1
|
Garbino N, Brancato V, Salvatore M, Cavaliere C. A Systematic Review on the Role of the Perfusion Computed Tomography in Abdominal Cancer. Dose Response 2021; 19:15593258211056199. [PMID: 34880716 PMCID: PMC8647276 DOI: 10.1177/15593258211056199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Background and purpose Perfusion Computed Tomography (CTp) is an imaging technique which allows
quantitative and qualitative evaluation of tissue perfusion through dynamic
CT acquisitions. Since CTp is still considered a research tool in the field
of abdominal imaging, the aim of this work is to provide a systematic
summary of the current literature on CTp in the abdominal region to clarify
the role of this technique for abdominal cancer applications. Materials and Methods A systematic literature search of PubMed, Web of Science, and Scopus was
performed to identify original articles involving the use of CTp for
clinical applications in abdominal cancer since 2011. Studies were included
if they reported original data on CTp and investigated the clinical
applications of CTp in abdominal cancer. Results Fifty-seven studies were finally included in the study. Most of the included
articles (33/57) dealt with CTp at the level of the liver, while a low
number of studies investigated CTp for oncologic diseases involving UGI
tract (8/57), pancreas (8/57), kidneys (3/57), and colon–rectum (5/57). Conclusions Our study revealed that CTp could be a valuable functional imaging tool in
the field of abdominal oncology, particularly as a biomarker for monitoring
the response to anti-tumoral treatment.
Collapse
|
2
|
Chen SH, Miles K, Taylor SA, Ganeshan B, Rodriquez M, Fraioli F, Wan S, Afaq A, Shortman R, Walls D, Hoy L, Endozo R, Bhargava A, Hanson M, Huang J, Raouf S, Francis D, Siddiqi S, Arulampalam T, Sizer B, Machesney M, Reay-Jones N, Dindyal S, Ng T, Groves AM. FDG-PET/CT in colorectal cancer: potential for vascular-metabolic imaging to provide markers of prognosis. Eur J Nucl Med Mol Imaging 2021; 49:371-384. [PMID: 33837843 PMCID: PMC8712298 DOI: 10.1007/s00259-021-05318-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/13/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE This study assesses the potential for vascular-metabolic imaging with FluoroDeoxyGlucose (FDG)-Positron Emission Tomography/Computed Tomography (PET/CT) perfusion to provide markers of prognosis specific to the site and stage of colorectal cancer. METHODS This prospective observational study comprised of participants with suspected colorectal cancer categorized as either (a) non-metastatic colon cancer (M0colon), (b) non-metastatic rectal cancer (M0rectum), or (c) metastatic colorectal cancer (M+). Combined FDG-PET/CT perfusion imaging was successfully performed in 286 participants (184 males, 102 females, age: 69.60 ± 10 years) deriving vascular and metabolic imaging parameters. Vascular and metabolic imaging parameters alone and in combination were investigated with respect to overall survival. RESULTS A vascular-metabolic signature that was significantly associated with poorer survival was identified for each patient group: M0colon - high Total Lesion Glycolysis (TLG) with increased Permeability Surface Area Product/Blood Flow (PS/BF), Hazard Ratio (HR) 3.472 (95% CI: 1.441-8.333), p = 0.006; M0rectum - high Metabolic Tumour Volume (MTV) with increased PS/BF, HR 4.567 (95% CI: 1.901-10.970), p = 0.001; M+ participants, high MTV with longer Time To Peak (TTP) enhancement, HR 2.421 (95% CI: 1.162-5.045), p = 0.018. In participants with stage 2 colon cancer as well as those with stage 3 rectal cancer, the vascular-metabolic signature could stratify the prognosis of these participants. CONCLUSION Vascular and metabolic imaging using FDG-PET/CT can be used to synergise prognostic markers. The hazard ratios suggest that the technique may have clinical utility.
