1
|
Sun R, Zhang W, Zhong H, Wang L, Tang N, Liu Y, Zhao Y, Zhang T, He F. Calcimimetic R568 reduced the blood pressure and improved aortic remodeling in spontaneously hypertensive rats by inhibiting local renin-angiotensin system activity. Exp Ther Med 2018; 16:4089-4099. [PMID: 30402152 PMCID: PMC6200994 DOI: 10.3892/etm.2018.6734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/27/2018] [Indexed: 11/06/2022] Open
Abstract
Hypertension is a cardiovascular disease that seriously affects human health. Activation of the calcium-sensing receptor (CaSR) inhibits cyclic adenosine monophosphate (cAMP) formation by increasing [Ca2+]i and subsequently inhibiting renin release. The renin-angiotensin system (RAS) plays an important role in the development of essential hypertension (EH). The purpose of this study was to determine the effects of NPSR568 (R568)-activated CaSR on blood pressure (BP), proliferation, and remodeling of vascular smooth muscle cells, and the activity of the RAS in spontaneously hypertensive rats (SHRs). In this study, we treated SHR and Wistar-Kyoto rats with R568 for 8 weeks. The tail-cuff method was used to assess rat BP weekly. Morphological changes in the thoracic aorta were evaluated with hematoxylin-eosin and Masson staining. Western blotting and immunohistochemistry were used to detect the expression of RAS-related proteins and proliferative remodeling proteins in the thoracic aorta. An enzyme-linked immunosorbent assay was used to detect the content of cAMP, the RAS, and the CaSR in plasma and the thoracic aorta. Finally, we found that treatment with R568 for 8 weeks reduced the BP and inhibited arterial vascular proliferation remodeling in SHRs. R568 administration significantly suppressed the activity of local RAS in the thoracic aortas of SHRs. Moreover, R568 treatment reversed the low expression of CaSR in SHRs. R568 may serve as an effective strategy against EH.
Collapse
Affiliation(s)
- Ruixia Sun
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Wenwen Zhang
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China.,Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Hua Zhong
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Lamei Wang
- Centre of Medical Functional Experiments, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Na Tang
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Yongmin Liu
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Yongli Zhao
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Tian Zhang
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Fang He
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| |
Collapse
|