1
|
Li N, Wang J, Wang Y, Fang C, Liu Y, Zhang C, Zhou D, Cao L, Zhang G, Xu S. Enhanced 3D dose prediction for hypofractionated SRS (gamma knife radiosurgery) in brain tumor using cascaded-deep-supervised convolutional neural network. Phys Eng Sci Med 2024; 47:1469-1490. [PMID: 39080208 DOI: 10.1007/s13246-024-01457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/04/2024] [Indexed: 12/25/2024]
Abstract
Gamma Knife radiosurgery (GKRS) is a well-established technique in radiation therapy (RT) for treating small-size brain tumors. It administers highly concentrated doses during each treatment fraction, with even minor dose errors posing a significant risk of causing severe damage to healthy tissues. It underscores the critical need for precise and meticulous precision in GKRS. However, the planning process for GKRS is complex and time-consuming, heavily reliant on the expertise of medical physicists. Incorporating deep learning approaches for GKRS dose prediction can reduce this dependency, improve planning efficiency and homogeneity, streamline clinical workflows, and reduce patient lagging times. Despite this, precise Gamma Knife plan dose distribution prediction using existing models remains a significant challenge. The complexity stems from the intricate nature of dose distributions, subtle contrasts in CT scans, and the interdependence of dosimetric metrics. To overcome these challenges, we have developed a "Cascaded-Deep-Supervised" Convolutional Neural Network (CDS-CNN) that employs a hybrid-weighted optimization scheme. Our innovative method incorporates multi-level deep supervision and a strategic sequential multi-network training approach. It enables the extraction of intra-slice and inter-slice features, leading to more realistic dose predictions with additional contextual information. CDS-CNN was trained and evaluated using data from 105 brain cancer patients who underwent GKRS treatment, with 85 cases used for training and 20 for testing. Quantitative assessments and statistical analyses demonstrated high consistency between the predicted dose distributions and the reference doses from the treatment planning system (TPS). The 3D overall gamma passing rates (GPRs) reached 97.15% ± 1.36% (3 mm/3%, 10% threshold), surpassing the previous best performance by 2.53% using the 3D Dense U-Net model. When evaluated against more stringent criteria (2 mm/3%, 10% threshold, and 1 mm/3%, 10% threshold), the overall GPRs still achieved 96.53% ± 1.08% and 95.03% ± 1.18%. Furthermore, the average target coverage (TC) was 98.33% ± 1.16%, dose selectivity (DS) was 0.57 ± 0.10, gradient index (GI) was 2.69 ± 0.30, and homogeneity index (HI) was 1.79 ± 0.09. Compared to the 3D Dense U-Net, CDS-CNN predictions demonstrated a 3.5% improvement in TC, and CDS-CNN's dose prediction yielded better outcomes than the 3D Dense U-Net across all evaluation criteria. The experimental results demonstrated that the proposed CDS-CNN model outperformed other models in predicting GKRS dose distributions, with predictions closely matching the TPS doses.
Collapse
Affiliation(s)
- Nan Li
- Department of Radiation Oncology, Hebei Yizhou Tumor Hospital, Zhuozhou, 072750, China
- School of Physics, Beihang University, Beijing, 102206, China
| | - Jinyuan Wang
- Department of Radiation Oncology, PLA General Hospital, Beijing, 100853, China
| | - Yanping Wang
- Department of Radiation Oncology, Hebei Yizhou Tumor Hospital, Zhuozhou, 072750, China
| | - Chunfeng Fang
- Department of Radiation Oncology, Hebei Yizhou Tumor Hospital, Zhuozhou, 072750, China
| | - Yaoying Liu
- School of Physics, Beihang University, Beijing, 102206, China
| | - Chunsu Zhang
- Department of Radiation Oncology, Hebei Yizhou Tumor Hospital, Zhuozhou, 072750, China
| | - Dongxue Zhou
- Department of Radiation Oncology, Hebei Yizhou Tumor Hospital, Zhuozhou, 072750, China
| | - Lin Cao
- Department of Radiation Oncology, Hebei Yizhou Tumor Hospital, Zhuozhou, 072750, China
| | - Gaolong Zhang
- School of Physics, Beihang University, Beijing, 102206, China.
| | - Shouping Xu
- School of Physics, Beihang University, Beijing, 102206, China.
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
3
|
Tang LL, Chen YP, Chen CB, Chen MY, Chen NY, Chen XZ, Du XJ, Fang WF, Feng M, Gao J, Han F, He X, Hu CS, Hu DS, Hu GY, Jiang H, Jiang W, Jin F, Lang JY, Li JG, Lin SJ, Liu X, Liu QF, Ma L, Mai HQ, Qin JY, Shen LF, Sun Y, Wang PG, Wang RS, Wang RZ, Wang XS, Wang Y, Wu H, Xia YF, Xiao SW, Yang KY, Yi JL, Zhu XD, Ma J. The Chinese Society of Clinical Oncology (CSCO) clinical guidelines for the diagnosis and treatment of nasopharyngeal carcinoma. Cancer Commun (Lond) 2021; 41:1195-1227. [PMID: 34699681 PMCID: PMC8626602 DOI: 10.1002/cac2.12218] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/24/2021] [Accepted: 09/08/2021] [Indexed: 02/05/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant epithelial tumor originating in the nasopharynx and has a high incidence in Southeast Asia and North Africa. To develop these comprehensive guidelines for the diagnosis and management of NPC, the Chinese Society of Clinical Oncology (CSCO) arranged a multi‐disciplinary team comprising of experts from all sub‐specialties of NPC to write, discuss, and revise the guidelines. Based on the findings of evidence‐based medicine in China and abroad, domestic experts have iteratively developed these guidelines to provide proper management of NPC. Overall, the guidelines describe the screening, clinical and pathological diagnosis, staging and risk assessment, therapies, and follow‐up of NPC, which aim to improve the management of NPC.