Collapse
Affiliation(s)
- Shih-hsin Chen
- Division of Medicine, Research Department of Imaging, University College London (UCL), London, UK
- Department of Nuclear Medicine, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Kenneth Miles
- Division of Medicine, Research Department of Imaging, University College London (UCL), London, UK
| | - Stuart A. Taylor
- Division of Medicine, Research Department of Imaging, University College London (UCL), London, UK
- Centre for Medical Imaging, University College London, London, UK
| | - Balaji Ganeshan
- Division of Medicine, Research Department of Imaging, University College London (UCL), London, UK
| | - Manuel Rodriquez
- University College London Hospitals (UCLH) NHS Foundation Trust, Surgery and Cancer Board, Imaging Division, University College Hospital (UCH), London, UK
- Department of Research Pathology, Cancer Institute, UCL, London, UK
| | - Francesco Fraioli
- University College London Hospitals (UCLH) NHS Foundation Trust, Surgery and Cancer Board, Imaging Division, University College Hospital (UCH), London, UK
| | - Simon Wan
- University College London Hospitals (UCLH) NHS Foundation Trust, Surgery and Cancer Board, Imaging Division, University College Hospital (UCH), London, UK
| | - Asim Afaq
- University College London Hospitals (UCLH) NHS Foundation Trust, Surgery and Cancer Board, Imaging Division, University College Hospital (UCH), London, UK
- University of Iowa, Carver College of Medicine, Iowa City, USA
| | - Robert Shortman
- Department of Nuclear Medicine, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Darren Walls
- Division of Medicine, Research Department of Imaging, University College London (UCL), London, UK
| | - Luke Hoy
- Division of Medicine, Research Department of Imaging, University College London (UCL), London, UK
| | - Raymond Endozo
- University College London Hospitals (UCLH) NHS Foundation Trust, Surgery and Cancer Board, Imaging Division, University College Hospital (UCH), London, UK
| | - Aman Bhargava
- Institute of Health Barts and London Medical School, Queen Mary University of London (QMUL), London, UK
| | - Matthew Hanson
- Barking, Havering and Redbridge University Hospitals NHS Trust, Division of Cancer and Clinical Support, Queens and King George Hospitals, Essex, UK
| | - Joseph Huang
- Barking, Havering and Redbridge University Hospitals NHS Trust, Division of Cancer and Clinical Support, Queens and King George Hospitals, Essex, UK
| | - Sherif Raouf
- Barking, Havering and Redbridge University Hospitals NHS Trust, Division of Cancer and Clinical Support, Queens and King George Hospitals, Essex, UK
- Radiotherapy Department, Barts Cancer Centre, St Bartholomew’s Hospital, West Smithfield, London, UK
| | - Daren Francis
- Royal Free London NHS Foundation Trust, Department of Colorectal Surgery, Barnet and Chase Farm Hospitals, London, UK
| | - Shahab Siddiqi
- Mid Essex Hospital Services NHS Trust, Department of Lower GI Surgery and Coloproctology, Broomfield Hospital, Essex, UK
| | - Tan Arulampalam
- East Suffolk and North Essex NHS Foundation Trust, Department of Surgery & Department of Clinical Oncology, Colchester General Hospital, Essex, UK
| | - Bruce Sizer
- East Suffolk and North Essex NHS Foundation Trust, Department of Surgery & Department of Clinical Oncology, Colchester General Hospital, Essex, UK
| | - Michael Machesney
- Barts Health NHS Trust, Cancer Clinical Board, Colorectal Surgery, Whipps Cross Hospital, London, UK
| | - Nicholas Reay-Jones
- East and North Hertfordshire NHS Trust, Colorectal Surgery, Queen Elizabeth II Hospital, Hertfordshire, UK
| | - Sanjay Dindyal
- East and North Hertfordshire NHS Trust, Colorectal Surgery, Lister Hospital, Hertfordshire, UK
