-mediated pathway that links leptin signalling and expression of oncogenic enzyme SK1 in breast tumours and suggest the potential significance of this pathway in ER-negative breast cancer.
Collapse
Affiliation(s)
- Heba Alshaker
- Department of Surgery and Cancer, Imperial College London, 1st Floor ICTEM, Hammersmith Hospital, Ducane Road, London, W120NN UK
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, Petra University, Amman, Jordan
| | - Jonathan Krell
- Department of Surgery and Cancer, Imperial College London, 1st Floor ICTEM, Hammersmith Hospital, Ducane Road, London, W120NN UK
| | - Adam E Frampton
- Department of Surgery and Cancer, Imperial College London, 1st Floor ICTEM, Hammersmith Hospital, Ducane Road, London, W120NN UK
| | - Jonathan Waxman
- Department of Surgery and Cancer, Imperial College London, 1st Floor ICTEM, Hammersmith Hospital, Ducane Road, London, W120NN UK
| | - Oleg Blyuss
- Institute for Women's Health, University College London, 74, Huntley Street, London, WC1E 6AU UK
| | - Alexey Zaikin
- Institute for Women's Health, University College London, 74, Huntley Street, London, WC1E 6AU UK
| | - Mathias Winkler
- Department of Surgery and Cancer, Imperial College London, 1st Floor ICTEM, Hammersmith Hospital, Ducane Road, London, W120NN UK
| | - Justin Stebbing
- Department of Surgery and Cancer, Imperial College London, 1st Floor ICTEM, Hammersmith Hospital, Ducane Road, London, W120NN UK
| | - Ernesto Yagüe
- Department of Surgery and Cancer, Imperial College London, 1st Floor ICTEM, Hammersmith Hospital, Ducane Road, London, W120NN UK
| | - Dmitri Pchejetski
- School of Medicine, University of East Anglia, Elizabeth Fry Building, Norwich Research Park, Norwich, NR47TJ UK
| |
Collapse
|
19
|
Yagoub D, Wilkins MR, Lay AJ, Kaczorowski DC, Hatoum D, Bajan S, Hutvagner G, Lai JH, Wu W, Martiniello-Wilks R, Xia P, McGowan EM. Sphingosine kinase 1 isoform-specific interactions in breast cancer. Mol Endocrinol 2014; 28:1899-915. [PMID: 25216046 DOI: 10.1210/me.2013-1423] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sphingosine kinase 1 (SK1) is a signaling enzyme that catalyzes the formation of sphingosine-1-phosphate. Overexpression of SK1 is causally associated with breast cancer progression and resistance to therapy. SK1 inhibitors are currently being investigated as promising breast cancer therapies. Two major transcriptional isoforms, SK143 kDa and SK151 kDa, have been identified; however, the 51 kDa variant is predominant in breast cancer cells. No studies have investigated the protein-protein interactions of the 51 kDa isoform and whether the two SK1 isoforms differ significantly in their interactions. Seeking an understanding of the regulation and role of SK1, we used a triple-labeling stable isotope labeling by amino acids in cell culture-based approach to identify SK1-interacting proteins common and unique to both isoforms. Of approximately 850 quantified proteins in SK1 immunoprecipitates, a high-confidence list of 30 protein interactions with each SK1 isoform was generated via a meta-analysis of multiple experimental replicates. Many of the novel identified SK1 interaction partners such as supervillin, drebrin, and the myristoylated alanine-rich C-kinase substrate-related protein supported and highlighted previously implicated roles of SK1 in breast cancer cell migration, adhesion, and cytoskeletal remodeling. Of these interactions, several were found to be exclusive to the 43 kDa isoform of SK1, including the protein phosphatase 2A, a previously identified SK1-interacting protein. Other proteins such as allograft inflammatory factor 1-like protein, the latent-transforming growth factor β-binding protein, and dipeptidyl peptidase 2 were found to associate exclusively with the 51 kDa isoform of SK1. In this report, we have identified common and isoform-specific SK1-interacting partners that provide insight into the molecular mechanisms that drive SK1-mediated oncogenicity.
