1
|
Tam V, Chan WCW, Leung VYL, Cheah KSE, Cheung KMC, Sakai D, McCann MR, Bedore J, Séguin CA, Chan D. Histological and reference system for the analysis of mouse intervertebral disc. J Orthop Res 2018. [PMID: 28636254 DOI: 10.1002/jor.23637] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A new scoring system based on histo-morphology of mouse intervertebral disc (IVD) was established to assess changes in different mouse models of IVD degeneration and repair. IVDs from mouse strains of different ages, transgenic mice, or models of artificially induced IVD degeneration were assessed. Morphological features consistently observed in normal, and early/later stages of degeneration were categorized into a scoring system focused on nucleus pulposus (NP) and annulus fibrosus (AF) changes. "Normal NP" exhibited a highly cellularized cell mass that decreased with natural ageing and in disc degeneration. "Normal AF" consisted of distinct concentric lamellar structures, which was disrupted in severe degeneration. NP/AF clefts indicated more severe changes. Consistent scores were obtained between experienced and new users. Altogether, our scoring system effectively differentiated IVD changes in various strains of wild-type and genetically modified mice and in induced models of IVD degeneration, and is applicable from the post-natal stage to the aged mouse. This scoring tool and reference resource addresses a pressing need in the field for studying IVD changes and cross-study comparisons in mice, and facilitates a means to normalize mouse IVD assessment between different laboratories. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:233-243, 2018.
Collapse
Affiliation(s)
- Vivian Tam
- School of Biomedical Sciences, The University of Hong Kong, 3/F, Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China.,The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Hi-Tech Industrial Park, Nanshan, Shenzhen, China
| | - Wilson C W Chan
- School of Biomedical Sciences, The University of Hong Kong, 3/F, Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China.,The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Hi-Tech Industrial Park, Nanshan, Shenzhen, China
| | - Victor Y L Leung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kathryn S E Cheah
- School of Biomedical Sciences, The University of Hong Kong, 3/F, Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Kenneth M C Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Hiratsuka, Japan
| | - Matthew R McCann
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada
| | - Jake Bedore
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada
| | - Cheryle A Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The Bone and Joint Institute, The University of Western Ontario, London, Canada
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, 3/F, Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China.,The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Hi-Tech Industrial Park, Nanshan, Shenzhen, China
| |
Collapse
|
2
|
Jin L, Balian G, Li XJ. Animal models for disc degeneration-an update. Histol Histopathol 2017; 33:543-554. [PMID: 28580566 DOI: 10.14670/hh-11-910] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intervertebral disc degeneration is considered a major cause of back pain that places a heavy burden on society, both because of its effect on the physiology of individuals and its consequences on the world economy. During the past few decades, research findings in the pre-clinical setting have led to a significant increase in the understanding of intervertebral disc degeneration, although many aspects of the disease remain unclear. The goal of this review is to summarize existing animal models for disc degeneration studies and the difficulties that are associated with the use of such models. A firm understanding of the cellular and molecular events that ensue as a result of injuries, as well as environmental factors, could be instrumental in the development of targeted therapies for the treatment of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Li Jin
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA
| | - Gary Balian
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA
| | - Xudong Joshua Li
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Longitudinal Comparison of Enzyme- and Laser-Treated Intervertebral Disc by MRI, X-Ray, and Histological Analyses Reveals Discrepancies in the Progression of Disc Degeneration: A Rabbit Study. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5498271. [PMID: 27247937 PMCID: PMC4877459 DOI: 10.1155/2016/5498271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/07/2016] [Accepted: 04/17/2016] [Indexed: 11/17/2022]
Abstract
Regenerative medicine is considered an attractive prospect for the treatment of intervertebral disc (IVD) degeneration. To assess the efficacy of the regenerative approach, animal models of IVD degeneration are needed. Among these animal models, chemonucleolysis based on the enzymatic degradation of the Nucleus Pulposus (NP) is often used, but this technique remains far from the natural physiopathological process of IVD degeneration. Recently, we developed an innovative animal model of IVD degeneration based on the use of a laser beam. In the present study, this laser model was compared with the chemonucleolysis model in a longitudinal study in rabbits. The effects of the treatments were studied by MRI (T2-weighted signal intensity (T2wsi)), radiography (IVD height index), and histology (NP area and Boos' scoring). The results showed that both treatments induced a degeneration of the IVD with a decrease in IVD height and T2wsi as well as NP area and an increase in Boos' scoring. The enzyme treatment leads to a rapid and acute process of IVD degeneration. Conversely, laser radiation induced more progressive and less pronounced degeneration. It can be concluded that laser treatment provides an instrumental in vivo model of slowly evolving IVD degenerative disease that can be of preclinical relevance for assessing new prophylactic biological treatments of disc degeneration.
Collapse
|