| | - Tony Ng
- School of Cancer & Pharmaceutical Sciences, Kings College London (KCL), London, UK
| | - Ashley M Groves
- Division of Medicine, Research Department of Imaging, University College London (UCL), London, UK
| |
Collapse
|
3
|
Yang T, Xiao H, Liu X, Wang Z, Zhang Q, Wei N, Guo X. Vascular Normalization: A New Window Opened for Cancer Therapies. Front Oncol 2021; 11:719836. [PMID: 34476218 PMCID: PMC8406857 DOI: 10.3389/fonc.2021.719836] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022] Open
Abstract
Preclinical and clinical antiangiogenic approaches, with multiple side effects such as resistance, have not been proved to be very successful in treating tumor blood vessels which are important targets for tumor therapy. Meanwhile, restoring aberrant tumor blood vessels, known as tumor vascular normalization, has been shown not only capable of reducing tumor invasion and metastasis but also of enhancing the effectiveness of chemotherapy, radiation therapy, and immunotherapy. In addition to the introduction of such methods of promoting tumor vascular normalization such as maintaining the balance between proangiogenic and antiangiogenic factors and targeting endothelial cell metabolism, microRNAs, and the extracellular matrix, the latest molecular mechanisms and the potential connections between them were primarily explored. In particular, the immunotherapy-induced normalization of blood vessels further promotes infiltration of immune effector cells, which in turn improves immunotherapy, thus forming an enhanced loop. Thus, immunotherapy in combination with antiangiogenic agents is recommended. Finally, we introduce the imaging technologies and serum markers, which can be used to determine the window for tumor vascular normalization.
Collapse
Affiliation(s)
- Ting Yang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongqi Xiao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoxia Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhihui Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingbai Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nianjin Wei
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinggang Guo
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Foley KG, Pearson B, Riddell Z, Taylor SA. Opportunities in cancer imaging: a review of oesophageal, gastric and colorectal malignancies. Clin Radiol 2021; 76:748-762. [PMID: 33579518 DOI: 10.1016/j.crad.2021.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
The incidence of gastrointestinal (GI) malignancy is increasing worldwide. In particular, there is a concerning rise in incidence of GI cancer in younger adults. Direct endoscopic visualisation of luminal tumour sites requires invasive procedures, which are associated with certain risks, but remain necessary because of limitations in current imaging techniques and the continuing need to obtain tissue for diagnosis and genetic analysis; however, management of GI cancer is increasingly reliant on non-invasive, radiological imaging to diagnose, stage, and treat these malignancies. Oesophageal, gastric, and colorectal malignancies require specialist investigation and treatment due to the complex nature of the anatomy, biology, and subsequent treatment strategies. As cancer imaging techniques develop, many opportunities to improve tumour detection, diagnostic accuracy and treatment monitoring present themselves. This review article aims to report current imaging practice, advances in various radiological modalities in relation to GI luminal tumour sites and describes opportunities for GI radiologists to improve patient outcomes.
Collapse
Affiliation(s)
- K G Foley
- Department of Clinical Radiology, Royal Glamorgan Hospital, Llantrisant, UK.
