1
|
Obrecht M, Zurbruegg S, Accart N, Lambert C, Doelemeyer A, Ledermann B, Beckmann N. Magnetic resonance imaging and ultrasound elastography in the context of preclinical pharmacological research: significance for the 3R principles. Front Pharmacol 2023; 14:1177421. [PMID: 37448960 PMCID: PMC10337591 DOI: 10.3389/fphar.2023.1177421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
The 3Rs principles-reduction, refinement, replacement-are at the core of preclinical research within drug discovery, which still relies to a great extent on the availability of models of disease in animals. Minimizing their distress, reducing their number as well as searching for means to replace them in experimental studies are constant objectives in this area. Due to its non-invasive character in vivo imaging supports these efforts by enabling repeated longitudinal assessments in each animal which serves as its own control, thereby enabling to reduce considerably the animal utilization in the experiments. The repetitive monitoring of pathology progression and the effects of therapy becomes feasible by assessment of quantitative biomarkers. Moreover, imaging has translational prospects by facilitating the comparison of studies performed in small rodents and humans. Also, learnings from the clinic may be potentially back-translated to preclinical settings and therefore contribute to refining animal investigations. By concentrating on activities around the application of magnetic resonance imaging (MRI) and ultrasound elastography to small rodent models of disease, we aim to illustrate how in vivo imaging contributes primarily to reduction and refinement in the context of pharmacological research.
Collapse
Affiliation(s)
- Michael Obrecht
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stefan Zurbruegg
- Neurosciences Department, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nathalie Accart
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Christian Lambert
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Arno Doelemeyer
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Birgit Ledermann
- 3Rs Leader, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nicolau Beckmann
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
2
|
Bone Regenerative Engineering Using a Protein Kinase A-Specific Cyclic AMP Analogue Administered for Short Term. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018. [DOI: 10.1007/s40883-018-0063-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Sharkey J, Scarfe L, Santeramo I, Garcia-Finana M, Park BK, Poptani H, Wilm B, Taylor A, Murray P. Imaging technologies for monitoring the safety, efficacy and mechanisms of action of cell-based regenerative medicine therapies in models of kidney disease. Eur J Pharmacol 2016; 790:74-82. [PMID: 27375077 PMCID: PMC5063540 DOI: 10.1016/j.ejphar.2016.06.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/30/2016] [Indexed: 12/16/2022]
Abstract
The incidence of end stage kidney disease is rising annually and it is now a global public health problem. Current treatment options are dialysis or renal transplantation, which apart from their significant drawbacks in terms of increased morbidity and mortality, are placing an increasing economic burden on society. Cell-based Regenerative Medicine Therapies (RMTs) have shown great promise in rodent models of kidney disease, but clinical translation is hampered due to the lack of adequate safety and efficacy data. Furthermore, the mechanisms whereby the cell-based RMTs ameliorate injury are ill-defined. For instance, it is not always clear if the cells directly replace damaged renal tissue, or whether paracrine effects are more important. Knowledge of the mechanisms responsible for the beneficial effects of cell therapies is crucial because it could lead to the development of safer and more effective RMTs in the future. To address these questions, novel in vivo imaging strategies are needed to monitor the biodistribution of cell-based RMTs and evaluate their beneficial effects on host tissues and organs, as well as any potential adverse effects. In this review we will discuss how state-of-the-art imaging modalities, including bioluminescence, magnetic resonance, nuclear imaging, ultrasound and an emerging imaging technology called multispectral optoacoustic tomography, can be used in combination with various imaging probes to track the fate and biodistribution of cell-based RMTs in rodent models of kidney disease, and evaluate their effect on renal function.