Collapse
Affiliation(s)
- Daniel Yagoub
- School of Biotechnology and Biomolecular Sciences (D.Y., M.R.W.), University of New South Wales, Sydney 2052, Australia; Centenary Institute (D.Y., A.L., D.G.K., P.X., E.M.M.), Sydney 2042, Australia; Translational Cancer Research Group (D.H., R.M.-W., E.M.M.), Faculty of Science, School of Medical and Molecular Biosciences, and Faculty of Engineering and Information Technology (S.B., G.H.), University of Technology Sydney, Sydney, New South Wales 2007, Australia; Department of Biochemistry (J.H.L., W.W.), Tufts University School of Medicine, Boston, Massachusetts 02111; Shanghai Medical School (P.X.), Fudan University, 200433 Shanghai, People's Republic of China; and Sydney Medical School (E.M.M.), The University of Sydney, Sydney 2006, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gestaut MM, Antoon JW, Burow ME, Beckman BS. Inhibition of sphingosine kinase-2 ablates androgen resistant prostate cancer proliferation and survival. Pharmacol Rep 2014; 66:174-8. [PMID: 24905325 DOI: 10.1016/j.pharep.2013.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/15/2013] [Accepted: 08/13/2013] [Indexed: 01/03/2023]
Abstract
BACKGROUND Endogenous sphingolipid signaling has been shown to play an important role in prostate cancer endocrine resistance. METHODS The novel SphK2 inhibitor, ABC294640, was used to explore SphK signaling in androgen resistant prostate cancer cell death signaling. RESULTS It dose-dependently decreased PC-3 and LNCaP cell viability, IC(50) of 28 ± 6.1 μM (p < 0.05) and 25 ± 4.0 μM (p < 0.05), respectively. ABC294640 was more potent in long-term clonogenic survival assays; IC(50) of 14 ± 0.4 μM (p < 0.05) in PC-3 cells and 12 ± 0.9 μM (p < 0.05) in LNCaP cells. Intrinsic apoptotic assays failed to demonstrate increased caspase-9 activity. Ki-67 staining demonstrated decreased proliferation by 50 ± 8.4% (p < 0.01) in PC-3 cells. CONCLUSIONS SphK2 inhibition decreases androgen resistant prostate cancer viability, survival, and proliferation independently of the intrinsic apoptotic pathway. Findings are in contrast to recent observations of ABC29460 acting dependently on the intrinsic pathway in other endocrine resistant cancer cell lines.
Collapse
Affiliation(s)
- Matthew M Gestaut
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - James W Antoon
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Matthew E Burow
- Department of Medicine, Section of Hematology/Oncology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Barbara S Beckman
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
21
|
Martin JL, de Silva HC, Lin MZ, Scott CD, Baxter RC. Inhibition of insulin-like growth factor-binding protein-3 signaling through sphingosine kinase-1 sensitizes triple-negative breast cancer cells to EGF receptor blockade. Mol Cancer Ther 2013; 13:316-28. [PMID: 24337110 DOI: 10.1158/1535-7163.mct-13-0367] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The type I EGF receptor (EGFR or ErbB1) and insulin-like growth factor-binding protein-3 (IGFBP-3) are highly expressed in triple-negative breast cancer (TNBC), a particularly aggressive disease that cannot be treated with conventional therapies targeting the estrogen or progesterone receptors (ER and PR), or HER2. We have shown previously in normal breast epithelial cells that IGFBP-3 potentiates growth-stimulatory signaling transduced by EGFR, and this is mediated by the sphingosine kinase-1 (SphK1)/sphingosine 1-phosphate (S1P) system. In this study, we investigated whether cotargeting the EGFR and SphK1/S1P pathways in TNBC cells results in greater growth inhibition compared with blocking either alone, and might therefore have novel therapeutic potential in TNBC. In four TNBC cell lines, exogenous IGFBP-3 enhanced ligand-stimulated EGFR activation, associated with increased SphK1 localization to the plasma membrane. The effect of exogenous IGFBP-3 on EGFR activation was blocked by pharmacologic inhibition or siRNA-mediated silencing of SphK1, and silencing of endogenous IGFBP-3 also suppressed EGF-stimulated EGFR activation. Real-time analysis of cell proliferation revealed a combined effect of EGFR inhibition by gefitinib and SphK1 inhibition using SKi-II. Growth of MDA-MB-468 xenograft tumors in mice was significantly inhibited by SKi-II and gefitinib when used in combination, but not as single agents. We conclude that IGFBP-3 promotes growth of TNBC cells by increasing EGFR signaling, that this is mediated by SphK1, and that combined inhibition of EGFR and SphK1 has potential as an anticancer therapy in TNBC in which EGFR and IGFBP-3 expression is high.