| | - B Pearson
- National Imaging Academy Wales (NIAW), Pencoed, UK
| | - Z Riddell
- National Imaging Academy Wales (NIAW), Pencoed, UK
| | - S A Taylor
- Centre for Medical Imaging, UCL, London, UK
| |
Collapse
|
5
|
Sinitsyn V. Analysis and Interpretation of Perfusion CT in Oncology: Type of Cancer Matters. Radiology 2019; 292:636-637. [PMID: 31287775 DOI: 10.1148/radiol.2019191265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Valentin Sinitsyn
- From the Department of Radiology, Medical Faculty of Lomonosov, Moscow State University, Lomonosovsky prospect 27/1, Moscow 119991, Russia
| |
Collapse
|
6
|
Luterstein E, Raldow A, Yang Y, Lee P. Functional Imaging Predictors of Response to Chemoradiation. CURRENT COLORECTAL CANCER REPORTS 2018. [DOI: 10.1007/s11888-018-0407-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Rodriguez-Pascual J, Cubillo A. Dynamic Biomarkers of Response to Antiangiogenic Therapies in Colorectal Cancer: A Review. ACTA ACUST UNITED AC 2018; 15:81-85. [PMID: 29657584 PMCID: PMC5872368 DOI: 10.2174/1875692115666170815161754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/27/2017] [Accepted: 08/09/2017] [Indexed: 12/14/2022]
Abstract
Background: Identification of clinical and molecular biomarkers to predict dynamic response or monitor in real-time the efficacy of antiangiogenic therapy represents a major point in the treatment of patients with advanced colorectal cancer. Several stu-dies have been conduced to identify some predictive biomarkers to select patients who will benefit from bevacizumab, the most widely used antiangiogenic monoclonal anti-body. Conclusion: After a decade since the introduction of bevacizumab, no effective predictive biomarkers are available in routine clinical practice. In this review, we summarized the potential candidate dynamic biomarkers that may play a role in this setting.
Collapse
Affiliation(s)
| | - Antonio Cubillo
- Centro Integral Oncológico Clara Campal (CIOCC), Madrid, Spain
| |
Collapse
|
8
|
Cidon EU, Alonso P, Masters B. Markers of Response to Antiangiogenic Therapies in Colorectal Cancer: Where Are We Now and What Should Be Next? CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2016; 10:41-55. [PMID: 27147901 PMCID: PMC4849423 DOI: 10.4137/cmo.s34542] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/15/2016] [Accepted: 03/13/2016] [Indexed: 12/17/2022]
Abstract
Despite advances in the treatment of colorectal cancer (CRC), it remains the second most common cause of cancer-related death in the Western world. Angiogenesis is a complex process that involves the formation of new blood vessels from preexisting vessels. It is essential for promoting cancer survival, growth, and dissemination. The inhibition of angiogenesis has been shown to prevent tumor progression experimentally, and several chemotherapeutic targets of tumor angiogenesis have been identified. These include anti-vascular endothelial growth factor (VEGF) treatments, such as bevacizumab (a VEGF-specific binding antibody) and anti-VEGF receptor tyrosine kinase inhibitors, although antiangiogenic therapy has been shown to be effective in the treatment of several cancers, including CRC. However, it is also associated with its own side effects and financial costs. Therefore, the identification of biomarkers that are able to identify patients who are more likely to benefit from antiangiogenic treatment is very important. This article intends to be a concise summary of the potential biomarkers that can predict or prognosticate the benefit of antiangiogenic treatments in CRC, and also what we can expect in the near future.
Collapse
Affiliation(s)
- E Una Cidon
- Department of Medical Oncology, Royal Bournemouth Hospital NHS Foundation Trust, Bournemouth, UK
| | - P Alonso
- Department of Clinical Oncology, Clinical University Hospital, Valladolid, Spain
| | - B Masters
- Department of Oncology, Nottingham City Hospital, Nottingham, UK
| |
Collapse
|
9
|