Collapse
Affiliation(s)
- Jack Sharkey
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool L69 3GE, UK
| | - Lauren Scarfe
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool L69 3GE, UK
| | - Ilaria Santeramo
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| | - Marta Garcia-Finana
- Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| | - Brian K Park
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| | - Harish Poptani
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool L69 3GE, UK
| | - Bettina Wilm
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool L69 3GE, UK
| | - Arthur Taylor
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool L69 3GE, UK
| | - Patricia Murray
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool L69 3GE, UK.
| |
Collapse
|
4
|
Wang YXJ, Griffith JF. Biomedical imaging in translational orthopaedic research. J Orthop Translat 2015; 3:157-159. [PMID: 30035053 PMCID: PMC5986992 DOI: 10.1016/j.jot.2015.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 01/17/2023] Open
Affiliation(s)
- Yi Xiang J Wang
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - James F Griffith
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| |
Collapse
|
5
|
Wang YXJ, Wang J, Deng M, Liu G, Qin L. In vivo three-dimensional magnetic resonance imaging of rat knee osteoarthritis model induced using meniscal transection. J Orthop Translat 2015; 3:134-141. [PMID: 30035050 PMCID: PMC5982389 DOI: 10.1016/j.jot.2015.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 11/25/2022] Open
Abstract
Background/Objective In a rat meniscal tear model of osteoarthritis (OA), a full-thickness cut in the medial meniscus leads to joint instability and progressive development of knee OA. This study evaluated in vivo high-resolution three-dimensional magnetic resonance imaging (3D MRI) in demonstrating the knee joint structural changes of this animal model. Methods A left knee meniscal tear procedure was carried out on 10 rats, and sham surgery was performed on five rats. The joints were MRI scanned 44 days after surgery at 4.7 Tesla. A 3D data set was acquired using a 3D spoiled gradient echo sequence at a resolution of 59 × 117 × 234 μm3. After MRI, microscopic examination of the joints was performed. Results The medial meniscus tear was clearly visible with MRI. Cartilage damage was seen in all animals, with varying degrees of severities, which included a decrease of cartilage thickness and loss of cartilage in some areas, and focal neocartilage proliferation at the joint margin. Damage to the subchondral bone included local osteosclerosis, deformed tibia cortex surface, and osteophytes. The damage to the cartilage and bone was most extensive on the weight-bearing region of the medial tibial plateau. No apparent subchondral bone damage was observed in the epiphysis of the femur. In five animals, single or multiple high MR signal areas were seen within the epiphysis of the tibia, consistent with epiphyseal cyst formation. The knee interarticular space on the media side was slightly increased in two animals. Mild femur–tibia axis misalignment was seen in one animal. Changes seen on MRI were consistent with histopathological changes. Conclusion MRI offers in vivo information on the pathogenesis change of rat knee OA induced with menisectomy. It can serve as a supplement technique to histology, as it is particularly useful for longitudinal follow-up of OA model development.
Collapse
Affiliation(s)
- Yi-Xiang J Wang
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Junqing Wang
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Min Deng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Gang Liu
- Centre for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Ling Qin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
6
|
Peters BS, Dornaika R, Hosten N, Hadlich S, Mullins JJ, Peters J, Rettig R. Regression of cardiac hypertrophy in cyp1a1ren-2 transgenic rats. J Magn Reson Imaging 2012; 36:373-8. [PMID: 22517449 DOI: 10.1002/jmri.23661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 03/07/2012] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To evaluate the usefulness of the cyp1a1ren-2 transgenic rat model of inducible hypertension for studies of the development and regression of cardiac hypertrophy. MATERIALS AND METHODS Cyp1a1ren-2 rats received a diet containing 0% or 0.167% indole-3-carbinonl (I3C) for 4 weeks to induce hypertension. Cardiac magnetic resonance imaging (MRI) at 7 T was performed every second week for 10 weeks to measure left ventricular mass and the ejection fraction. Concomitantly, in six cyp1a1ren-2 rats blood pressure was recorded telemetrically. RESULTS Plasma prorenin concentrations rose from 138 ± 38 to 15,490 ± 3990 ng/angiotensin I/mL/h (P < 0.001) in I3C-treated transgenic rats and returned to basal levels after cessation of I3C. Mean blood pressure increased to a plateau of 169 ± 11 mmHg by the second week of induction. After cessation of I3C (day 28), arterial pressure dropped to values slightly below those prior to induction within 4 days (basal: 106 ± 7 mmHg, day 32: 103 ± 21 mmHg; NS). At day 28, left ventricular mass was increased by 39% vs. 4% in controls (P < 0.001) without changes of the ejection fraction. Cardiac hypertrophy was completely reversed at day 70, as evaluated by MRI. CONCLUSION The cyp1a1ren-2 transgenic rat is a useful model to study reversal and healing in the absence of surgical interventions.