Collapse
Affiliation(s)
- Janet L Martin
- Corresponding Author: Janet L. Martin, Kolling Institute of Medical Research, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
| | | | | | | | | |
Collapse
|
22
|
Ruckhäberle E, Karn T, Denkert C, Loibl S, Ataseven B, Reimer T, Becker S, Holtrich U, Rody A, Darb-Esfahani S, Nekljudova V, von Minckwitz G. Predictive value of sphingosine kinase 1 expression in neoadjuvant treatment of breast cancer. J Cancer Res Clin Oncol 2013; 139:1681-9. [PMID: 23955546 DOI: 10.1007/s00432-013-1490-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/02/2013] [Indexed: 02/03/2023]
Abstract
PURPOSE Sphingolipids play important roles in apoptosis and cell proliferation. Sphingosine kinase 1 (SphK1) expression has a prognostic impact in primary breast cancer, but its predictive value is currently unknown. METHODS A total of 112 breast cancer specimens from a prospective neoadjuvant chemotherapy trial (GeparDuo) were studied. Using tissue microarrays of pre-treatment core cut biopsies, we determined the expression of SphK1 by immunohistochemistry. The upper quartile of the cohort according to an immune reactive score of SphK1 was used as cutoff for high expression. RESULTS We observed a larger number of samples with high SphK1 expression among ER-negative cancers (36.8 vs. 20.5 % among ER-positive cancers; Fisher test p = 0.073). Eighteen of the 112 patients demonstrated a pathological complete response. A significant predictive value for pathological complete response was observed for ER negativity (p = 0.003), young age (p = 0.037), and high tumor grade (p = 0.049). An increased pCR rate was observed in tumors with high SphK1 expression within the luminal subtype (26.7 vs. 5.8 %; Fisher test p = 0.040). No significant difference in survival was detected according to SphK1 expression. CONCLUSIONS Our results suggest that SphK1 may be a predictive factor for pCR after neoadjuvant treatment in luminal type breast cancers and warrants further investigation.