Kandel SM, Meyer H, Boehnert M, Hoppel B, Paul NS, Rogalla P. How influential is the duration of contrast material bolus injection in perfusion CT? evaluation in a swine model. Radiology 2013; 270:125-30. [PMID: 24029648 DOI: 10.1148/radiol.13130024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE To analyze the effect of the duration of contrast material bolus injection on perfusion values in a swine model by using the maximum slope method. MATERIALS AND METHODS This study was approved by the institutional animal care committee. Twenty pigs (weight range, 63-77 kg) underwent dynamic volume computed tomography (CT) of the kidneys during suspended respiration. Before the CT examination, a miniature cuff-shaped ultrasonographic flow probe encircling the right renal artery was surgically implanted in each pig to obtain true perfusion values. Two sequential perfusion CT series were performed in 30 seconds, each comprising 30 volumes with identical parameters (100 kV, 200 mAs, 0.5 sec rotation time). The duration of contrast material bolus (0.5 mL/kg of body weight) was 3.8 seconds in the first series (short bolus series) and 11.5 seconds in the second series (long bolus series), and the injection flow rate was adapted accordingly. In each pig, cortical kidney volume was determined by using the volume with the highest cortical enhancement. CT perfusion values were calculated for both series by using the maximum slope method and were statistically compared and correlated with the true perfusion values from the flow probe by using linear regression analysis. RESULTS Mean true perfusion and CT perfusion values (in minutes(-1)) for the short bolus series were 1.95 and 2.03, respectively (P = .22), and for the long bolus series, they were 2.02 and 1.92, respectively (P = .12). CT perfusion showed very good correlation with true perfusion in both the short (slope, 1.01; 95% confidence interval: 0.91, 1.11) and long (slope, 0.92; 95% confidence interval: 0.78, 1.04) series. On the basis of the regression analysis, CT perfusion values in the short bolus series were overestimated by 1% and those in the long bolus series were underestimated by 8%. CONCLUSION Duration of contrast material bolus injection does not influence CT perfusion values substantially. The longer, clinically preferred intravenous injection scheme is sufficiently accurate for CT perfusion.
Collapse
Affiliation(s)
- Sonja M Kandel
- From the Department of Medical Imaging, Toronto General Hospital, University of Toronto, 585 University Ave, NCSB 1C560, Toronto, ON, Canada M5G 2N2
| | | | | | | | | | | |
Collapse
|
10
|
Dighe S, Blake H, Jeyadevan N, Castellano I, Koh DM, Orton M, Chandler I, Swift I, Brown G. Perfusion CT vascular parameters do not correlate with immunohistochemically derived microvessel density count in colorectal tumors. Radiology 2013; 268:400-10. [PMID: 23592771 DOI: 10.1148/radiol.13112460] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE To determine whether perfusion computed tomography (CT)-derived vascular parameters-namely, blood flow, mean transit time (MTT), volume transfer constant (K(trans)), permeability-surface area product (PS), extracellular extravascular space volume, and vascular volume-correlate with the immunohistologic markers of angiogenesis in colorectal tumors. MATERIALS AND METHODS This prospective study was approved by the Regional Ethics and Research and Development Committees. The perfusion CT protocol was incorporated in the staging CT after informed consent in 29 patients (14 men, 15 women; mean age, 70 years; age range, 55-94 years). The perfusion parameters were calculated over two regions of interest (ROIs), at the invasive and luminal site defined by two radiologists independently. Accurate representative data were captured manually by correcting for motion artifacts and were analyzed by using Matlab software. The vascular heterogeneity between ROIs was assessed by using the Wilcoxon signed rank test. Perfusion CT parameters were correlated with the microvessel density (MVD) count at both corresponding sites obtained by means of immunohistochemical staining of the selected histologic slide with factor VIII and CD105 antigens by using Spearmen rank coefficient. RESULTS There was no statistically significant difference found between perfusion CT vascular parameters at the two ROIs by either of the radiologists. The Pearson coefficient for blood flow, MTT, K(trans), and PS at the two ROIs demonstrated good to moderate interobserver variability (for the two ROIs, 0.46 and 0.44; 0.67 and 0.64; 0.41 and 0.72; and 0.86 and 0.56, respectively). None of these parameters correlated with MVD count at the invasive or the luminal site for either of the two antigens. CONCLUSION Perfusion CT measurements may measure vascularity of colorectal tumors, however, correlation with MVD, which is a morphologic measure, appears inappropriate. © RSNA, 2013.
Collapse
Affiliation(s)
- Shwetal Dighe
- Department of Surgery, Mayday University Hospital NHS Trust, Croydon, London, England
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
CT Dynamics: The Shift from Morphology to Function. CURRENT RADIOLOGY REPORTS 2013. [DOI: 10.1007/s40134-012-0004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|