Collapse
Affiliation(s)
- Barbara S Peters
- Department of Cardiovascular Medicine, Institute of Physiology, University of Greifswald, Karlsburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
7
|
MR T1ρ as an imaging biomarker for monitoring liver injury progression and regression: an experimental study in rats with carbon tetrachloride intoxication. Eur Radiol 2012; 22:1709-16. [PMID: 22752522 DOI: 10.1007/s00330-012-2419-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/04/2011] [Accepted: 01/03/2012] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Recently it was shown that the magnetic resonance imaging (MRI) T1ρ value increased with the severity of liver fibrosis in rats with bile duct ligation. Using a rat carbon tetrachloride (CCl(4)) liver injury model, this study further investigated the merit of T1ρ relaxation for liver fibrosis evaluation. METHODS Male Sprague-Dawley rats received intraperitoneal injection of 2 ml/kg CCl(4) twice weekly for up to 6 weeks. Then CCl(4) was withdrawn and the animals were allowed to recover. Liver T1ρ MRI and conventional T2-weighted images were acquired. Animals underwent MRI at baseline and at 2 days, 2 weeks, 4 weeks and 6 weeks post CCl(4) injection, and they were also examined at 1 week and 4 weeks post CCl(4) withdrawal. Liver histology was also sampled at these time points. RESULTS Liver T1ρ values increased slightly, though significantly, on day 2, and then increased further and were highest at week 6 post CCl(4) insults. The relative liver signal intensity change on T2-weighted images followed a different time course compared with that of T1ρ. Liver T1ρ values decreased upon the withdrawal of the CCl(4) insult. Histology confirmed the animals had typical CCl(4) liver injury and fibrosis progression and regression processes. CONCLUSIONS MR T1ρ imaging can monitor CCl(4)-induced liver injury and fibrosis. KEY POINTS • MR T1ρ is a valuable imaging biomarker for liver injury/fibrosis. • Liver T1ρ was only mildly affected by oedema and acute inflammation. • Liver MR T1ρ decreased when liver fibrosis and injury regressed.
Collapse
|
8
|
Sakoğlu U, Upadhyay J, Chin CL, Chandran P, Baker SJ, Cole TB, Fox GB, Day M, Luo F. Paradigm shift in translational neuroimaging of CNS disorders. Biochem Pharmacol 2011; 81:1374-87. [PMID: 21219879 DOI: 10.1016/j.bcp.2010.12.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/29/2010] [Accepted: 12/29/2010] [Indexed: 12/29/2022]
Abstract
During the last two decades, functional neuroimaging technology, especially functional magnetic resonance imaging (fMRI), has improved tremendously, with new attention towards resting-state functional connectivity of the brain. This development has allowed scientists to study changes in brain structure and function, and probe these two properties under conditions of evoked stimulation, disease and drug administration. In the domain of functional imaging, the identification and characterization of central nervous system (CNS) functional networks have emerged as potential biomarkers for CNS disorders in humans. Recent attempts to translate clinical neuroimaging methodology to preclinical studies have also been carried out, which offer new opportunities in translational neuroscience research. In this paper, we review recent developments in structural and functional MRI and their use to probe functional connectivity in various CNS disorders such as schizophrenia, mood disorders, Alzheimer's disease (AD) and pain.
Collapse
Affiliation(s)
- Unal Sakoğlu
- Translational Imaging/Advanced Technology, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mattes WB, Walker EG. Translational Toxicology and the Work of the Predictive Safety Testing Consortium. Clin Pharmacol Ther 2009; 85:327-30. [DOI: 10.1038/clpt.2008.270] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|