Collapse
Affiliation(s)
- Eugen Ruckhäberle
- Department of Obstetrics and Gynecology, Goethe University Frankfurt, Theodor-Stern Kai 7, 60590, Frankfurter, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Neubauer HA, Pitson SM. Roles, regulation and inhibitors of sphingosine kinase 2. FEBS J 2013; 280:5317-36. [PMID: 23638983 DOI: 10.1111/febs.12314] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/29/2013] [Accepted: 04/29/2013] [Indexed: 12/19/2022]
Abstract
The bioactive sphingolipids ceramide, sphingosine and sphingosine-1-phosphate (S1P) are important signalling molecules that regulate a diverse array of cellular processes. Most notably, the balance of the levels of these three sphingolipids in cells, termed the 'sphingolipid rheostat', can dictate cell fate, where ceramide and sphingosine enhance apoptosis and S1P promotes cell survival and proliferation. The sphingosine kinases (SKs) catalyse the production of S1P from sphingosine and are therefore central regulators of the sphingolipid rheostat and attractive targets for cancer therapy. Two SKs exist in humans: SK1 and SK2. SK1 has been extensively studied and there is a large body of evidence to demonstrate its role in promoting cell survival, proliferation and neoplastic transformation. SK1 is also elevated in many human cancers which appears to contribute to carcinogenesis, chemotherapeutic resistance and poor patient outcome. SK2, however, has not been as well characterized, and there are contradictions in the key physiological functions that have been proposed for this isoform. Despite this, many studies are now emerging that implicate SK2 in key roles in a variety of diseases, including the development of a range of solid tumours. Here, we review the literature examining SK2, its physiological and pathophysiological functions, the current knowledge of its regulation, and recent developments in targeting this complex enzyme.
Collapse
Affiliation(s)
- Heidi A Neubauer
- Centre for Cancer Biology, SA Pathology, Adelaide, Australia; School of Molecular and Biomedical Science, University of Adelaide, Australia
| | | |
Collapse
|
24
|
Hara-Yokoyama M, Terasawa K, Ichinose S, Watanabe A, Podyma-Inoue KA, Akiyoshi K, Igarashi Y, Yanagishita M. Sphingosine kinase 2 inhibitor SG-12 induces apoptosis via phosphorylation by sphingosine kinase 2. Bioorg Med Chem Lett 2013; 23:2220-4. [DOI: 10.1016/j.bmcl.2013.01.083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 01/13/2013] [Accepted: 01/18/2013] [Indexed: 12/31/2022]
|
25
|
Antoon JW, Nitzchke AM, Martin EC, Rhodes LV, Nam S, Wadsworth S, Salvo VA, Elliott S, Collins-Burow B, Nephew KP, Burow ME. Inhibition of p38 mitogen-activated protein kinase alters microRNA expression and reverses epithelial-to-mesenchymal transition. Int J Oncol 2013; 42:1139-50. [PMID: 23403951 PMCID: PMC3622654 DOI: 10.3892/ijo.2013.1814] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 09/21/2012] [Indexed: 12/26/2022] Open
Abstract
Acquired chemoresistance and epithelial-to-mesenchymal transition (EMT) are hallmarks of cancer progression and of increasing clinical relevance. We investigated the role of miRNA and p38 mitogen-activated protein kinase (MAPK) signaling in the progression of breast cancer to a drug-resistant and mesenchymal phenotype. We demonstrate that acquired death receptor resistance results in increased hormone-independent tumorigenesis compared to hormone-sensitive parental cells. Utilizing global miRNA gene expression profiling, we identified miRNA alterations associated with the development of death receptor resistance and EMT progression. We further investigated the role of p38 MAPK in this process, showing dose-dependent inactivation of p38 by its inhibitor RWJ67657 and decreased downstream ATF and NF-κB signaling. Pharmacological inhibition of p38 also decreased chemoresistant cancer tumor growth in xenograft animal models. Interestingly, inhibition of p38 partially reversed the EMT changes found in this cell system, as illustrated by decreased gene expression of the EMT markers Twist, Snail, Slug and ZEB and protein and mRNA levels of Twist, a known EMT promoter, concomitant with decreased N-cadherin protein. RWJ67657 treatment also altered the expression of several miRNAs known to promote therapeutic resistance, including miR-200, miR-303, miR-302, miR-199 and miR-328. Taken together, our results demonstrate the roles of multiple microRNAs and p38 signaling in the progression of cancer and demonstrate the therapeutic potential of targeting the p38 MAPK pathway for reversing EMT in an advanced tumor phenotype.
Collapse
Affiliation(s)
- James W Antoon
- Department of Medicine, Section of Hematology and Medical Oncology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|