Collapse
Affiliation(s)
- Ling-Long Tang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, P. R. China
| | - Yu-Pei Chen
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, P. R. China
| | - Chuan-Ben Chen
- Department of Radiation Oncology, Fujian Provincial Cancer Hospital, Fujian Medical University Department of Radiation Oncology, Teaching Hospital of Fujian Medical University Provincial Clinical College, Cancer Hospital of Fujian Medical University, Fuzhou, Fujian, 350014, P. R. China
| | - Ming-Yuan Chen
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Nian-Yong Chen
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Xiao-Zhong Chen
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310000, P. R. China
| | - Xiao-Jing Du
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, P. R. China
| | - Wen-Feng Fang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Medical Oncology Department, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Mei Feng
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, P. R. China
| | - Jin Gao
- Department of Radiation Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230001, P. R. China
| | - Fei Han
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, P. R. China
| | - Xia He
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210000, P. R. China
| | - Chao-Su Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
| | - De-Sheng Hu
- Department of Radiotherapy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430079, P. R. China
| | - Guang-Yuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Hao Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, P. R. China
| | - Wei Jiang
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, P. R. China
| | - Feng Jin
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6, Xuefu West Road, Xinpu New District, Zunyi, Guizhou, 563000, P. R. China
| | - Jin-Yi Lang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, P. R. China
| | - Jin-Gao Li
- Department of Radiotherapy, Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, P. R. China
| | - Shao-Jun Lin
- Department of Radiation Oncology, Fujian Provincial Cancer Hospital, Fujian Medical University Department of Radiation Oncology, Teaching Hospital of Fujian Medical University Provincial Clinical College, Cancer Hospital of Fujian Medical University, Fuzhou, Fujian, 350014, P. R. China
| | - Xu Liu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, P. R. China
| | - Qiu-Fang Liu
- Department of Radiotherapy, Shaanxi Provincial Cancer Hospital Affiliated to Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, 710000, P. R. China
| | - Lin Ma
- Department of Radiation Oncology, First Medical Center of Chinese PLA General Hospital, Beijing, 100000, P. R. China
| | - Hai-Qiang Mai
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Ji-Yong Qin
- Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650100, P. R. China
| | - Liang-Fang Shen
- Department of Radiation Oncology, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
| | - Ying Sun
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, P. R. China
| | - Pei-Guo Wang
- Department of Radiotherapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, P. R. China
| | - Ren-Sheng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, P. R. China
| | - Ruo-Zheng Wang
- Department of Radiation Oncology, Key Laboratory of Oncology in Xinjiang Uyghur Autonomous Region, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830000, P. R. China
| | - Xiao-Shen Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
| | - Ying Wang
- Department of Radiation Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400000, P. R. China
| | - Hui Wu
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, P. R. China
| | - Yun-Fei Xia
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, P. R. China
| | - Shao-Wen Xiao
- Department of Radiotherapy, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing, Haidian District, 100142, P. R. China
| | - Kun-Yu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Jun-Lin Yi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Xiao-Dong Zhu
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530000, P. R. China
| | - Jun Ma
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, P. R. China
| |
Collapse
|
4
|
Donche S, Verhoeven J, Descamps B, Bolcaen J, Deblaere K, Boterberg T, Van den Broecke C, Vanhove C, Goethals I. The Path Toward PET-Guided Radiation Therapy for Glioblastoma in Laboratory Animals: A Mini Review. Front Med (Lausanne) 2019; 6:5. [PMID: 30761302 PMCID: PMC6361864 DOI: 10.3389/fmed.2019.00005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most aggressive and malignant primary brain tumor in adults. Despite the current state-of-the-art treatment, which consists of maximal surgical resection followed by radiation therapy, concomitant, and adjuvant chemotherapy, progression remains rapid due to aggressive tumor characteristics. Several new therapeutic targets have been investigated using chemotherapeutics and targeted molecular drugs, however, the intrinsic resistance to induced cell death of brain cells impede the effectiveness of systemic therapies. Also, the unique immune environment of the central nervous system imposes challenges for immune-based therapeutics. Therefore, it is important to consider other approaches to treat these tumors. There is a well-known dose-response relationship for glioblastoma with increased survival with increasing doses, but this effect seems to cap around 60 Gy, due to increased toxicity to the normal brain. Currently, radiation treatment planning of glioblastoma patients relies on CT and MRI that does not visualize the heterogeneous nature of the tumor, and consequently, a homogenous dose is delivered to the entire tumor. Metabolic imaging, such as positron-emission tomography, allows to visualize the heterogeneous tumor environment. Using these metabolic imaging techniques, an approach called dose painting can be used to deliver a higher dose to the tumor regions with high malignancy and/or radiation resistance. Preclinical studies are required for evaluating the benefits of novel radiation treatment strategies, such as PET-based dose painting. The aim of this review is to give a brief overview of promising PET tracers that can be evaluated in laboratory animals to bridge the gap between PET-based dose painting in glioblastoma patients.
Collapse
Affiliation(s)
- Sam Donche
- Department of Radiology and Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Jeroen Verhoeven
- Department of Pharmaceutical Analysis, Ghent University, Ghent, Belgium
| | - Benedicte Descamps
- Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Julie Bolcaen
- Department of Radiology and Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Karel Deblaere
- Department of Radiology and Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Tom Boterberg
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
| | | | - Christian Vanhove
- Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Ingeborg Goethals
- Department of Radiology and Nuclear Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|