1
|
Lu J, Long Y, Sun J, Gong L. Towards a comprehensive view of the herpes B virus. Front Immunol 2023; 14:1281384. [PMID: 38035092 PMCID: PMC10687423 DOI: 10.3389/fimmu.2023.1281384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Herpes B virus is a biosafety level 4 pathogen and widespread in its natural host species, macaques. Although most infected monkeys show asymptomatic or mild symptoms, human infections with this virus can cause serious neurological symptoms or fatal encephalomyelitis with a high mortality rate. Herpes B virus can be latent in the sensory ganglia of monkeys and humans, often leading to missed diagnoses. Furthermore, the herpes B virus has extensive antigen crossover with HSV, SA8, and HVP-2, causing false-positive results frequently. Timely diagnosis, along with methods with sensitivity and specificity, are urgent for research on the herpes B virus. The lack of a clear understanding of the host invasion and life cycle of the herpes B virus has led to slow progress in the development of effective vaccines and drugs. This review discusses the research progress and problems of the epidemiology of herpes B virus, detection methods and therapy, hoping to inspire further investigation into important factors associated with transmission of herpes B virus in macaques and humans, and arouse the development of effective vaccines or drugs, to promote the establishment of specific pathogen-free (SPF) monkeys and protect humans to effectively avoid herpes B virus infection.
Collapse
Affiliation(s)
- Jiangling Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Yiru Long
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianhua Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| |
Collapse
|
2
|
Wisely SM, Sayler KA, Anderson CJ, Boyce CL, Klegarth AR, Johnson SA. Macacine Herpesvirus 1 Antibody Prevalence and DNA Shedding among Invasive Rhesus Macaques, Silver Springs State Park, Florida, USA. Emerg Infect Dis 2019; 24:345-351. [PMID: 29350146 PMCID: PMC5782895 DOI: 10.3201/eid2402.171439] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We compiled records on macacine herpesvirus 1 (McHV-1) seroprevalence and, during 2015–2016, collected saliva and fecal samples from the free-ranging rhesus macaques of Silver Springs State Park, a popular public park in central Florida, USA, to determine viral DNA shedding and perform sequencing. Phylogenetic analysis of the US5 and US5-US6 intragenic sequence from free-ranging and laboratory McHV-1 variants did not reveal genomic differences. In animals captured during 2000–2012, average annual seroprevalence was 25% ± 9 (mean ± SD). We found 4%–14% (95% CI 2%–29%) of macaques passively sampled during the fall 2015 mating season shed McHV-1 DNA orally. We did not observe viral shedding during the spring or summer or from fecal samples. We conclude that these macaques can shed McHV-1, putting humans at risk for exposure to this potentially fatal pathogen. Management plans should be put in place to limit transmission of McHV-1 from these macaques.
Collapse
|
3
|
Dugan MA, Courtney C, Howerth EW. Pathology in practice. B virus infection in a rhesus macaque. J Am Vet Med Assoc 2013; 242:1233-5. [PMID: 23600779 DOI: 10.2460/javma.242.9.1233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Melissa A Dugan
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
4
|
Remé T, Jentsch KD, Steinmann J, Kenner S, Straile U, Buse E, Sauerbrei A, Kaup FJ. Recommendation for post-exposure prophylaxis after potential exposure to herpes b virus in Germany. J Occup Med Toxicol 2009; 4:29. [PMID: 19941640 PMCID: PMC2789725 DOI: 10.1186/1745-6673-4-29] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 11/26/2009] [Indexed: 11/29/2022] Open
Abstract
Although the risk of a herpes B virus (Cercopithecine herpes virus 1) infection is low, the clinical course of the infectious disease is generally unfavourable. A high safety standard can be achieved if people with professional contact to primates apply proper organisational, technical and personal safety precautions. The risk can be considerably reduced if animal keepers, laboratory assistants and scientists receive adequate information about the pathology of herpes B virus and are well trained in the necessary procedures and the precautions. For this reason, comprehensive and regular training, information and instruction must be provided to all primate workers and to laboratory workers who come into contact with potentially infectious material. After potential contamination, the risk for the affected worker must be assessed immediately and post-exposure chemoprophylaxis performed if necessary. This necessitates internal risk assessment. An interdisciplinary group of experts has developed an action plan for Germany.
Collapse
Affiliation(s)
- Thomas Remé
- Institution for Statutory Accident Insurance and Prevention in the Health and Welfare Services, Department for Basic Sciences, Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Tischer BK, Osterrieder N. Herpesviruses--a zoonotic threat? Vet Microbiol 2009; 140:266-70. [PMID: 19616388 DOI: 10.1016/j.vetmic.2009.06.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 03/04/2009] [Accepted: 06/12/2009] [Indexed: 11/27/2022]
Abstract
Herpesviruses are highly host specific and share a long synchronous evolution with their hosts. Only in rare cases, species barriers fall and allow animal to human or human to animal transmission. Among the zoonotic herpesviruses, Cercopithecine herpesvirus 1 is the most significant and can be transmitted from macaques to human. Conversely, Human herpesvirus 1 is capable of causing severe disease in primates. Besides those two examples, there are several herpesviruses with a certainly limited or only suspected ability to cross species barriers. Those include Saimiriine herpesvirus 2, Phocid herpesvirus 2, Equid herpesvirus 1, Epstein-Barr Virus, Marek's disease virus, and Pseudorabies virus. Concerning xenotransplantations, porcine gammaherpesviruses must be considered as a zoonotic threat.
Collapse
Affiliation(s)
- B Karsten Tischer
- Institut für Virologie, Freie Universität Berlin, Philippstrasse 13, 10115 Berlin, Germany.
| | | |
Collapse
|